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Abstract

Sandy beaches are highly exploited but very dynamic and fragile environments.
Driven by waves, the water flow through the beach body is able to transport
oxygen, and hence help to maintain biological activity in the porous media. The
paper presents a theoretical attempt to predict the groundwater circulation due
to wave set-up. Two systems of circulations have been discovered, related to two
different gradients of the set-up height. For the offshore gradient, the horizontal
excess pressure gradient induces flow in the offshore direction. However, closer to
the shore, the pressure gradient is reversed and the resulting flow moves shorewards.

1. Introduction

In a recent paper, which will be referred to as paper I, Massel
& Pelinovsky (2001) considered the run-up of dispersive and breaking waves
on a gentle beach slope. It was shown that in the set-up this phenomenon has
a considerable effect on the resulting run-up height. The set-up mechanism
is of the phase-averaged type and results from the balance between the
radiation stress Sxx (Longuet-Higgins & Stewart 1964) and the denivelation
relative to the still water level ζ̄(x), i.e.
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dSxx
dx

+ ρg(h + ζ̄(x))
dζ̄(x)
dx

= 0, (1)

in which ρ is the water density and h is the water depth relative to the still
water level.

However, in paper I the permeability of the sea bottom was neglected.
When the sea bottom is permeable, the denivelation of the mean sea level
ζ̄ induces a groundwater circulation which contributes to the submarine
groundwater discharge (Longuet-Higgins 1983, Kang & Nielsen 1996, Li
& Barry 2000). This situation is shown diagrammatically in Fig. 1 (see
Region 3 between points Bb and D). The velocity of flow as well as the
amount of water circulating within the permeable beach body is important
for the biological status of the organisms inhabiting the beach sand.
Although the biodiversity and biomass of interstitial organisms within the
beach body are low, recent findings have shown that marine sands transfer
energy very effectively (Węsławski et al. 2000). Moreover, the chemical and
biological reactions are faster than in the fine-grained sediments. The high
diversity of diatoms and meiofauna in undisturbed beaches may act as
effective biological filters for some types of pollutants, and more abundant
biota in disturbed beaches are more effective in processing organic matter
and beach self-cleaning. Some pollutants, such as hydrocarbons and heavy
metals, are sorbed on the surface of microbes and diatoms (Siron et al.
1996). Another important function of sandy beaches is the decomposition
of dead organic matter. For the Baltic range this is 1 to 20 g fresh weight
per m2 per day reduced to mineral elements (Węsławski et al. 2000).

Little is known about the water flow in this region. Longuet-Higgins
(1983) developed a simple analytical solution for the circulation induced
by wave set-up. The problem was solved for a semi-infinite domain, but
the free surface boundary conditions at the water table and the landward
boundaries were not included in the solution. Li & Barry (2000) presented
a numerical study of the instantaneous, phase-resolved wave motion and
resulting groundwater variation in the beach zone due to progressive bore.
They also considered the averaged flow due to wave set-up using a simplified
representation of the set-up gradient.

In this short paper, a simplified model of the wave-bottom interaction
in the set-up region is presented. The simplification is based on the
assumption that the phase-averaged, mean pressure gradient, though small,
produces effects that, because they are cumulative in time, may be
more far-reaching. Special attention is given to the determination of the
kinematic characteristics of flow and their dependence on the incident wave
parameters. The paper is organized as follows. The simplified wave set-up



Circulation of groundwater due to wave set-up on a permeable beach 281

model is briefly discussed in Section 2. The fundamental governing equations
for the water circulation due to set-up are developed in Section 3 and the
solution of the governing equations is discussed in Section 4. Section 5
contains examples of numerical calculations. Some remarks on the layout
of possible experiments and main conclusions are listed in Section 6.

2. Simplified model for the wave set-up

As was mentioned in Section 1, the gradient of the radiation stress tensor
Sxx induces a denivelation of the mean water level ζ̄. Before the breaking
point, the wave height changes a little and the resulting wave set-up is
very small. However, from the breaking point, the wave set-up increases
substantially. To calculate the set-up height ζ̄(x) in Region 3, we use the
formula resulting from the shallow-water approximation of eq. (1) given in
paper I

ζ̄(x) = ζ̄br +
3
8
γ2
br

(
1 +

3
8
γ2
br

)−1
[hbr − h(x)] , (2)

in which γbr = (Hh )br, ζ̄br =
1
16γbrHbr is the set-down value at the breaking

point and Hbr is the breaking wave height. We note that for the still-water
level (x = 0) eq. (2) yields

ζ̄0 = ζ̄(0) = ζ̄br +
3
8
γ2
br

(
1 +

3
8
γ2
br

)−1
hbr. (3)

Eq. (2) indicates that when water depth h(x) = βx (β is the bottom slope),
the set-up height becomes a linear function of x.

3. Governing equations for groundwater circulation due to
wave set-up

Beaches consisting of sand or unconsolidated sediment are porous and
any changes of pressure associated with the wave set-up produce a flow
of sea water within the beach itself. The oscillatory component of the
pressure may produce some damping of the waves over a porous beach
(Massel 1976). On the other hand, the wave motion percolating through
a permeable bottom influences the wave forces on the hydraulic structures
supported by or extending into the bottom. These wave forces are able to
effect the behaviour of a porous material underneath and in the vicinity of
a structure.
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Let us assume that the sand is anisotropic and the flow is two-dimensional
in the plane (0, x, z). The flow is considered to be in the Darcy law range,
while the soil is assumed to be fully saturated (no air is contained in the
porous media) and the grain skeleton is rigid. The complete equations of
motion of the soil element are (Moshagen & Torum 1975)

∂u
∂t + u ∂u∂x + w ∂u∂z = − 1

n�
∂p
∂x −

g
nK u

∂w
∂t + u ∂w∂x + w ∂w∂z = − 1

n�
∂p
∂z −

g
nK w


, (4)

and the equation of continuity is

u

�

∂�

∂x
+

w

�

∂�

∂z
+

∂u

∂x
+

∂w

∂z
= − n

E

∂p

∂t
, (5)

in which n is the ratio of pore volume to total volume, x, y are the horizontal
and vertical coordinates (see Fig. 1), K is the coefficient of permeability,
p is the excess pressure of water, u and w are the Darcy velocities in
the x and z directions, respectively, and E is the bulk modulus of the
water = 2.3× 109 N m−2.
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Fig. 1. Reference scheme

We estimate the coefficient of permeability K using the approximate
Hazen formula

K = (1.0−1.5)D2
10 , (6)

in which K is in meters per second when D10 (grain diameter) is in
centimeters.

To get the solution in closed form, we simplify the nonlinear equations
(4)–(5). Using the fact that the nonlinear terms in these equations are
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negligible for slow motion and that for a stationary, phase-averaged flow
the local accelerations are zero, we get

u = −Kγ
∂p
∂x

w = −Kγ
∂p
∂z


, (7)

where γ is the unit weight of water, and

∂u

∂x
+

∂w

∂z
= 0. (8)

Therefore, the equation for the pressure response becomes the Laplace
equation

∂2p

∂x2 +
∂2p

∂z2
= 0. (9)

Let us introduce a new coordinate system (x1, z1) – Fig. 2. The coordinates
of points in this system and the initial one (x, z) are related as follows:

x1 = (x+ x0) cos θsl + (z + h0) sin θsl − l2
z1 = −(x+ x0) sin θsl + (z + h0) cos θsl


, (10)

where θsl is the angle of beach slope, and x0, h0 and l are defined in Fig. 2.
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Fig. 2. Local coordinate systems

It can be shown that the Laplace equation (9) is invariant against
the transformation (10); hence, the equation for excess pressure in a new
coordinate system becomes

∂2p

∂x2
1
+

∂2p

∂z21
= 0. (11)
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To define the boundary conditions at the sea bottom between points E′ and
D (see Fig. 2), we assume approximately that the set-down height ζ̄br is
negligibly small. Therefore, the excess pressure loading at the sea bottom
(i.e. along the axis z1 = 0) takes the form

p0(x1) = p(x1, 0) =




0 for x1 ≤ − l2 ,

p
(max)
0

(
x1 + l

2

)
for − l2 ≤ x1 ≤ l1−l22 ,

p
(max)
0

[
1− 1

l2

(
x− l1−l22

)]
for l1−l2

2 ≤ x1 ≤ l2 ,

0 for x1 >
l
2 ,

(12)
where

p
(max)
0 = ρgζ̄0, (13)

and l = E′D, l1 = E′O, l2 = OD.

For the infinite thickness of the porous layer we assume

p −→ 0 when z1 −→ −∞. (14)

This means that the domain of motion is semi-infinite and the effects
of the acquifer’s bottom and landward boundaries were not included in the
solution. Summarizing the above formulation, we are looking for the solution
of the Laplace equation (11) with the boundary conditions (12) and (14) in
the coordinate system (x1, z1).

4. Solution of governing equations

To solve the boundary value problem defined in Section 3, we apply an
approach similar to that suggested by Longuet-Higgins (1983). Therefore,
let us define the elliptical coordinate system (η, θ) as follows:

x1 = l
2 cosh η cos θ

z1 = l
2 sinh η sin θ


, (15)

for 0 ≤ η <∞ and π ≤ θ ≤ 2π.
The Laplace equation (11) for the excess pressure p in the elliptical

system is (Moon & Spencer 1961)

4
l2(cosh2 η − cos2 θ)

(
∂2p

∂η2 +
∂2p

∂θ2

)
= 0 or

∂2p

∂y2 +
∂2p

∂θ2
= 0 (16)
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and the boundary condition at the sea bottom (η = 0) becomes

p0(θ) =




p
(max)
0 a (1 + cos θ) for π ≤ θ ≤ θ0 = 2π − arccos

(
l1−l2
l

)
,

(17)
p
(max)
0 b (1− cos θ) for θ0 ≤ θ ≤ 2π

in which

a =
l

2l1
, b =

l

2l2
. (18)

In general, the set-up ζ̄(x) is not a linear function of x. Therefore, in order
to develop a more generic solution we present the pressure p(θ) in the form
of a Fourier series:

p0(θ) = p
(max)
0

∞∑
n=0

[an cos(2nθ) + bn sin(2nθ)] , (19)

where

a0 =
1
π
[(2b− a)π + (a− b)θ0 + (a+ b) sin θ0], b0 = 0, (20)

an =
2
π

[
(a− b) sin(2nθ0)

2n
+

(a+ b) sin(2n− 1)θ0
2(2n− 1)

+
(a+ b) sin(2n+ 1)θ0

2(2n+ 1)

]
, (21)

bn =
2
π

{
(a− b)[1 − cos(2nθ0)]

2n
+

(b− a)− (a+ b) cos(2n+ 1)θ
2(2n+ 1)

+
(b− a)− (a+ b) cos(2n− 1)θ

2(2n− 1)

}
. (22)

We are seeking the solution of eq. (16) in the form

p(η, θ) = p
(max)
0

∞∑
n=0

e−2nη[an cos(2nθ) + bn sin(2nθ)]. (23)

It should be noted that eq. (23) satisfies the Laplace equation (16), the
boundary condition at the sea bottom. Very far away from the sea bottom
the solution is

p(η, θ) −→ 0 for η −→∞. (24)

Now using formulas (7) we can determine the velocity of groundwater
percolating through the beach itself in the form

#u = −K
γ
grad (p). (25)
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In the elliptical coordinate system (η, θ), eq. (25) becomes (Moon & Spencer
1961)

#u(η, θ) = uη #aη + uθ #aθ = −
K

γ

2

l
√

cosh2 η − cos2 θ

(
∂p

∂η
#aη +

∂p

∂θ
#aθ

)
, (26)

where #aη and #aθ are the unit vectors in the directions η and θ, respectively.
After differentiating the excess pressure with respect to η and θ, the
corresponding velocity components become

uη =
4p(max)

0 K

lγ
√

cosh2 η − cos2 θ

∞∑
n=0

n e−2nη[an cos(2nθ) + bn sin(2nθ)], (27)

uθ =
4p(max)

0 K

lγ
√

cosh2 η − cos2 θ

∞∑
n=0

n e−2nη[an sin(2nθ)− bn cos(2nθ)]. (28)

Hence, the module of the velocity is

| u(η, θ) |=
√
u2
η + u2

θ. (29)

For a better illustration of the circulation pattern, the stream function,
which by definition is constant along the streamlines of the flow, is very
useful. It can be found that the stream function ψ(η, θ) for groundwater
flow is

ψ(η, θ) = ψ0

∞∑
n=0

e−2nη[bn cos(2nθ)− an sin(2nθ)], (30)

where

ψ0 = −p(max)
0

K

γ
. (31)

5. Examples of calculations

In order to demonstrate the application of the preceding formulas,
we calculate the flow of the groundwater within the beach body for two
different scenarios. For both cases the wave set-up characteristics have been
calculated by using the method given in paper I.

The first scenario deals with the beach slope β = 0.1 and sand character-
ized by diameter D10 = 0.2 mm. The incident wave period is T = 6 s and the
deep-water wave height H0 = 4.38 m. Using the experimental arrangements
reported by Saville (1958) we found γbr = (Hh )br = 0.91 and ζ̄max = 0.92 m.
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The other distances and values defined in Fig. 2 become x0 = 38.75 m,
ζ0 = 0.91 m, l1 = 38.94 m, l2 = 9.25 m and l = 48.19 m.

Fig. 3 shows the resulting stream function ψ(η, θ). The flow extends
considerably beyond the segment between points E′ and D, where the
external excess pressure is applied. Two systems of the groundwater
circulation related to different excess pressure gradients (see eq. (12)) can be
clearly distinguished. Due to the positive horizontal gradient of the excess
pressure associated with the wave set-up in the segment between points E′

and O, the flow is in the offshore direction – see arrows in Fig. 3. This means
that the pressure gradient is sufficiently strong to swamp the viscous forces
in the laminar boundary layer. This is in contrast to the typical situation
of a uniform progressive wave travelling over a horizontal bottom when at
the bottom water particles tend to move forwards in the direction of wave
propagation.
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Fig. 3. Streamline pattern for an incident wave period T = 6 s and beach slope
β = 0.1

The second system of circulation is induced by the negative pressure
gradient applied in the segment between points O and D. This gradient
induces the flow to move somewhat shorewards. Demarcation lines between
the two systems are indicated in Fig. 3 by the stream function values equal
to zero.

The second example deals with the set-up of waves of period T = 8 s on
a steeper beach, β = 0.167, also considered in Saville’s (1958) experiments.
The set-up geometry is characterized by the following values: l1 = 41.07 m,
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l2 = 11.05 m, l = 52.12 m, x0 = 40.51, ζ̄max = 1.82 and ξ̄0 = 1.81 m. The
pattern of the streamlines is shown in Fig. 4. As the external excess pressure
is larger than in the previous case, the resulting stream functions are higher.
However, the layout of streamlines is very similar to that given in Fig. 3.
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Fig. 4. Streamline pattern for an incident wave period T = 8 s and beach slope
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It should be noted that in both cases the infiltration starts close to the
point O where the external excess pressure reaches its maximum value. The
exfiltration is located on the lower part of the beach for the first system and
near the waterline for the second one. In both figures, the second system is
much smaller than the first system. Moreover, it should be noted that the
obtained pattern of streamlines is not symmetrical with respect to the local
z1 axis, unlike the Longuet-Higgins (1983) solution. This difference is due
to the more complex excess pressure loading used in our solution.

In order to estimate the velocity of water percolating through the beach,
the transect for η = 0.01 was considered. This value corresponds to the
upper bottom layer of the thickness of about 2 cm. In Fig. 5, the normalized
velocity component

lγ
√

cosh2 η − cos2 θ

4p(max)
0 K

uθ =
∞∑
n=0

n e−2nη[an sin(2nθ)− bn cos(2nθ)], (32)

for the first example was shown. A positive velocity denotes a shoreward
velocity, while a negative one is a velocity directed offshore. This figure
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Fig. 5. Horizontal velocity in the upper bottom layer

confirms the streamline pattern given in the previous figures, namely that
in the segment E′O, flow is directed offshore and in the segment OD the
flow pushes water into the shore.

6. Conclusions

Sandy beaches are highly exploited but very dynamic and fragile
environments. The water flow through the beach body, driven by waves,
is able to transport oxygen, and hence help to maintain biological activity
in the porous media. Chemical and biological reactions are fast and more
abundant biota are very effective in beach self-cleaning.

This paper presents a theoretical attempt to predict the groundwater
circulation induced by the set-up. The incident set-up and run-up charac-
teristics have been determined by the methods developed in paper I. Two
systems of circulations have been discovered, related to different gradients
of the set-up height. For the offshore gradient, when 0 ≤ x1 ≤ l1, the
horizontal excess pressure gradient completely swamps the viscous forces in
the boundary layer and carries the flow in the offshore direction. However,
closer to the shore, when l1 ≤ x1 ≤ l, the pressure gradient is reversed and
the resulting flow moves shorewards.

The proposed solution is approximate and requires experimental ver-
ification. The experimental data on the groundwater circulation are not
numerous, especially on a large scale. Therefore, a new comprehensive
experiment is planned and the results will be reported in a separate paper.



290 S.R. Massel

References

Kang H.Y., Nielsen P., 1996,Watertable dynamics in coastal areas, Proc. 25th Int.
Coast. Eng. Conf., ASCE, 3, 4601–4612.

Li L., Barry D.A., 2000, Wave-induced beach groundwater flow, Adv. Water Res.,
23, 325–337.

Longuet-Higgins M. S., 1983, Wave set-up, percolation and undertow in the surf
zone, Proc. R. Soc., A390, 283–291.

Longuet-Higgins M. S., Stewart R.W., 1964, Radiation stress in water waves:
a physical discussion with applications, Deep-Sea Res., 11, 529–562.

Massel S. R., 1976, Gravity waves propagated over a permeable bottom,
J. Waterways, Harbors Coast. Eng. Div., ASCE, 102, WW2, 111–121.

Massel S. R., Pelinovsky E.N., 2001, Run-up of dispersive and breaking waves on
beaches, Oceanologia, 43 (1), 61–97.

Moon P., Spencer D.E., 1961, Field theory for engineers, Van Nostrand Comp.,
Princeton, 600 pp.

Moshagen H., Torum A., 1975, Wave induced pressures in permeable seabeds,
J. Waterways, Harbors Coast. Eng. Div., ASCE, 101, WW1, 49–57.

Saville T., 1958, Wave runup on composite slopes, Proc. 6th Coastal Eng. Conf.,
ASCE, 691–699.

Siron R., Pelletier E., Roy S., 1996, Effects of dispersed and adsorbed oil on
microalgal and bacterial communities of cold seawater, Ecotoxicology, 5,
229–251.

Węsławski J.M., Urban-Malinga B., Kotwicki L., Opaliński K., Szymelfenig M.,
Dutkowski M., 2000, Sandy coastlines – are there conflicts between recreation
and natural values?, Oceanol. Stud., 29, 5–18.


