Instytut Oceanologii Polskiej Akademii Nauk

"Dystrybucja tracera pasywnego jako konsekwencja ustawienia konstrukcji wsporczej morskiej turbiny wiatrowej"

Instytut Oceanologii Polskiej Akademii Nauk

Zespół realizujący:

- Lidia Dzierzbicka-Głowacka
- Mariusz Figiela

Opracowanie wyników

- Czas zaniku osadu
- Spadek koncentracji tracera pasywnego
- Zasięg dystrybucji tracera pasywnego
- Dystrybucja tracera pasywnego

Lokalizacja punktów poboru prób

- Materiał wykorzystany w analizach został pobrany podczas rejsów badawczych na jednostce r/v "Oceania" od maja 2013 do maja 2014 roku.
- Do analizy pobrano próbki osadów powierzchniowych i rdzenie osadów.
- Całkowita ilość tracera pasywnego została określona dzięki analizom granulometrycznym każdej próby.

Rys. 1. Obszar poboru prób

Metodyka badań

- Symulacje numeryczne zostały przygotowane dla warunków hydrodynamicznych panujących w 2012 roku.
- Wyniki numeryczne zostały przygotowane dla frakcji 47 μm ponieważ w jej przypadku odnotowano najdłuższy czas opadania cząsteczek.
- Frakcja 47 μm była nieobecna w próbach ze stacji 39, 41 i 42, dlatego zostały one wykluczone z dalszych analiz.
- Jako wartość progową przyjęto poziom koncentracji 1 μg/g. Analizy geochemiczne składu osadów dla poszczególnych stacji pozwoliły na ustalenie, że ilość metali występujących w ekosystemie nie będzie groźna dla środowiska ponieważ ich dopuszczalne wartości w środowisku naturalnym są znacznie wyższe (Tab. 1)

Pierwiastek	Tło geochemiczne	Wartość dopuszczal na			
[µg/g]	(Uścinowicz 2011)	(Dz.U. 2002 nr 55 poz. 498)			
Pb	32-56	200			
Hg	0,02-0,08	1			
As	5-20	30			
Cd	0.5-1	7.5			
Cr	52-80	200			
Со	5	7*			
Cu	26-45	150			
Zn	5-50	1000			
Mn	290-1000				
Ni	1-50	75			
Fe	1900 - 3500	6300			

Tabela 1. Stężenia badanych metali w osadach dennych, w porównaniu do norm prawnych i wartości tła geochemicznego wg. OSPAR.

Metodyka badań

Opracowanie analiz numerycznych wykonano w oparciu dwa główne czynniki:

- Maksymalna koncentracja początkowa tracera pasywnego
- Wartość modułu wektora prędkości

	STY	LUT	MAR	KWI	MAJ	CZE	LIP	SIE	WRZ	PAŹ	LIS	GRU
30	25,32	25,37	23,72	25,57	24,21	24,50	24,18	24,01	25,45	24,23	24,29	23,30
31	4,83	4,98	5,04	4,56	4,95	4,96	4,97	5,00	4,87	5,00	5,02	4,75
32	27,84	28,45	28,07	28,58	27,80	28,42	28,30	28,43	28,06	28,72	28,74	27,72
33	13,19	11,29	12,86	12,31	8,34	12,70	12,95	9,34	12,20	13,54	11,05	9,40
34	8,85	8,97	9,04	9,16	8,80	8,81	8,97	8,78	8,86	8,87	8,74	8,74
35	23,47	23,67	23,80	23,74	23,57	23,86	23,65	23,87	23,58	23,98	24,06	23,47
36	23,99	23,62	23,28	24,39	23,36	23,33	23,57	23,26	23,77	23,53	23,43	24,17
37	21,75	21,91	22,03	22,21	21,73	22,16	22,09	22,12	21,81	22,24	22,25	21,44
38	6,61	6,82	6,72	6,73	6,61	6,67	6,68	6,68	6,64	6,64	6,75	6,52
40	30,51	30,73	31,93	31,33	31,06	31,42	31,18	31,13	30,97	31,56	31,73	30,32
43	1,75	1,75	1,74	1,62	1,70	1,74	1,74	1,75	1,71	1,75	1,76	1,67
44	1,24	1,57	1,31	1,29	1,16	1,26	1,26	1,25	1,28	1,26	<1	1,29
45	24,28	23,04	23,42	24,46	25,30	25,54	25,47	25,47	25,39	25,36	25,42	25,56
46	1,18	1,23	1,23	1,23	1,19	1,18	1,17	1,18	1,18	<1	1,17	1,11

Tabela 2. Maksymalna koncentracja tracera pasywnego (µg/g.) w chwili startu symulacji.

	STY	LUT	MAR	KWI	MAJ	CZE	LIP	SIE	WRZ	PAŹ	LIS	GRU
30	5,35	8,96	2,77	21,42	3,28	3,62	5,94	3,50	7,27	5,75	3,91	14,08
31	8,08	14,88	3,80	29,16	7,51	7,06	5,98	3,44	9,58	4,57	6,28	18,50
32	4,56	3,75	2,38	4,67	4,86	3,31	1,55	1,95	1,94	5,62	6,34	6,34
33	9,71	5,04	2,14	20,10	7,67	0,12	2,32	3,41	4,68	5,98	6,24	25,94
34	1,67	5,24	3,13	10,53	3,05	1,94	3,59	2,52	3,16	3,31	7,41	8,64
35	15,91	6,98	8,46	7,48	2,03	5,72	1,62	5,05	11,84	3,00	8,49	10,46
36	3,35	8,48	2,34	28,25	4,49	4,76	3,85	1,48	6,63	1,43	2,80	6,76
37	6,17	12,01	3,72	2,47	6,09	3,83	4,30	3,27	5,62	2,45	8,49	14,41
38	2,68	3,60	1,15	1,53	2,31	0,97	0,72	0,72	1,33	1,33	2,68	4,40
40	5,83	7,36	7,94	6,17	5,31	4,14	2,24	2,04	3,50	4,48	6,48	10,00
43	2,45	2,45	2,58	7,42	1,93	2,42	2,20	2,71	1,46	4,52	4,19	6,75
44	2,03	2,14	7,67	14,08	7,36	4,49	4,86	6,54	1,15	5,05	8,29	4,94
45	4,08	5,80	6,31	9,46	4,94	2,81	2,96	1,98	3,24	3,85	6,70	7,12
46	8,45	7,44	4,75	13,89	2,15	0,96	3,96	4,52	4,34	4,76	7,36	7,17

Tabela 3. Wartości modułu wektora prędkości (m/s) na analizowanych stacjach.

WYNIKI: Czas zaniku tracera pasywnego

 Czas zaniku pokazuje w jakim czasie w różnych warunkach hydrodynamicznych koncentracja tracera pasywnego na skutek jego rozprzestrzeniania i opadania osiąga wartość progową 1 μg/g.

	STY	LUT	MAR	KWI	MAJ	CZE	LIP	SIE	WRZ	PAŹ	LIS	GRU
30	5	6	5	7	7	5	5	5	6	5	5	11
31	3	3	3	2	3	3	3	3	3	3	3	3
32	7	7	7	7	7	7	7	7	7	7	7	7
33	5	6	6	4	6	5	6	6	5	5	5	6
34	5	5	5	5	5	5	5	5	5	5	5	5
35	7	7	7	7	7	7	7	7	7	7	7	7
36	5	5	4	5	5	5	5	4	5	4	4	5
37	6	6	6	6	6	6	6	6	6	6	6	6
38	4	4	4	4	4	4	4	4	4	4	4	4
40	7	7	7	7	7	7	7	7	7	7	7	7
43	2	2	2	1	2	2	2	2	2	2	2	1
44	1	1	1	1	1	1	1	1	1	1	0	1
45	6	7	5	6	6	6	6	6	6	6	6	6
46	1	1	1	1	1	1	1	1	1	0	1	1

Tabela 6. Czas zaniku tracera pasywnego na poszczególnych stacjach (godziny).

WYNIKI: Czas zaniku tracera pasywnego

Rys. 2. Czas zaniku tracera pasywnego na stacjach 30, 31, 32, 33, 34, 35 i 36.

Rys. 3. Czas zaniku tracera pasywnego na stacjach 37, 38, 40, 43, 44, 45 i 46.

WYNIKI: Czas zaniku tracera pasywnego

- Otrzymane wyniki wykazały, że istnieje zależność pomiędzy czasem zaniku tracera pasywnego, a maksymalną koncentracją początkową.
- Podobnej zależności nie odnotowano w przypadku wartości modułu wektora prędkości.

Rys. 4. Korelacja między maksymalną koncentracją początkową tracera pasywnego, a czasem jego zaniku.

WYNIKI: Spadek koncentracji tracera pasywnego

 Spadek koncentracji tracera pasywnego w czasie we wszystkich analizowanych miesiącach na badanych stacjach następował zgodnie z funkcją wykładniczą:

$$y = a * e^{-b * x}$$

- y koncentracja tracera pasywnego
- x czas (w godzinach)
- Współczynniki a i b przyjmują różne wartości zależne od czasu (miesiąca), koncentracji i miejsca

WYNIKI: Spadek koncentracji tracera pasywnego

- Wartość współczynnika a jest ściśle powiązana z maksymalną koncentracją początkową, którą uzyskał tracer pasywny w każdej symulacji.
- Zależność ta była obserwowana w każdej symulacji.

Rys. 6. Korelacja między koncentracją początkową, a wartością zmiennej a w całym roku.

WYNIKI: Spadek koncentracji tracera pasywnego

- Wyraźna zależność pomiędzy prędkością prądów, a wartością zmiennej b była widoczna tylko w okresie lutym, kwietniu i lipcu
- W pozostałych miesiącach nie odnotowano tak dobrze skorelowanych wyników.

Rys.8. Korelacja między prędkością prądów, a wartością zmiennej b w kwietniu.

Rys. 7. Korelacja między prędkością prądów, a wartością zmiennej b w lutym.

Rys. 9. Korelacja między prędkością prądów, a wartością zmiennej b w lipcu.

WYNIKI: Zasięg dystrybucji tracera pasywnego

dystrybucji Zasięg tracera pasywnego pokazuje na jaką maksymalna odległość został przetransportowany osad wyniesiony do wyższych partii kólumny wody w wyniku procesu ustawiania turbiny wiatrowej. Maksymalny zasięg został obliczony dla każdej symulacji w ostatniej godzinie przed osiągnięciem wartości progowej. W procesie tym były uwzględnione wszystkie komórki modelu których W koncentracja była większa lub równa niż Ó,1µg/g.

	STY	LUT	MAR	KWI	MAJ	CZE	LIP	SIE	WRZ	PAŹ	LIS	GRU
30	6,47	6,47	6,47	6,47	6,47	6,47	6,47	6,47	6,47	6,47	6,47	9,43
31	4,35	4,35	4,35	4,35	4,35	4,35	4,35	4,35	4,35	4,35	4,35	4,35
32	2,20	2,87	2,20	2,20	2,20	2,87	2,20	2,87	2,20	2,87	2,87	2,20
33	2,96	5,66	5,66	6,47	6,47	6,47	6,47	6,47	6,47	6,47	6,47	8,62
34	2,15	2,15	2,15	2,15	2,15	2,15	2,15	2,15	2,15	2,15	2,15	2,15
35	2,98	2,98	2,98	2,98	2,98	2,98	2,98	2,98	2,98	2,98	2,98	2,14
36	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31
37	10,2 2	10,2 2	10,22	11,01	10,22	10,22	10,22	10,22	10,22	10,22	10,22	10,22
38	4,39	2,88	4,39	4,39	4,39	4,39	4,39	4,39	4,39	4,39	4,39	4,39
40	2,89	7,36	4,38	4,44	7,36	7,36	6,52	6,52	6,52	6,52	6,52	7,36
43	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18
44	2,14	2,14	2,14	2,98	2,14	2,14	2,14	2,14	2,14	2,14	2,98	2,14
45	1,65	5,12	5,12	5,12	5,12	5,12	5,12	5,12	5,12	5,12	5,12	4,29
46	2,88	4,39	2,88	2,88	2,88	2,88	2,88	2,88	2,88	2,88	2,88	2,88

Tabela 7. Zasięg dystrybucji tracera pasywnego (km).

- Transport tracera pasywnego na analizowanych stacjach był zależny od kierunku i prędkości prądu. Ponieważ całkowity czas sedymentacji osadów raczej nie przekraczał okresu siedmiu godzin rozkłady dystrybucji wyglądały podobnie, swego rodzaju zmienność można było zaobserwować w przypadku ilości osadu. Prądy w tym czasie były relatywnie stałe i tylko w kilku przypadkach odnotowano wyraźne zmiany.
- Większość analizowanych stacji była zlokalizowana tuż przy granicy poziomów (głębokości) modelu co powodowało ograniczenie transportu tracera pasywnego.
- W ciągu całego analizowanego okresu nie odnotowano dużej zmienności w transporcie osadu pomiędzy miesiącami.

Kierunek

Rys. 10. Średnia roczna dystrybucja tracera pasywnego (μg/g) na stacji nr 30.

Rys. 11. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 31.

Rys. 12. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 32.

Rys. 13. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 30.

Rys. 14. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 31.

Rys. 15. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 32.

Rys. 16. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 33.

Rys. 17. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 34.

Rys. 18. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 35.

Rys. 19. Średnia roczna wartość modułuRys. 20. Średnia roczna wartość modułuwektora prędkości (cm/s) na stacji nr 33.wektora prędkości (cm/s) na stacji nr 34.

Rys. 21. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 35.

Rys. 22. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 36.

Rys. 23. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 37.

Rys. 24. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 38.

04_ENE

05_E

Rys. 25. Średnia roczna wartość modułuRys. 26. Średnia roczna wartość modułuwektora prędkości (cm/s) na stacji nr 36.wektora prędkości (cm/s) na stacji nr 37.

Rys. 27. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 38.

Rys. 28. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 40.

Rys. 29. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 43.

Rys. 30. Średnia roczna dystrybucja tracera pasywnego (µg/g) na stacji nr 44.

Rys. 31. Średnia roczna wartość modułuRys. 32. Średnia roczna wartość modułuwektora prędkości (cm/s) na stacji nr 40.wektora prędkości (cm/s) na stacji nr 43.

Rys. 33. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 44.

Rys. 34. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 45.

Rys. 35. Średnia roczna dystrybucja tracera pasywnego (μ g/g) na stacji nr 46.

Rys. 36. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 45.

Rys. 37. Średnia roczna wartość modułu wektora prędkości (cm/s) na stacji nr 46.

Podsumowanie

- Prądy morskie nie wpłynęły znacząco na czas zaniku tracera pasywnego.
- Odpadanie cząsteczek osadu nie było opadaniem swobodnym. Zakłócenia były generowane intensywnością prądów.
- Zasięg dystrybucji w powyższych analizach nie był skorelowany z wartością modułu wektora prędkości.
- Położenie stacji na obszarze w pobliżu granicy poziomów modelu ogranicza dystrybucje tracera pasywnego

Instytut Oceanologii Polskiej Akademii Nauk

"Dystrybucja tracera pasywnego jako konsekwencja ustawienia konstrukcji wsporczej morskiej turbiny wiatrowej"