Oceanologia No. 52 (1) / 10


Contents


Acknowledgements


Invited paper


Papers


Communications


Acknowledgements



The Editor would like to thank all the reviewers who in 2009 reviewed the papers submitted to Oceanologia. We have received kind permission to print the following reviewers' names:
Dr Fabrice Bauget (Cydarex, Rueil-Malmaison, France) • Dr Jean-François Berthon (Joint Research Centre of the European Commission, Ispra, Italy) • Doc. Katarzyna Błachowiak-Samołyk (Institute of Oceanology PAS, Sopot, Poland) • Dr Christophe Brunet (Stazione Zoologica Anton Dohrn, Naples, Italy) • Prof. N. Dennis Chasteen (University of New Hampshire, Durham, USA) • Prof. Anuj Chauhan (University of Florida, Gainesville, USA) • Prof. Witold Cieślikiewicz (University of Gdańsk, Poland) • Dr Darius Daunys (Klaipeda University, Lithuania) • Prof. Czesław Druet (Institute of Oceanology PAS, Sopot, Poland) • Doc. Lidia Dzierzbicka (Institute of Oceanology PAS, Sopot, Poland) • Prof. Jüri Elken (Tallinn University of Technology, Estonia) • Prof. Ragnar Elmgren (Stockholm University, Sweden) • Prof. Paul J. Harrison (Hong Kong University of Science and Technology, China) • Dr Peter D. Hunter (University of Stirling, United Kingdom) • Dr Randi Ingvaldsen (Institute of Marine Research, Bergen, Norway) • Dr Togwell A. Jackson (Canada Centre for Inland Waters, Burlington, Canada) • Doc. Andrzej Jankowski (Institute of Oceanology PAS, Sopot, Poland) • Dr Foday M. Jaward (University of South Florida, Tampa, USA) • Dr Kathe R. Jensen (Zoological Museum, Copenhagen, Denmark) • Dr Mati Kahru (Scripps Institution of Oceanography, La Jolla, USA) • Dr Genrik S. Karabashev (P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia) • Dr Agnes Karlson (Stockholm University, Sweden) • Prof. Victor S. Kennedy (University of Maryland, Cambridge, USA) • Prof. Christian Kharif (Institut de Recherche sur les Phénomènes Hors Équilibre, Marseille, France) • Prof. Antonio Henrique da Fontoura Klein (Universidade do Vale do Itajaí, Itajaí, Brazil) • Dr Nicolai Kliem (Danish Meteorological Institute, Copenhagen, Denmark) • Dr Zbigniew Kolber (University of California, Santa Cruz, USA) • Prof. Maciej Kolwas (Institute of Physics PAS, Warsaw, Poland) • Dr Sampsa Koponen (Aalto University, Finland) • Doc. Alicja Kosakowska (Institute of Oceanology PAS, Sopot, Poland) • Prof. Adam Krężel (University of Gdańsk, Poland) • Doc. Ewa Kulczykowska (Institute of Oceanology PAS, Sopot, Poland) • Dr Tiit Kutser (University of Tartu, Tallinn, Estonia) • Dr Andreas Lehmann (University of Kiel, Germany) • Dr Jurate Lesutiene (Klaipeda University, Lithuania) • Dr Antonio Mannino (Goddard Space Flight Center, Greenbelt, USA) • Prof. Stanisław R. Massel (Institute of Oceanology PAS, Sopot, Poland) • Dr Aditee Mitra (Swansea University, United Kingdom) • Dr Idiko Mohammed-Ziegler (Gedeon Richter Plc, Budapest and Dorog, Hungary) • Prof. Edward C. Monahan (University of Connecticut, Groton, USA) • Prof. Jacek Namieśnik (Gdańsk University of Technology, Poland) • Prof. Hiroshi Ogawa (University of Tokyo, Japan) • Prof. Sergej Olenin (Klaipeda University, Lithuania) • Prof. Jerzy Olszewski (Institute of Oceanology PAS, Sopot, Poland) • Dr Kjell Arild Orvik (University of Bergen, Norway) • Dr Erla Björk Örnólfsdóttir (Marine Research Center at Breidafjordur, Ölafsvík, Iceland) • Dr Birgot Paavel (University of Tartu, Tallinn, Estonia) • Dr Raimo Parmanne (Finnish Game and Fisheries Research Institute, Helsinki, Finland) • Dr Marianna Pastuszak (Sea Fisheries Institute, Gdynia, Poland) • Doc. Ksenia Pazdro (Institute of Oceanology PAS, Sopot, Poland) • Prof. Emilien Pelletier (Université du Québec à Rimouski, Canada) • Prof. Janusz Pempkowiak (Institute of Oceanology PAS, Sopot, Poland) • Prof. Jan Piechura (Institute of Oceanology PAS, Sopot, Poland) • Dr Don Pierson (New York City Dept. Environmental Protect., Kingston, USA) • Doc. Jacek Piskozub (Institute of Oceanology PAS, Sopot, Poland) • Prof. Marcin Pliński (University of Gdańsk, Poland) • Dr Maria Teresa Ramirez-Herrera (Universidad Nacional Autónoma de México, Morelia, Mexico) • Prof. Jarkko Rapala (Helsinki University, Finland) • Dr Torsten Seifert (Leibniz Institute for Baltic Sea Research, Warnemünde, Germany) • Prof. Hideo Sekiguchi (Mie University, Japan) • Dr Stefan Simis (Finnish Environment Institute, Helsinki, Finland) • Prof. Anders Stigebrandt (University of Gothenburg, Sweden) • Dr Emilie Strady (University of Bordeaux 1, France) • Dr Tracey Sutton (College of William and Mary, Williamsburg, USA) • Doc. Joanna Szczucka (Institute of Oceanology PAS, Sopot, Poland) • Prof. Piotr Szefer (Medical University of Gdańsk, Poland) • Dr Maria Szymelfenig (University of Gdańsk, Poland) • Dr Anne E. Thessen (Marine Biological Laboratory, Woods Hole, USA) • Dr Marcello Vichi (Instituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy) • Doc. Waldemar Walczowski (Institute of Oceanology PAS, Sopot, Poland) • Dr Mona K. Webber (University of the West Indies, Kingston, Jamaica) • Prof. Jan Marcin Węsławski (Institute of Oceanology PAS, Sopot, Poland) • Dr Józef Wiktor (Institute of Oceanology PAS, Sopot, Poland) • Prof. James G. Wilson (Trinity College, Dublin, Ireland) • Prof. Bogdan Woźniak (Institute of Oceanology PAS, Sopot, Poland) • Prof. J. Ronald V. Zaneveld (Oregon State University, Philomath, USA) • Dr Christoph Zülicke (University of Rostock, Germany)

Invited paper



Surface waves in deep and shallow waters
Oceanologia 2010, 52(1), 5-52
http://dx.doi.org/10.5697/oc.52-1.005

Stanisław R. Massel
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;

keywords: surface waves, non-linear interactions, energy dissipation, aerosol fluxes

Received 8 January 2010, revised 24 February 2010, accepted 10 March 2010.

Abstract

The motion of water due to surface waves is the most dynamic factor observed in the marine environment. In this review various aspects of the wave modelling of non-linear, steep surface waves and their role in the atmosphere-ocean interaction are discussed. Significant improvements in wave forecasting have been made in the last ten years. This is to a large extent related to substantial progress in the description of wind forcing and other processes, as well as to the more efficient use of satellite observations and assimilation methods. One striking observation is the increasing variety and complexity of models in which more physical processes are implemented, greater precision and resolution achieved and extended ranges of applicability demonstrated. However in order to evaluate the applicability of particular models, comparison with high quality experimental data, collected in nature or under laboratory conditions, is necessary.

  References ref

Abramowitz M., Stegun I. A., 1975, Handbook of mathematical functions Dover Publ., New York, 1045 pp.

Athanassoulis G.A.,Belibassakis K.A.,1999,A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions, J. Fluid Mech., 389, 275-301. http://dx.doi.org/10.1017/S0022112099004978

Baldock T. E., Swan C., 1994, Numerical calculations of large transient water waves, Appl. Ocean Res., 16 (2), 101-112. http://dx.doi.org/10.1016/0141-1187(94)90006-X

Baldock T. E., Swan C., Taylor P. H., 1996, A laboratory study of non-linear surface waves on water, Philos. T. Roy. Soc. A, 354 (1707), 1-28.

Banner M. L., Babanin A. V., Young I. R., 2000, Breaking probability for dominant waves on the sea surface, J. Phys. Oceanogr., 30 (12), 3145-3160. http://dx.doi.org/10.1175/1520-0485(2000)030<3145:BPFDWO>2.0.CO;2

Banner M. L., Song J. B., 2002, On determining the onset and strength of breaking for deep water waves. Part II: In uence of wind forcing and surface shear, J. Phys. Oceanogr., 32 (9), 2559-2570. http://dx.doi.org/10.1175/1520-0485-32.9.2559

Battjes J. A., Jansen J. P. F. M., 1978, Energy loss and set-up due to breaking of random waves, Proc. 16th Coastal Eng. Conf., 1, 563-587.

Belibassakis K. A., Athanassoulis G. A., 2002, Extension of second-order Stokes theory to variable bathymetry, J. Fluid Mech., 464, 35-80. http://dx.doi.org/10.1017/S0022112002008753

Belibassakis K. A., Athanassoulis G. A., 2006, A coupled-mode technique for the run-up of non-breaking dispersive waves on plane beaches, Proc. 25th Int. Conf. Offshore Mech. Arctic Eng., OMAE 2006-92162, 1-8.

Belibassakis K. A., Athanassoulis G. A., Gerostathis T. P., 2001, A coupled-mode model for the refraction-diffraction of linear waves over steep three-dimensional bathymetry, Appl. Ocean Res., 23 (6), 319-336. http://dx.doi.org/10.1016/S0141-1187(02)00004-4

Benjamin T. B., 1967, Instability of periodic wavetrains in nonlinear dispersive systems, P. Roy. Soc. Lond. A Mat., 299 (1456), 59-76.

Benjamin T. B., Feir J. E., 1967, The disintegration of wave trains in deep water. Part 1. Theory J. Fluid Mech., 27 (3), 417-430. http://dx.doi.org/10.1017/S002211206700045X

Berkhoff J. C. W., 1972, Computation of combined refraction-diffraction, Proc. 13th Coastal Eng. Conf., 1, 471-490.

Bitner-Gregersen E. M., Hagen Ř., 2004, Freak wave events within the second order wave model, Proc. 23rd Int. Conf. Offshore Mech. Arctic Eng., OMAE 2004-51410.

Bonmarin P., Kjeldsen P., 2000, Some geometric and kinematic properties of breaking waves [in:] Rogue waves 2000 M. Olagnon & G. A. Athanassoulis (eds.), Edn. Ifremer, Brest, 169-180.

Booij N., 1983, A note on the accuracy of the mild-slope equation, Coast. Eng., 7 (3), 191-203. http://dx.doi.org/10.1016/0378-3839(83)90017-0

Bretherton F. P., Garrett C. J. R., 1969, Wave trains in inhomogeneous moving media, P. Roy. Soc. Lond. A Mat., 302 (1471), 529-554.

Carrier G. F., Greenspan H. P., 1958, Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4 (1), 97-109. http://dx.doi.org/10.1017/S0022112058000331

Clamond D., Grue J., 2001a, A fast method for fully non-linear water-wave computations, J. Fluid Mech., 447, 337-355.

Clamond D., Grue J., 2001b, On efficient numerical simulations of freak waves Proc. 11th Int. Oggshore Polar Eng. Conf.

Collins J. I., 1972, Prediction of shallow-water spectra, J. Geophys. Res., 77 (15), 2693-2707. http://dx.doi.org/10.1029/JC077i015p02693

Dally W. R., Dean R. G., Dalrymple R. A., 1985, Wave height variation across beaches of arbitrary profile, J. Geophys. Res., 90 (C6), 11 917-11 927.

Davidan I. N., Lopatukhin L. I., Rozkhov W. A., 1978, Wind waves as random hydrodynamic process Gidrometeoizdat, Leningrad, 287 pp., (in Russian).

Davidan I. N., Lopatukhin L. I., Rozkhov W.A., 1985, Wind waves in World Ocean Gidrometeoizdat, Leningrad, 254 pp., (in Russian).

Dean R. G., Dalrymple R. A., 1998, Water wave mechanics for engineers and scientists, Adv.Ser.Ocean Eng., Vol. 2, World Sci. Publ., Singapore, 353 pp.

de Rouck J., Troch P., 2002, Pore water pressure response due to tides and waves based on prototype measurements, PIANC Bull., 110,9-31.

Dold J. W., Peregrine D. H., 1984, Steep unsteady waves: an efficient computational scheme, Proc. 19th Int. Conf. Coastal Eng., 1, 955-967.

Dold J. W., Peregrine D. H., 1986, Water-wave modulation, Proc. 20th Int. Conf. Coastal Eng., 1, 163-175.

Duncan J. H., 1981, An investigation of breaking waves produced by a towed hydrofoil, P. Roy. Soc. Lond. A Mat., 377 (1770), 331-348.

Duncan J. H., 1983, The breaking and non-breaking wave resistance of a two-dimensional hydrofoil, J. Fluid Mech., 126, 507-520. http://dx.doi.org/10.1017/S0022112083000294

Dysthe K. B., 1979, Note on a modification to the non-linear Schrödinger equation for application to deep water waves, P. Roy. Soc. Lond. A Mat., 369 (1736), 105-114.

Dysthe K. B., Trulsen K., Krogstad H. E., Socquet-Juglard H., 2003, Evolution of a narrow-band spectrum of random surface gravity waves, J. Fluid Mech., 478, 1-10. http://dx.doi.org/10.1017/S0022112002002616

Fenton J. D., 1979, A high-order cnoidal wave theory, J. Fluid Mech., 94 (1),129-161. http://dx.doi.org/10.1017/S0022112079000975

Fenton J. D., 1985, A fifth order Stokes' theory for steady waves, J. Waterw. Port C. Div., 111 (2), 216-234.

Fenton J. D., 1986, Polynomial approximation and water waves, Proc.20th Coastal Eng.Conf., 1, 193-207.

Goda Y., 2000, Random seas and design of maritime structures, World Sci.Publ., Singapore, 443 pp.

Grue J., Clamond D., Huseby M., Jensen A., 2003, Kinematics of extreme waves in deep water, Appl. Ocean Res., 25 (6), 355-366. http://dx.doi.org/10.1016/j.apor.2004.03.001

Grue J., Jensen A., 2006, Experimental velocities and accelerations in very steep wave events in deep water, Eur. J. Mech. B Fluid., 25 (5), 554-564. http://dx.doi.org/10.1016/j.euromechflu.2006.03.006

Gudmestad O. T., 1993, Measured and predicted deep water wave kinematics in regular and irregular seas, Mar. Struct., 6 (1), 1-73. http://dx.doi.org/10.1016/0951-8339(93)90009-R

Hanson J. L., Phillips O. M., 1999, Wind sea growth and dissipation in the open ocean, J. Phys. Oceanogr., 29 (8), 1633-1648. http://dx.doi.org/10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2

Hasselmann K., 1974, On the spectral dissipation of ocean waves due to white capping, Bound. Lay. Meteorol., 6 (1-2), 107-127. http://dx.doi.org/10.1007/BF00232479

Hasselmann S., Hasselmann K., Allender J. H., Barnett T. P., 1985, Computations and parameterizations of the non-linear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the non-linear energy transfer for application in wave models, J. Phys. Oceanogr., 15 (11), 1378-1391. http://dx.doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2

Holthuijsen L. H., 2007, Waves in oceanic and coastal waters, Cambridge Univ. Press, Cambridge, 387 pp. http://dx.doi.org/10.1017/CBO9780511618536

Janssen P., 2004, The interaction of ocean waves and wind, Cambridge, Univ. Press, Cambridge, 300 pp. http://dx.doi.org/10.1017/CBO9780511525018

Jensen A., Clamond D., Huseby M., Grue J., 2007, On local and convective acceleration in steep wave events, Ocean Eng., 34 (3-4), 426-435. http://dx.doi.org/10.1016/j.oceaneng.2006.03.013

Kharif C., Pelinovsky E., 2003, Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B Fluids, 22 (6), 603-634. http://dx.doi.org/10.1016/j.euromechflu.2003.09.002

Kitaigorodskii S. A., 1983, On the theory of the equilibrium range in the spectrum of wind-generated gravity waves, J. Phys. Oceanogr., 13 (5), 816-827. http://dx.doi.org/10.1175/1520-0485(1983)013<0816:OTTOTE>2.0.CO;2

Komen G. J., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S., Janssen P. A. E .M., 1994, Dynamics and modelling of ocean waves, Cambridge Univ. Press, Cambridge, 532 pp. http://dx.doi.org/10.1017/CBO9780511628955

Komen G. J., Hasselmann S., Hasselmann K., 1984, On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr., 14 (8), 1271-1285. http://dx.doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2

Kowalik Z., Knight W., Logan T., Whitmore P., 2005, Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004, Sci. Tsunami Haz., 23 (1), 40-56.

Krasitskii V. P., 1994, On reduced equations in the Hamiltonian theory of weakly non-linear surface waves, J. Fluid Mech., 272, 1-20. http://dx.doi.org/10.1017/S0022112094004350

Krylov J. M. (ed.), 1986, Wind, waves and marine ports Gidrometeoizdat, Leningrad, 264 pp.,( in Russian).

Krylov J. M., Strekalov S. S., Tsyplukhin W. F., 1976, Wind waves and their interaction with structures Gidrometeoizdat, Leningrad, 256 pp., (in Russian).

Kurkin A. A. ,Pelinovsky E. N., 2004, Freak waves: Facts, theory and modelling, Tech. Univ. Nizhny Novgorod, 157 pp., (in Russian).

Lake B. M., Yuen H. C., Rungaldier H., Ferguson W. E., 1977, Nonlinear deep-water waves: Theory and experiment. Part 2. Evolution of a continuous wave train, J. Fluid Mech., 83 (1), 49-74. http://dx.doi.org/10.1017/S0022112077001037

Lamb H., 1932, Hydrodynamics Dover Publ., Inc., New York, 738 pp.

Lavrenov I.V.,2003,Wind-waves in oceans. Dynamics and numerical simulation, Springer-Verlag, Berlin, 376 pp.

LeBlond P. H., Mysak L. A., 1978, Waves in the ocean, Elsevier Oceanogr. Ser.,20, Elsevier, Amsterdam, 602 pp.

Lewis E. R., Schwartz S. E., 2004, Sea salt aerosol production. Mechanisms, methods, measurements, and models, Geophys. Monogr., Vol.152, American Geophys. Union, Washington, 412 pp. http://dx.doi.org/10.1029/GM152

Lie V., Trum A., 1991, Ocean waves over shoals, Coast. Eng., 15 (5-6), 545-562. http://dx.doi.org/10.1016/0378-3839(91)90027-E

Lo F., Mei C. C., 1985, A numerical study of water-wave modulation based on a high-order non-linear Schr¨ odinger equation, J. Fluid Mech., 150, 395-416. http://dx.doi.org/10.1017/S0022112085000180

Longuet-Higgins M.S.,1969,On wave breaking and the equilibrium spectrum of wind-generated waves P.Roy.Soc.Lond.A Mat.,310 (1501), 151-159.

Longuet-Higgins M.S.,1978,The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics P. Roy. Soc. Lond. A Mat., 360 (1703), 489-505.

Longuet-Higgins M. S., 1985, Acceleration in steep gravity waves, J.Phys. Oceanogr., 15 (11), 1570-1579. http://dx.doi.org/10.1175/1520-0485(1985)015<1570:AISGW>2.0.CO;2

Longuet-Higgins M. S., Cokelet E. D., 1976, The deformation of steep surface waves on water. I. A numerical method of computation, P. Roy. Soc. Lond. A Mat., 350 (1660), 1-26.

Longuet-Higgins M. S., Stewart R. W., 1964, Radiation stress in water waves: A physical discussion with applications, Deep Sea Res., 11 (4), 529-562.

Luke J. C., 1967, A variational principle for a uid with a free surface, J. Fluid Mech., 27 (2), 395-397. http://dx.doi.org/10.1017/S0022112067000412

Massel S. R., 1989,Hydrodynamics of coastal zones, Elsevier, Amsterdam, 316 pp. http://dx.doi.org/10.1016/0378-3839(93)90020-9

Massel S. R., 993, Extended refraction-diffraction equations for surface waves, Coastal Eng., 19 (1-2), 97-126.

Massel S. R., 1996, Ocean surface waves: Their physics and prediction, World Sci. Publ., Singapore, 491 pp.

Massel S. R., 2001, Circulation of groundwater due to wave set-up on a permeable beach, Oceanologia, 43 (3), 279-290.

Massel S. R., 2007, Ocean waves breaking and marine aerosol uxes Springer, New York,323 pp. http://dx.doi.org/10.1016/S0378-3839(99)00052-6

Massel S. R. ,Gourlay M. R., 2000, On the modelling of wave breaking and set-up on coral reefs, Coast. Eng., 39 (1), 1-27.

Massel S. R., Pelinovsky E. N., 2001, Run-up of dispersive and breaking waves on beaches, Oceanologia, 43 (1), 61-97.

Massel S. R., Przyborska A., Przyborski M., 2004, Attenuation of wave-induced groundwater pressure in shallow water. Part 1 Oceanologia, 46 (3), 383-404.

Massel S. R., Przyborska A., Przyborski M., 2005,Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory Oceanologia, 47 (3), 291-323.

Mei C. C., 1989, The applied dynamics of ocean surface waves, World Sci. Publ., Singapore, 740 pp.

Mei C. C., Stiassnie M., Yue D. K. P., 2006, Theory and applications of ocean surface waves. Part 1: Linear aspects Part 2: Nonlinear aspects, Adv.Ser. Ocean Eng., Vol. 23, World Sci. Publ.,S ingapore, Vol. 1-1071 pp., Vol.2, 569 pp.

Miles J. W., 1957, On the generation of surface waves by shear flows, J. Fluid Mech., 3 (2), 185-204. http://dx.doi.org/10.1017/S0022112057000567

Monahan E. C. ,1971, Oceanic whitecaps J. Phys. Oceanogr., 1 (2), 139-144. http://dx.doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2

Monahan E. C., O'Muircheartaigh I.,1981,Optimal power-law description of oceanic whitecap coverage dependence on wind speed J. Phys. Oceanogr., 10 (12), 2094-2099. http://dx.doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2

Moshagen H., Třrum A., 1975, Wave induced pressure in permeable sea beds, J. Waterway. Div.-ASCE, 101 (1), 49-57.

Ochi M. K., 1998, Ocean waves. The stochastic approach, Cambridge Univ. Press, Cambridge, 319 pp. http://dx.doi.org/10.1017/CBO9780511529559

Ochi M. K., Tsai C. H., 1983, Prediction of occurrence of breaking waves in deep water, J. Phys. Oceanogr., 13 (11), 2008-2019. http://dx.doi.org/10.1175/1520-0485(1983)013<2008:POOOBW>2.0.CO;2

Onorato M.,Osborne A. R., Serio M., Bertone S., 2001, Freak waves in random oceanic sea states, Phys. Rev. Lett., 86 (25), 5831-5834. http://dx.doi.org/10.1103/PhysRevLett.86.5831

Onorato M., Osborne A. R., Serio M., Cavaleri L., Braudini C., Stansberg C. T., 2006, Extreme waves, modulational instability and second order theory: Wave fume experiments on irregular waves, Eur. J. Mech. B Fluids, 25 (5), 586-601. http://dx.doi.org/10.1016/j.euromechflu.2006.01.002

Onorato M., Osborne A. R., Serio M., Damiani T., 2000, Occurrence of freak waves from envelope equations in random ocean wave simulations [in:] Rogue waves 2000, M. Olagnon & G. A. Athanassoulis (eds.), Edn. Ifremer, Brest, 181-192.

Pelinovsky E. N., 1996, Tsunami waves hydrodynamics, Inst. Appl. Phys., Nizhny Novgorod, 274 pp., (in Russian).

Phillips O. M., 1957, On the generation of waves by turbulent wind, J. Fluid Mech., 2 (5), 417-445. http://dx.doi.org/10.1017/S0022112057000233

Phillips O. M., 1977, The dynamics of the upper ocean, Cambridge Univ. Press, Cambridge, 336 pp.

Phillips O. M., 1985, Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid Mech., 156, 505-531. http://dx.doi.org/10.1017/S0022112085002221

Rapp R. J., Melville W. K., 1990, Laboratory measurements of deep-water breaking waves, Philos.T. Roy. Soc. A, 331 (1622), 735-800. http://dx.doi.org/10.1098/rsta.1990.0098

Sarpkaya T., Isaacson M. St. Q., 1981, Mechanics of waves forces on offshore structures Van Nostrand Reinhold, New York, 651 pp.

Smith S. F., Swan C., 2002, Extreme two-dimensional water waves: An assessment of potential design solutions Ocean Eng., 29 (4), 387-416. http://dx.doi.org/10.1016/S0029-8018(01)00028-2

Snyder R. L., Smith L., Kennedy R. M., 1983, On the formation of whitecaps by a threshold mechanism. Part III: Field experiment and comparison with theory, J. Phys. Oceanogr., 13 (8), 1505-1518. http://dx.doi.org/10.1175/1520-0485(1983)013<1505:OTFOWB>2.0.CO;2

Sobey R. J., 1992, A local Fourier approximation method for irregular wave kinematics, Appl. Ocean Res., 14 (2), 93-105. http://dx.doi.org/10.1016/0141-1187(92)90019-G

Song J. B., Banner M. L., 2002, On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups, J. Phys. Oceanogr., 32 (9), 2541-2558. http://dx.doi.org/10.1175/1520-0485-32.9.2541

Srokosz M. A., 1986, On the probability of wave breaking in deep water, J. Phys. Oceanogr., 16 (2), 382-385. http://dx.doi.org/10.1175/1520-0485(1986)016<0382:OTPOWB>2.0.CO;2

Stoker J. J., 1957, Water waves, the mathematical theory with applications Interscience Publ., Inc., New York, 567 pp.

Stramska M., Petelski T., 2003, Observations of oceanic whitecaps in the north polar waters of the Atlantic, J. Geophys. Res., 108 (C3), 3086, http://dx.doi.org/10.1029/2002JC001321

Svendsen I. A.,1 984, Wave heights and set-up in a surf zone, Coast. Eng., 8 (4), 303-329. http://dx.doi.org/10.1016/0378-3839(84)90028-0

Thorpe S. A., 1993, Energy loss by breaking waves, J. Phys. Oceanogr., 23 (11), 2498-2502. http://dx.doi.org/10.1175/1520-0485(1993)023<2498:ELBBW>2.0.CO;2

Toba Y., 1973, Local balance in the air-sea boundary process. III. On the spectrum of wind waves, J. Oceanogr. Soc. Jpn., 29 (5), 209-220. http://dx.doi.org/10.1007/BF02108528

Třrum A., 2007, Wave induced pore pressure-air/gas content, J. Waterw. Port C. Div., 133 (1), 83-86.

Třrum A., Gudmestad O. T. (eds.), 1990, Water wave kinematics, Kluwer Acad. Publ., Dordrecht, 771 pp.

Trulsen K., Dysthe K. B., 1996, A modified non-linear Schrödinger equation for broader bandwidth gravity waves on deep water, Wave Motion, 24 (3), 281-289. http://dx.doi.org/10.1016/S0165-2125(96)00020-0

Trulsen K.,Dysthe K.,1997 , Freak waves - a three-dimensional wave simulation, Proc. 21 Symp. Nav. Hydrodyn., Nat. Acad. Press, 550-560.

Tulin M. P., Waseda T., 1999, Laboratory observations of wave group evolution including breaking effects, J. Fluid Mech., 378, 197-232. http://dx.doi.org/10.1017/S0022112098003255

WAMDI group: Hasselmann S., Hasselmann K., Bauer E., Janssen P. A. E. M., Komen G. J., Bertotti L., Lionello P., Guilaune A., Cordone V. C., Greenwood M., Reistad L., Zambresky L., Ewing J. A., 1988, The WAM model: A third generation ocean wave prediction model, J. Phys. Oceanogr.,18 (12), 1775-1810. http://dx.doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

Waseda T., Tulin M. P., 1999, Experimental study of the stability of deep-water wave trains including wind effects, J. Fluid Mech., 401, 55-84. http://dx.doi.org/10.1017/S0022112099006527

Włsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K., Szymelfenig M., 2000, Sandy coastlines- are there conflicts between recreation and natural values?, Oceanol. Stud., 29 (2), 5-18.

Wheeler J. D., 1970, Method for calculating forces produced by irregular waves, Proc. Offshore Technol. Conf., 1, 71-82.

Xu D., Liu X., Yu D., 2000, Probability of wave breaking and whitecap coverage in a fetch-limited sea, J. Geophys. Res., 105 (C6), 14 253-14 259.

Zakharov V. E., 1968, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phy. ,9 (2), 190-194. http://dx.doi.org/10.1007/BF00913182

full, complete article (PDF - compatibile with Acrobat 4.0), 870.6 kB

Papers



Observations of new particle formation events in the south-eastern Baltic Sea
Oceanologia 2010, 52(1), 53-75
http://dx.doi.org/10.5697/oc.52-1.053

Kristina Plauškaitė1, Vidmantas Ulevicius1,*, Narciza Špirkauskaitė1, Steigvile Byčenkienė1, Tymon Zieliński2,3, Tomasz Petelski2, Agnieszka Ponczkowska2
1 Environmental Physics and Chemistry Laboratory,
Institute of Physics,
Savanoriu 231, LT-02300 Vilnius, Lithuania;
e-mail: ulevicv@ktl.mii.lt
*corresponding author
2 Physical Oceanography Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
3 Department of Physics,
University of Szczecin,
Wielkopolska 15, PL-70-451 Szczecin, Poland

keywords: nucleation events, nucleation event characteristics, backward air mass trajectories, meteorological and chemical parameters, coastal site

Received 11 May 2009, revised 10 December 2009, accepted 18 December 2009.

The research described in this paper was partially supported by the FP6 European Network of Excellence ACCENT and by EUSAAR. The authors are grateful for this assistance. Part of this project was carried out within the framework of Polish National Grants MACS/AERONET/59/2007, NN 306 315536/2009.
Abstract
New particle formation and growth were observed at a coastal site (Preila station, Lithuania) during 1997 and 2000-2002. The total amount of data analysed covers 291 one-day periods, 45 (15%) of which were long-term, new particle formation days. Short-term nucleation events (from a few minutes to one hour) and long-term events (from one to eight hours) were identified. The mean particle growth rate, condensation sink and condensable vapour source rate during nucleation events were 3.9 nm h-1, 1.45 × 10-3 cm-3 s-1 and 7.5 × 104 cm-3 s-1 respectively. The average formation rate J10 was 0.4 cm-3 s-1. The nucleation events were accompanied mainly by air masses transported from the north (43%) and north-west (19%). Meteorological parameters and trace gas (O3, SO2, NO2) concentrations were also analysed. It was found that nucleation events are related to high levels of solar radiation.

  References ref

Birmili W., Wiedensohler A., 2000, New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence, Geophys. Res. Lett., 27 (20), 3325-3328. http://dx.doi.org/10.1029/1999GL011221

Birmili W.,Wiedensohler A., Plass-Dülmer C., Berresheim H., 2000, Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4 measurements, Geophys. Res. Lett., 27 (15), 2205-2208. http://dx.doi.org/10.1029/1999GL011334

Bonn B., Kulmala M., Riipinen I., Sihto S. L., Ruuskanen T. M., 2008, How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation, J. Geophys. Res., 113, D12209, doi:10.1029/2007JD009327. http://dx.doi.org/10.1029/2007JD009327

Clarke A. D., Davis D., Kapustin V. N., Eisele F., Chen G., Paluch I., Lenschow D., Bandy A. R., Thornton D., Moore K., Mauldin L., Tanner D., Litchy M., Carroll M. A., Collins J., Albercook G., 1998, Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources, Science, 282 (5386), 89-92. http://dx.doi.org/10.1126/science.282.5386.89

Coe H., Williams P. I., McFiggans G., Gallagher M. W., Beswick K. M., Bower K. N., Choularton T. W., 2000, Behaviour of ultrafine particles in the continental and marine air masses at a rural site in the United Kingdom, J. Geophys. Res., 105 (D22), 26 891-26 905.

Dal Maso M., Kulmala M., Riipinen I., Wagner R., Hussein T., Aalto P. P., Lehtinen K. E. J., 2005, Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10 (5), 323-336.

Dal Maso M., Sogacheva L., Aalto P. P., Riipinen I., Komppula M., Tunved P., Korhonen L., Suur-Uski V., Hirsikko A., Kurtén T., Kerminen V. M., Lihavainen H., Viisanen Y., Hansson H. C., Kulmala M., 2007, erosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts, Tellus B, 59 (3), 350-361. http://dx.doi.org/10.1111/j.1600-0889.2007.00267.x

De Leeuw G., Kunz G. J., Buzorius G., O'Dowd C. D., 2002, Meteorological in uences on coastal new particle formation, J. Geophys. Res., 107, 8102, doi:10.1029/2001JD001478. http://dx.doi.org/10.1029/2001JD001478

Gao J., Wang T., Zhou X., Wu W., Wang W., 2009, Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions, Atmos. Environ., 43 (4), 829-836. http://dx.doi.org/10.1016/j.atmosenv.2008.10.046

Hamed A., Joutsensaari J., Mikkonen S., Sogacheva L., Dal Maso M., Kulmala M., Cavalli F., Fuzzi S., Facchini M. C., Decesari S., Mircea M., Lehtinen K. E. J., Laaksonen A., 2007, Nucleation and growth of new particles in the Po Valley, Italy, Atmos. Chem. Phys., 7 (2), 355-376. http://dx.doi.org/10.5194/acp-7-355-2007

Holmes N. S., 2007, A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications, Atmos. Environ., 41 (10), 2183-2201. http://dx.doi.org/10.1016/j.atmosenv.2006.10.058

Hoppel W. A., Frick G. M., 1990, Submicron aerosol size distributions measured over the tropical and South Pacific Atmos.Environ., 24A( 3), 645-660.

Hyvärinen A. P., Komppula M., Engler C., Kivekäs N., Kerminen V. M., Dal Maso M., Viisanen Y., Lihavainen H., 2008,A tmospheric new particle formation at Utö, Baltic Sea 2003–2005, Tellus B, 60 (3), 345-352.

Kikasü., Reinart A., Pugatshova A., Tamm E., Ulevicius V., 2008, Microphysical, chemical and optical aerosol properties in the Baltic Sea region, Atmos. Res., 90 (2-4), 211-222. http://dx.doi.org/10.1016/j.atmosres.2008.02.009

Korhonen P. M., Kulmala M., Laaksonen A., Viisanen Y., McGraw R., Seinfeld J. H., 1999, Ternary nucleation of H2 SO4 , NH3 , and H2O in the atmosphere, J. Geophys. Res., 104 (D21),26 349-26 353.

Kristensson A., Dal Maso M., Swietlicki E., Hussein T., Zhou J., Kerminen V. M., Kulmala M., 2008, Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history, Tellus B, 60 (3), 330-344.

Kulmala M., 1988, Nucleation as an aerosol physical problem Ph. D. thesis, Univ. Helsinki, Dept. Phys., Helsinki, Finland.

Kulmala M., 2003, Atmospheric science: How particles nucleate and grow Science, 302 (5647), 1000-1001. http://dx.doi.org/10.1126/science.1090848

Kulmala M., Dal Maso M., Mäkelä J. M., Pirjola L., Väkevä M., Aalto P., Miikkulainen P., Hämeri K.,O'Dowd C., 2001, On the formation, growth and composition of nucleation mode particles, Tellus B, 53 (4), 479-490.

Kulmala M., Kerminen V. M., Laaksonen A., Riipinen I., Sipilä M., Ruuskanen T. M., Sogatcheva L., Hari P., Bäck J., Lehtinen K. E. J., Viisanen Y., Bilde M., Svenningson B., Lazaridis M., Törseth K., Tunved P., Nilsson D., Pryor S., Sörensen L. L., Hörrak U., Winkler P.M., Swietlicki E., Riekkola M. L., Krejci R., Hoyle C., Hovö., Myhre G., Hansson H. C., 2008, Overview of the biosphere aerosol cloud climate interactions (BACCI) studies, Tellus B, 60 (2), 300-317.

Kulmala M., Lehtinen K. E. J., Laaksonen A., 2006, Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys., 6 (3), 787-793. http://dx.doi.org/10.5194/acp-6-787-2006

Kulmala M., Pirjola L., Mäkelä J. M., 2000a, Stable sulphate clusters as a source of new atmospheric particles, Nature, 404 (6773), 66-69. http://dx.doi.org/10.1038/35003550

Kulmala M., Rannikü., Pirjola L., Dal Maso M., Karimäki J., Asmi A., Jäppinen A., Karhu V., Korhonen H., Malvikko S. P., Puustinen A., Raittile J., Romakkaniemi S., Suni T., Ylikoivisto S., Paatero J., Harri P., Vesala T., 2000b, Characterization of the atmospheric gas and aerosol concentration at forest sites in southern and northern Finland using back trajectories, Boreal Environ. Res. ,5 (4), 281-297.

Kulmala M., Toivonen A., Mäkelä J. M., Laaksonen A., 1998, Analysis and growth of the nucleation mode particles observed in a Boreal forest, Tellus B, 50 (5), 449-462. http://dx.doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x

Kulmala M., Vehkamäki H., Petäjä T., Dal Maso M., Lauri A., Kerminen V. M., Birmili W., McMurry P .H., 2004, Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35 (2), 143-176. http://dx.doi.org/10.1016/j.jaerosci.2003.10.003

Laakso L., Anttila T., Lehtinen K. E. J., Aalto P. P., Kulmala M., Hõrrak U., Paatero J., Hanke M., Arnold F., 2004, Kinetic nucleation and ions in boreal forest particle formation events, Atmos. Chem. Phys., 4 (9-10), 2353-2366. http://dx.doi.org/10.5194/acp-4-2353-2004

Lazaridis M., Eleftheriadis K., Smolik J., Colbeck I., Kallos G., Drossinos Y., Zdimal V., Vecera Z., Mihalopoulos N., Mikuska P., Bryant C., Housiadas C., Spyridaki A.,Astitha M.,Havranek V.,2006,Dynamics of fine particles and photo-oxidants in the Eastern Mediterranean (SUB-AERO) Atmos. Environ., 40 (32), 6214-6228. http://dx.doi.org/10.1016/j.atmosenv.2005.06.050

Lee Y. G., Lee H. W., Kim M. S., Choi C. Y., Kim J., 2008, Characteristics of particle formation events in the coastal region of Korea in 2005, Atmos. Environ., 42 (16), 3729-3739. http://dx.doi.org/10.1016/j.atmosenv.2007.12.064

Mäkelä J. M., Koponen I. K., Aalto P., Kulmala M., 2000, One-year data of submicron size modes of tropospheric background aerosol in southern Finland, J. Aerosol Sci., 31 (5), 595-611. http://dx.doi.org/10.1016/S0021-8502(99)00545-5

NOAA-National Oceanic and Atmospheric Administration of U.S., Air Resources Laboratory HYSPLIT model, http://www.arl.noaa.gov/ready.htm.

Nilsson E. D., Kulmala M., 1998, The potential for atmospheric mixing processes to enhance the binary nucleation rate, J. Geophys. Res., 103 (D1), 1381-1389. http://dx.doi.org/10.1029/97JD02629

Nilsson E. D., Paatero J., Boy M., 2001, Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer, Tellus B,53 (4), 462-478.

O'Dowd C. D., Becker E., Kulmala M., 2001, Mid-latitude North-Atlantic aerosol characteristics in clean and polluted air, Atmos. Res., 58 (3), 167-185. http://dx.doi.org/10.1016/S0169-8095(01)00098-9

O'Dowd C. D., Hämeri K., Mäkelä J. M., Pirjola L., Kulmala M., Jennings S. G., Berresheim H., Hansson H. C., de Leeuw G., Kunz G. J., Allen A. G., Hewitt C. N., Jackson A., Viisanen Y., Hoffmann T., 2002, A dedicated study of new particle formation and fate in the coastal environment (PARFORCE); Overview of objectives and achievements, J. Geophys. Res., 107 (D19),8108, doi:10.1029/2001JD000555. http://dx.doi.org/10.1029/2001JD000555

Plauškaitė K., 2008, Aerosol particle formation and growth in the marine, coastal and continental environments, Ph. D. thesis, Univ. Vilnius, Inst. Phys., Vilnius, Lithuania.

Plauškaitė K., Gaman A., Lehtinen K. E. J., Mordas G., Ulevicius V., Kulmala M., 2003, A comparison study of meteorological parameters, trace gases and nucleation events in Preila and Hyytiälä Environ. Chem. Phys., 25 (2), 60-69.

Plauškaitė K., Kazlauskaitė R., Andriejauskienė J., Ulevicius V., 2005, Parameterization of new particle formation and growth at the Preila station, Lith. J. Phys., 45 (2), 139-147.

Pugatshova A., Reinart A., Tamm E., 2007, Features of the multimodal aerosol size distribution depending on the air mass origin in the Baltic region, Atmos. Environ., 41 (21), 4408-4422. http://dx.doi.org/10.1016/j.atmosenv.2007.01.044

Shiobara M., Hara K., Yabuki M., Kobayashi H., 2007, Optical and chemical properties of marine boundary-layer aerosol around Japan determined from shipboard measurements in 2002, Atmos. Environ., 41 (22), 4638-4652. http://dx.doi.org/10.1016/j.atmosenv.2007.03.048

Sihto S. L., Kulmala M., Kerminen V. M., Dal Maso M., Petäjä T., Riipinen I., Korhonen H., Arnold F., Janson R., Boy M., Laaksonen A., Lehtinen K. E. J., 2006, Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos. Chem. Phys., 6 (12), 4079-4091. http://dx.doi.org/10.5194/acp-6-4079-2006

Sogacheva L., Dal Maso M., Kerminen V. M., Kulmala M., 2005, Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiälä, southern Finland, based on back trajectories analysis, Boreal Environ. Res., 10 (6), 479-491.

Ulevicius V., Mordas G., Plauškaitė K., 2002, Nucleation events at the Preila environmental research station, Environ. Chem. Phys., 24 (2), 38-44.

Weber R. J., McMurry P. H., Mauldin L., Tanner D. J., Eisele F. L., Brechtel F. J., Kreidenweis S. M., Kok G L., Schillawski R. D., Baumgardner D., 1998, A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. Geophys. Res., 103 (D13), 16 385-16 396.

Wehner B., Siebert H., Stratmann F., Tuch T., Wiedensohler A., Petäjä T., Dal Maso M., Kulmala M., 2007, Horizontal homogeneity and vertical extent of new particle formation events, Tellus B, 59 (3), 362-371. http://dx.doi.org/10.1111/j.1600-0889.2007.00260.x

Xie Z., Sun L., Blum J. D., Huang Y., He W., 2006, Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean, J. Geophys. Res., 111, D10309,doi:10.1029/2005JD006777. http://dx.doi.org/10.1029/2005JD006777

full, complete article (PDF - compatibile with Acrobat 4.0), 770.2 kB


Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study
Oceanologia 2010, 52(1), 77-99
http://dx.doi.org/10.5697/oc.52-1.077

Kai Myrberg1,*, Oleg Andrejev1, Andreas Lehmann2
1 Finnish Environment Institute/Marine Research Centre,
Mechelininkatu 34a, FIN-00251 Helsinki, Finland;
e-mail: Kai.Myrberg@ymparisto.fi
*corresponding author
2 Leibniz Institute of Marine Sciences,
Düsternbrooker Weg 20, D-24105 Kiel, Germany

keywords: upwelling, Baltic Sea, Hel Peninsula, numerical modelling

Received 21 October 2008, revised 18 January 2010, accepted 22 January 2010.
Abstract
Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a "chain" of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse.
    Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28000 kg m-1 s-1 to reach its mature, full form, whereas an impulse of only 7500 kg m-1 s-1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.

  References ref

Andrejev O.,Myrberg K.,Alenius P.,Lundberg P.A.,2004a,Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modeling, Boreal Environ. Res., 9 (1), 1-16.

Andrejev O., Myrberg K., Lundberg P. A., 2004b,A ge and renewal time of water masses in a semi-enclosed basin - application to the Gulf of Finland, Tellus A, 56 (5), 548-558. http://dx.doi.org/10.1111/j.1600-0870.2004.00067.x

Andrejev O., Myrberg K., Mälkki P., Perttilä M., 2002, Three-dimensional modelling of the main Baltic inflow in 1993, Environ. Chem. Phys., 24 (3), 156-161.

Andrejev O., Sokolov A., 1989, Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet, Meteorol. Hydrol., 12, 75-85, (in Russian).

Andrejev O., Sokolov A., 1990, 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling, Proc. 17th Conf. Baltic Oceanogr., Norrköping, 38-46.

Bergström S., Carlsson B., 1994, River runoff to the Baltic Sea: 1950-1990, Ambio, 23 (4-5), 280-287.

Bumke K., Hasse L., 1989, An analysis scheme for determination of true surface winds at sea from ship synoptic wind and pressure observations, Bound. Lay. Meteorol. ,47 (1-4), 295-308. http://dx.doi.org/10.1007/BF00122335

Bunker A. F., 1976, Computations of surface energy ux and annual air-sea interaction cycle of the North Atlantic Ocean, Mon. Weather Rev., 104 (9), 1122-1140. http://dx.doi.org/10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2

Bychkova I., Viktorov S., 1987, Use of satellite data for identification and classification of upwelling in the Baltic Sea, Oceanology, 27 (2), 158-162.

Csanady G. T., 1977, Intermittent `full' upwelling in Lake Ontario, J. Geophys. Res., 82 (C3), 397-419. http://dx.doi.org/10.1029/JC082i003p00397

Cushman-Roisin B., 1994, Introduction to geophysical luid dynamics Prentice Hall, Englewood Cliffs, N.J., 320 pp.

Dietrich G. (ed.), 1972, Upwelling in the ocean and its consequences Geoforum Oxford 11, Elsevier Sci./Pergamon, Frankfurt.

Fennel W., Seifert T. ,Kayser B., 1991, Rossby radii and phase speeds in the Baltic Sea Cont. Shelf Res., 11 (1), 23-36.

Flament P., Armi L., Washburn L., 1985, The evolving structure of an upwelling filament, J.Geophys. Res., 90 (C6), 11 765-11 778.

Haapala J., 1994, Upwelling and its in uence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland Estuar. Coast. Shelf Sci., 38 (5), 507-521. http://dx.doi.org/10.1006/ecss.1994.1035

Kochergin V. P., 1987, Three-dimensional prognostic models [in:] Three-dimensional coastal ocean models N. S. Heaps (ed.), Am. Geophys. Union, Coast. Estuar. Sci. Ser., 4, 201-208.

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic Oceanologia, 47 (4), 435-475.

Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia,47 (4), 415-432.

Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ.Res., 14 (1),213-225.

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea- a review, J. Marine Syst., 74 (Suppl.1), S3-S12.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea Springer Verl., Berlin-Heidelberg-New York, 378 pp.

Malicki J., Wielbińska D., 1992, Some aspects of the atmosphere's impact on the Baltic Sea waters, Bull. Sea Fish .Inst., 1 (125), 19-28.

Matciak M., Urbański J., Piekarek-Jankowska H., Szymelfenig M., 2001, Presumable groundwater seepage in uence on the upwelling events along the Hel Peninsula, Oceanol. Stud., 30 (3-4), 125-132.

Mutzke A., 1998, Open boundary condition in the GFDL-model with free surface, Ocean Model., 116, 2-6.

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea: a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.

Myrberg K., Andrejev O., 2006, Modelling of the circulation, water exchange and water age properties of the Gulf of Bothnia, Oceanologia, 48 (S), 55-74.

Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M.,Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski L., Krajewska Sołtys A., Ołdakowski B., Ostrowski M., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O. K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007 Oceanologia, 50 (1), 95-113.

Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O., Bendtsen J., Erichsen A., Funkquist L., Inkala A., Neelov I., Rasmus K., Rodriguez Medina M., Raudsepp U., Passenko J. ,Söderkvist J., Sokolov A., Kuosa H., Anderson T. R., Lehmann A., Skogen M. D., 2010, Validation of three-dimensional hydrodynamic models of the Gulf of Finland based on a statistical analysis of a six-model ensemble, Boreal Environ. Res., (in press).

Niiler P., Kraus E., 1977, One-dimensional models of the upper ocean [in:] Modelling and prediction of the upper layers of the ocean, E. Kraus (ed.), Pergamon Press, Oxford, 143-172.

Orlanski I., 1976, A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys., 21, 251-269. http://dx.doi.org/10.1016/0021-9991(76)90023-1

Proudman J., 1953, Dynamical oceanography Methuen & Co., London, 409 pp.

Seifert T., Kayser B., 1995, A high resolution spherical grid topography of the Baltic Sea Meereswiss. Ber./Mar. Sci. Rep., Inst. Ostseeforsch., Warnemünde.

Smagorinsky J., 1963, General circulation experiments with the primitive equations. Part I: The basic experiment, Mon. Weather Rev., 91 (3), 99-164. http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Sokolov A., Andrejev O., Wulff. F., Rodriguez Medina M., 1997, The data assimilation system for data analysis in the Baltic Sea, Syst. Ecol. Contrib., (Stockholm Univ.), 3, 66 pp.

Zhurbas V. M., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004, doi:10.1029/2007JC004280. http://dx.doi.org/10.1029/2007JC004280

full, complete article (PDF - compatibile with Acrobat 4.0), 1.6 MB


The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results
Oceanologia 2010, 52(1), 101-125
http://dx.doi.org/10.5697/oc.52-1.101

Joanna Stoń-Egiert*, Maria Łotocka, Mirosława Ostrowska, Alicja Kosakowska
Institute of Oceanology,
Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: aston@iopan.gda.pl
*corresponding author

keywords: chlorophylls, carotenoids, HPLC, phytoplankton, Baltic Sea

Received 18 May 2009, revised 7 December 2009, accepted 22 January 2010.

This work was carried out within the framework of IO PAS's statutory research and also as part of projects MNiSW: 2 P04F 052 26, N306 1391 33 and N306 2838 33 funded by the Polish Ministry of Science and Higher Education.
Abstract
Mathematical expressions were derived describing the distribution and concentration of individual phytoplankton pigments with respect to biotic factors in the southern Baltic. Relationships were established between the chlorophyll a concentration and the total phytoplankton biomass (represented by the organic carbon content), as well as between the concentration of marker pigments and the biomasses of the corresponding phytoplankton classes. Knowledge of chlorophyll a concentrations allows the phytoplankton biomass to be estimated with a precision characterised by relative statistical errors according to logarithmic statistics of σ_= ca 56%. The best approximation was obtained for the dependence of the Bacillariophyceae biomass on the fucoxanthin concentration (σ_= 60%), Chlorophyceae on the lutein concentration (σ_=48%), and the total biomass of Dinophyceae, Bacillariophyceae and Euglenophyceae on the concentration of diadinoxanthin, the main carotenoid pigment present in cells of species from these classes (σ_=60%).

  References ref

Andersen R. A., Bidigare R. R., Keller M. D., Latasa M., 1996, A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans, Deep Sea Res. Pt.II, 43 (2-3), 517-537.

Barlow R. G., Mantoura R. F. C., Gough M. A., Fileman T. W., 1993, Pigment signatures of the phytoplankton composition in the north eastern Atlantic during the 1990 spring bloom, Deep Sea Res. Pt. II, 40 (1-2), 459-477. http://dx.doi.org/10.1016/0967-0645(93)90027-K

Bouman H., Platt T., Sathyendranath S., Stuart V., 2005, Dependence of light saturated photosynthesis on temperature and community structure, Deep Sea Res. Pt. I, 52 (7), 1284-1299. http://dx.doi.org/10.1016/j.dsr.2005.01.008

Britton G., Liaaen-Jensen S., Pfander H. P., 2003, Handbook of carotenoids, Springer Verlag, Birkhäuser, 670 pp.

Carreto J. I., Carignan M. O., Daleo G., De Marco S. G., 1990, Occurrence of mycosporine like amino acids in the red tide dino agellate Alexandrium excavatum:UV photoprotective compounds?, J. Plankton Res., 12 (5), 909-921. http://dx.doi.org/10.1093/plankt/12.5.909

Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.

Demmig-Adams B., Adams W. W., 1996, The role of xanthophyll cycle carotenoids in the protection of photosynthesis, Trends Plant Sci., 1 (1), 21-26. http://dx.doi.org/10.1016/S1360-1385(96)80019-7

Edler L. (ed.), 1979, Recommendations on methods for marine biological studies in the Baltic Sea, phytoplankton and chlorophyll, Balt. Mar. Biol. Publ. No. 5, 1-38.

Eker-Develi E., Berthon J. F., van der Linde D., 2008, Phytoplankton class determination by microscopic and HPLC CHEMTAX analyses in the southern Baltic Sea, Mar. Ecol. Prog. Ser., 359, 69-87. http://dx.doi.org/10.3354/meps07319

Finni T., Kononen K., Olsonen R., Wallström K., 2001, The history of cyanobacterial blooms in the Baltic Sea, Ambio, 30 (4), 172-178.

Gasiunaitė Z R., Cardoso A. C., Heiskanen A. S., Henrisken P., Kauppila P., Olenina I., Pilkaitytė R., Purina I., Razinkovas A., Sagert S., Schubert H., Wasmund N., 2005 ,Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication, Estuar. Coast. Shelf Sci., 65 (1-2), 235-252.

Geiss U., Bergmann I., Blank M., Schumann R., Hagemann M., Schoor A., 2003, Detection of Prochlorothrix in brackish waters by specific amplification of pcb genes, Appl. Environ. Microb., 69 (10), 6243-6249. http://dx.doi.org/10.1128/AEM.69.10.6243-6249.2003

Goericke R., Montoya J. P., 1998, Estimating the contribution of microalgal taxa to chlorophyll a in the field variations of pigment ratios under nutrient and light limited growth, Mar. Ecol. Prog. Ser., 169, 97-112. http://dx.doi.org/10.3354/meps169097

Goericke R., Repeta D. J., 1992, The pigments of Prochlorococcus marinus: presence of divinyl chlorophyll a and b in marine prokaryotes, Limnol. Oceanogr., 37 (2), 425-433. http://dx.doi.org/10.4319/lo.1992.37.2.0425

HELCOM, 1997, Manual for marine monitoring in the COMBINE programme of HELCOM, Part C. Programme for monitoring of eutrophication and its effects, Annex C 6, Phytoplankton species composition,abundance and biomass, Balt. Mar. Environ. Prot. Comiss., Helsinki, C6 1-C6 8, 22 pp.

Henriksen P., Riemann B., Kaas H., Sorensen H. M., Sorensen H. L., 2002, Effects of nutrient limitation and irradiance on marine phytoplankton pigments, J. Plankton Res., 24 (9), 835-858. http://dx.doi.org/10.1093/plankt/24.9.835

Hunter B. L., Laws E. A., 1981, ATP and chlorophyll a as estimators of phytoplankton carbon biomass in the Baltic Sea:natural uctuations or ecosystem change?, Limnol. Oceanogr., 26 (5), 944-956. http://dx.doi.org/10.4319/lo.1981.26.5.0944

Jeffrey S. W., Vesk M., 1997, Introduction to marine phytoplankton and their pigment signatures, [in:] Phytoplankton pigments in oceanography:Guidelines to modern methods, S. W. Jeffrey, R. F. C. Mantoura & S. W. Wright (eds.), UNESCO Publ., Paris, 37-84.

Jodłowska S., Latała A., 2003, Simultaneous separation of chlorophylls and carotenoids by RP HPLC in some algae and cyanobacteria from the Southern Baltic, Oceanol. Hydrobiol. Stud., 32 (2), 81-89.

Klein B., Sournia A., 1987, A daily study of diatom spring bloom at Rosco-(France) in 1985, II. Phytoplankton pigment composition studied by HPLC analysis, Mar .Ecol. Prog. Ser. ,37, 265-275. http://dx.doi.org/10.3354/meps037265

Larkum A. W. D., 2003, Light harvesting systems in algae, [in:] Advances in photosynthesis and respiration, Vol. 14. Photosynthesis in algae, A. W. D. Larkum, S. E. Douglas & J. A. Raven (eds.), Kluwer Acad. Publ., Dordrecht-Boston-London, 277-304.

Latelier R. M., Bidigare R. R., Hebel D. V., Ondrusek M., Winn C. D., Karl D. M., 1993, Temporal variability of phytoplankton community structure based on pigment analysis, Limnol. Oceanogr., 38 (7), 1420-1437. http://dx.doi.org/10.4319/lo.1993.38.7.1420

Liaaen-Jensen S., 1978, Marine carotenoids, [in:] Marine natural products,chemical and biological perspectives, Vol. II, P. J. Scheer (ed.), Acad. Press, New York-San Francisco-London, 1-73.

Łotocka M., Falkowski L., 1994, The composition of pigments in relation to seasonal blooms of phytoplankton in the Gulf of Gdańsk, Stud. Mater. Oceanol., Mar. Chem., 67 (10), 65-72.

Mackey M. D., Mackey D. J., Higgins H. W., Wright S. W., 1996, CHEMTAX-a program for estimating class abundances from chemical markers:application to HPLC measurements of phytoplankton, Mar .Ecol. Prog. Ser., 144, 265-283. http://dx.doi.org/10.3354/meps144265

Majchrowski R., 2001, Wpływ oświetlenia na charakterystyki pochłaniania światła przez-toplankton w morzu, Stud. i rozpr., 1, PAP, Słupsk, 131 pp.

Majchrowski R., Stoń-Egiert J., Ostrowska M., Woźniak B., Ficek D., Lednicka B., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: New mathematical expressions. Part 2: Accessory pigment distribution, Oceanologia, 49 (4), 491-511.

Mantoura R. F. C., Llewellyn C. A., 1983, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse phase high performance liquid chromatography, Anal. Chim., Acta, 151, 297-314. http://dx.doi.org/10.1016/S0003-2670(00)80092-6

Mantoura R. F. C., Repeta D. J., 1997, Calibration methods for HPLC, [in:] Phytoplankton pigments in oceanography:Guidelines to modern methods, S. W. Jeffrey, R. F. C. Mantoura & S. W. Wright (eds.), UNESCO Publ., Paris, 407-428.

Mantoura R. F. C., Wright S. W., Jeffrey S. W., Barlow R. G., Cummings D. E., 1997, Filtration and storage of pigments from microalgae, [in:] Phytoplankton pigments in oceanography: Guidelines to modern methods, S. W. Je-rey, R. F. C. Mantoura & S. W. Wright (eds.), UNESCO Publ., Paris, 283-305.

Menden-Deuer S., Lessard E. J., 2000, Carbon to volume relationships for dino agellates, diatoms,and other protist plankton, Limnol. Oceanogr., 45 (3), 569-579. http://dx.doi.org/10.4319/lo.2000.45.3.0569

Nakonieczny J., Renk H., Wiktor J., 1991, Chlorophyll a concentration and distribution in the southern Baltic in the years 1979-1983, Oceanologia, 30, 77-91.

Ooms M. (ed.), 1996, ULISSE (Underwater Light Seatruth Satellite Experiment), Commiss. Europ. Union Joint Res. Centre, Ispra ,Italy, Spec. pub., 1.96.29, 506 pp.

Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Ficek D., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic:New mathematical expressions.Part 1:Total chlorophyll a distribution, Oceanologia ,49 (4), 471-489.

Parsons T. R., Maita Y., Lalli C. M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon Press, Oxford, 173 pp.

Parsons T. R., Takahasi N., Hagrave B., 1977, Biological oceanographic processes, Pergamon Press, Oxford, 332 pp.

Peeken I.,1997,Photosynthetic pigments-ngerprints as indicator of phytoplankton biomass and development in di-erent water masses of the Southern Ocean during austral spring, Deep Sea Res. Pt. II, 4 (1-2), 261-282. http://dx.doi.org/10.1016/S0967-0645(96)00077-X

Rodriguez F., Varela M., Zapata M., 2002, Phytoplankton assemblages in the Gerlache and Brans-eld Straits (Antarctic Peninsula)determined by light microscopy and CHEMTAX analysis of HPLC pigment data, Deep Sea Res. Pt.II, 49 (4-5), 723-747.

Rowan K. S., 1989, Photosynthetic pigments of algae, Cambridge Univ. Press, New York, 334 pp.

Rüdiger W., 1997, Chlorophyll metabolism:from outer space down to the molecular level, Phytochemistry, 46 (7), 1151-1167.

Scheer H., 1991, Structure and occurrence of chlorophylls, [in:] Chlorophylls, H. Scheer (ed.), CRC Press, Boca Raton, Fl., 3-30.

Schlüter L., Garde K., Kaas H., 2004, Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4 keto myxoxanthophyll like pigment in the Baltic Sea, Mar. Ecol. Prog. Ser., 275, 69-78. http://dx.doi.org/10.3354/meps275069

Schlüter L., Mohlenberg F., Havskum H., Larsen S., 2000,T he use of phytoplankton pigments for identifying phytoplankton groups in coastal areas:T esting the influence of light and nutrients on pigment chlorophyll a ratios, Mar. Ecol. Prog. Ser., 192, 49-63. http://dx.doi.org/10.3354/meps192049

Staehr P. A., Henriksen P., Markager S., 2002, Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability, Mar. Ecol. Prog. Ser., 238, 47-59. http://dx.doi.org/10.3354/meps238047

Stoń J., Kosakowska A., 2000, Qualitative and quantitative analysis of Baltic phytoplankton pigments, Oceanologia, 42 (4), 449-471.

Stoń J., Kosakowska A., 2002a, Changes in phytoplankton pigments composition during 2000 in different Southern Baltic regions, Oceanol. Stud., 31 (1-2), 75-89.

Stoń J., Kosakowska A., 2002b, Phytoplankton pigments designation-an application of RP HPLC in qualitative and quantitative analysis, J. Appl. Phycol., 14 (3), 205-210. http://dx.doi.org/10.1023/A:1019928411436

Stoń J., Kosakowska A., Łotocka M., Łysiak Pastuszak E., 2002, Phytoplankton pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea, Oceanologia, 44 (4), 419-437.

Stoń-Egiert J., 2007, Głowne-rodowiskowe uwarunkownia składu i zasobow pigmentow-toplanktonu w akwenach bałtyckich, Ph. D. thesis, IO PAN, Sopot.

Stoń-Egiert J., Kosakowska A., 2005, RP HPLC determination of phytoplankton pigments-comparison of calibration results for two columns, Mar. Biol., 147 (1), 251-260. http://dx.doi.org/10.1007/s00227-004-1551-z

Takamiya K., Tsuchiya T., Ohta H., 2000, Degradation pathway(s)of chlorophyll: What has gene cloning revealed?, Trends Plant Sci., 5 (10), 426-431. http://dx.doi.org/10.1016/S1360-1385(00)01735-0

Thamm R., Schernewski G., Wasmund N., Neumann T., 2004, Spatial phytoplankton pattern in the Baltic Sea, [in:] Baltic Sea typology, G. Schernewski & M. Wielgat (eds.), EUCC-The Coastal Union;Die Küsten Union Deutschlands, Coastl. Rep., 4, 85-109.

Toole C. M., Allnutt F. C. T., 2003, Red, cryptomonad and glaucocystophyte algal phycobiliproteins, [in:] Photosynthesis in algae, A. W. D. Larkum, S. E. Douglas & J. A. Raven (eds.), Kluwer Acad.Publ., Dordrecht-Boston-London, 305-334.

Wasmund N., Andrushaitis A., Łysiak Pastuszak E., Müller Karulis B., Nausch G., Ojaveer H., Olenina I., Postel L., Witek Z., 2001, Trophic status of the south eastern Baltic Sea: A comparison of coastal and open areas, Estuar. Coast. Shelf Sci., 53 (6), 849-864. http://dx.doi.org/10.1006/ecss.2001.0828

Wasmund N., Breuel G., Edler L., Kuosa H., Olsonen R., Schultz H., Pys-Wolska M., Wrzołek L., 1996, Pelagic biology, [in:] Third periodic assessment of the state of marine environment of the Baltic Sea,1989-93, Background doc., Balt. Sea Environ. Proc. No. 64B, HELCOM, 89-93.

Wasmund N., Nausch G., Matthäus W., 1998,Phytoplankton spring blooms in the southern Baltic Sea-spatio temporal development and long term trends, J. Plankton Res., 20 (6), 1099-1117. http://dx.doi.org/10.1093/plankt/20.6.1099

Wasmund N., Uhlig S., 2003, Phytoplankton in large river plumes in the Baltic Sea, ICES J. Mar. Sci., 60 (2), 177-186. http://dx.doi.org/10.1016/S1054-3139(02)00280-1

Wasmund N., Zalewski M., Busch S., 1999, Phytoplankton in large river plumes in the Baltic Sea, ICES J. Mar. Sci., 56 (Suppl.), 23-32.

Willén T., 1962, Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic, Oikos, 13, 169-199. http://dx.doi.org/10.2307/3565084

Woźniak B., Dera J., 2007, Light absorption in sea water, Atmos. Oceanogr. Sci. Libr. 33, Springer, New York, 454 pp.

Woźniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (1), 171-245.

Woźniak B., Krê¿el A., Darecki M., Woźniak S. B., Majchrowski R., Ostrowska M.,Kozłowski Ł.,Ficek D.,Dera J.,2008,Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.

Wright S. W., Jeffrey S. W., Mantoura R. F. C., Llewellyn C. A., Bjornland T., Repeta D., Welschmeyer N., 1991, Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton, Mar.E col. Prog. Ser., 77, 183-196. http://dx.doi.org/10.3354/meps077183

full, complete article (PDF - compatibile with Acrobat 4.0), 301.9 kB


Morphological, genetic, chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic
Oceanologia 2010, 52(1), 127-146
http://dx.doi.org/10.5697/oc.52-1.127

Hanna Mazur-Marzec*, Grażyna Browarczyk-Matusiak, Karolina Forycka, Justyna Kobos, Marcin Pliński
Department of Marine Biology and Ecology,
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: biohm@univ.gda.pl
*corresponding author

keywords: Microcystis aeruginosa, cyanobacteria, Microcystin, mcy, Vistula Lagoon

Received 19 November 2009, revised 24 February 2010, accepted 4 March 2010.

This work was supported by the Office of the Marshal of the Pomeranian Voivodship in Poland.
Abstract
The Vistula Lagoon (southern Baltic Sea) is a shallow and highly eutrophic water body, with frequent blooms of cyanobacteria dominated by Microcystis and Anabaena species. Two Microcystis strains, MK10.10 and MAKR0205, isolated from the lagoon were characterised in this work. The morphology of the isolates differed significantly with respect to cell size and their ability to form aggregates. Based on the 16S rRNA sequence and 16S-23S internal transcribed spacer (ITS) sequence, both isolates were classified as Microcystis aeruginosa. However, only one isolate, MK10.10, possessed the mcy genes responsible for microcystin biosynthesis and only this strain produced microcystins. The effects of environmental factors, such as light, temperature and salinity, on toxin production turned out to be minor. Under the culture conditions used in the experiments, the biomass of the toxic MK10.10 was always lower. Hybrid quadrupole-time-of-flight liquid chromatography/tandem mass spectrometry (QTOF-LC/MS/MS) was used to elucidate the structure of the microcystin (MC) variants produced by MK10.10. Based on molecular ion and fragmentation spectra, the toxins were identified as MC-LR, MC-VR and MC-HIlR. Our study confirmed that some morphological criteria could be useful in preliminarily assessing the potential toxicity of a Microcystis bloom.

  References ref

Bateman K. P., Thibault P., Douglas D. J., White R. L., 1995, Mass spectral analyses of microcystins from toxic cyanobacteria using on-line chromatographic and electrophoretic separations, J. Chromatogr. A, 712 (1), 253-268. http://dx.doi.org/10.1016/0021-9673(95)00438-S

Bittencourt-Oliveira M. C., Oliveira M. C., Bolch Ch. J. S., 2001, Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and anking regions (cpcBA), J. Phycol., 37 (5), 810-818. http://dx.doi.org/10.1046/j.1529-8817.2001.00102.x

Davis T. W., Berry D. L., Boyer G. L., Gobler C. J., 2009, The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms Harmful Algae, 8 (5), 715-725. http://dx.doi.org/10.1016/j.hal.2009.02.004

Fastner J., Erhard M., von Döhren H., 2001, Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of light mass spectrometry, Appl. Environ. Microb., 67 (11), 5069-5076. http://dx.doi.org/10.1128/AEM.67.11.5069-5076.2001

Fewer D. P., Rouhiainen L., Jokela J., Wahlesten M., Laakso K., Wang H., Sivonen K., 2007, Recurrent adenylation domain replacement in the microcystin synthetase gene cluster BMC, Evol. Biol., 7, 183-193. http://dx.doi.org/10.1186/1471-2148-7-183

Funari E., Testai E., 2008, Human health risk assessment related to cyanotoxin exposure, Crit. Rev. Toxicol., 38 (2), 97-125. http://dx.doi.org/10.1080/10408440701749454

Imai H., Chang K. H., Nakano S. I., 2009, Growth responses of harmful algal species Microcystis (Cyanophyceae) under various environmental conditions Interdisciplinary Studies on Environmental Chemistry-Environmental Research in Asia, 269-275.

Iteman I., Rippka R., Tandeau de Marsac N., Herdman M., 2000, Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria, Microbiology, 146, 1275-1286.

Kato T., Watanabe M. F., Watanabe M., 1991, Allozyme divergence in Microcystis (Cyanophyceae) and its taxonomic inference, Algol. Stud., 64, 129-140.

Komárek J., Anagnostidis K., 1999, Cyanoprokaryota 1. Teil: Chroococcales [in:] Süsswasser ora von Mitteleuropa Bd.19/1,H.Ettl, G. Gärtner, H. Heynig & D. Mollenhauer (eds.), Gustav Fischer, Jena, 548 pp.

Komárek J., Komárková J., 2002, Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature, Czech Phycol., 2, 1-24.

Kuiper-Goodman T., Falconer J., Fitzgerald J., 1999, Human health aspect [in:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, I. Chorus & J. Bartram (eds.), WHO Publ., E. & F. N. Spon, London, 113-153.

Kurmayer R., Christiansen G., 2009, The genetic basis of toxin production in Cyanobacteria, Freshwater Rev., 2 (1), 31-50.

Kurmayer R., Dittmann E., Fastner J., Chorus I., 2002, Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany) Microbial Ecol., 43 (1), 107-118. http://dx.doi.org/10.1007/s00248-001-0039-3

Kurmayer R., Kutzenberger T., 2003, Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp., Appl. Environ. Microb., 69 (11), 6723-6730. http://dx.doi.org/10.1128/AEM.69.11.6723-6730.2003

Liu Y., 2006, Effects of salinity on the growth and toxin production of a harmful algal species, Microcystis aeruginosa, SJWP, 1, 91-111.

MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A., 1990, Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants, FEBS Lett., 264 (2), 187-192. http://dx.doi.org/10.1016/0014-5793(90)80245-E

Martins J., Saker M. L., Moreira C., Welker M., Fastner J., Vasconcelos V. M., 2009, Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies, Appl. Microbiol. Biot., 82 (5), 951-961. http://dx.doi.org/10.1007/s00253-009-1877-z

Mazur H., Lewandowska J., Błaszczyk A., Kot A., Pliński M., 2003, Cyanobacterial toxins in fresh and brackish waters of Pomorskie Province (Northern Poland) Oceanol. Hydrobiol. Stud., 32 (1), 15-26.

Mikalsen B., Boison G., Skulberg O. M., Fastner J., Davies W., Gabrielsen T. M., Rudi K., Jakobsen K. S., 2003, Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains J. Bacteriol., 185 (9), 2774-2785. http://dx.doi.org/10.1128/JB.185.9.2774-2785.2003

Namikoshi M., Sun F., Choi B. W., Rinehart K. L., Carmichael W. W., Evans W. R., Beasley V. R., 1995, Seven more microcystins from Homer lake cells: application of the general method for structure assignment of peptides containing α,β-dehydroamino acid unit(s), J. Org. Chem., 60 (12), 3671-3679. http://dx.doi.org/10.1021/jo00117a017

Orr P. T., Jones G. J., 1998, Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures, Limnol. Oceanogr., 43 (7), 1604-1614. http://dx.doi.org/10.4319/lo.1998.43.7.1604

Otsuka S., Suda S., Li R., Matsumoto S., Watanabe M. M., 2000, Morphological variability of colonies of Microcystis morphospecies in culture, J. Gen. Appl. Microbiol., 46 (1), 39-50. http://dx.doi.org/10.2323/jgam.46.39

Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M., 1999, Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence FEMS Microbiol. Lett., 172 (1), 15-21. http://dx.doi.org/10.1111/j.1574-6968.1999.tb13443.x

Otsuka S., Suda S., Shibata S., Oyaizu H., Matsumoto S., Watanabe M. M., 2001, A proposal for unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the Rules of the Bacteriological Code, Int. J. Syst. Evol. Micr., 51 (3), 873-879. http://dx.doi.org/10.1099/00207713-51-3-873

Ouahid Y., Peréz Silva G., del Campo F. F., 2005, Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions, Environ. Toxicol., 20 (3), 235-242. http://dx.doi.org/10.1002/tox.20103

Paerl H. W., Huisman J., 2008, Climate. Blooms like it hot Science, 320 (5872), 57-58. http://dx.doi.org/10.1126/science.1155398

Paldavičienė A., Mazur Marzec H., Razinkovas A., 2009, Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon, Oceanologia, 51 (2), 203-216. http://dx.doi.org/10.5697/oc.51-2.203

Palińska K. A., Liesack W., Rhiel E., Krumbein W. E., 1996, Phenotypic variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates, Arch. Microbiol., 166 (4), 224-233.

Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K., 2004, Phylogenetic evidence for the early evolution of microcystin synthesis, Proc. Natl. Acad. Sci., 101 (2), 568-573. http://dx.doi.org/10.1073/pnas.0304489101

Rippka R., 1988, Isolation and purification of cyanobacteria, Method Enzymol., 167, 3-27. http://dx.doi.org/10.1016/0076-6879(88)67004-2

Rohrlack T., Henning M., Kohl J. G., 2001, Isolation and characterization of colony-forming Microcystis aeruginosa strains [in:]Cyanotoxins- occurrence, effects, controlling factors, I. Chorus (ed.), Springer Verlag, New York, 152-158.

Rybicka D., 2005, Potentially toxic blue-green algae (Cyanoprokaryota) in the Vistula Lagoon Oceanol. Hydrobiol. Stud., 34 (Suppl. 3), 161-176.

Sabour B., Sbiyyaa B., Loudiki M., Oudra B., Belkoura M., Vasconcelos V., 2009,Effect of light and temperature on the population dynamics of two toxic bloom forming Cyanobacteria- Microcystis ichthyoblabe and Anabaena aphanizomenoides, Chem. Ecol., 25 (4), 277-284. http://dx.doi.org/10.1080/02757540903062525

Sivonen K., Börner T., 2008, Bioactive compounds produced by cyanobacteria [in:] The Cyanobacteria. Molecular biology, genomics and evolution, A. Herrero & E. Flores (eds.), Caister Acad. Press, Norfolk, U.K., 159-197.

Sivonen K., Jones G., 1999, Cyanobacterial toxins [in:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, I. Chorus & J. Bartram (eds.), WHO Publ., E. & F. N. Spon, London, New York, 41-111.

Tamura K., Dudley J., Nei M., Kumar S., 2007, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24 (8), 1596-1599. http://dx.doi.org/10.1093/molbev/msm092

Taton A., Grubisic S., Brambilla E., De Wit R., Wilmotte A., 2003, Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach, Appl. Environ. Microbiol., 69 (9), 5157-5169. http://dx.doi.org/10.1128/AEM.69.9.5157-5169.2003

Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A., 2000, Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system, Chem.Biol., 7 (10), 753-764. http://dx.doi.org/10.1016/S1074-5521(00)00021-1

Tillett D., Parker D. L., Neilan B. A., 2001, Detection of toxigenity by a probe for the microcystin synthease A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16s rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies, Appl. Environ. Microb., 67 (6), 2810-2818. http://dx.doi.org/10.1128/AEM.67.6.2810-2818.2001

Van der Westhuizen A. J., Eloff J. N., 1985, Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006), Planta, 163 (1),55-59. http://dx.doi.org/10.1007/BF00395897

Via Ordorika L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komarek J., Erhard M., Chorus I., 2004, Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies, Syst. Appl. Microbiol., 27 (5), 592-602. http://dx.doi.org/10.1078/0723202041748163

Watanabe M. F., Oishi S., 1985, Effect of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions, Appl. Environ. Microbiol., 49 (5), 1342-1344.

Welker M., Brunke M., Preussel K., Lippert I., von Döhren H., 2004, Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry, Microbiology, 150,1785-1796. http://dx.doi.org/10.1099/mic.0.26947-0

Wiedner C., Visser P. M., Fastner J., Metcalf J. S., Codd G. A., Mur L. R., 2003, Effect of light on the microcystin content of Microcystis strain PCC7806 Appl. Environ. Microb., 69 (3), 1475-1481. http://dx.doi.org/10.1128/AEM.69.3.1475-1481.2003

Wilmotte A. ,Neefs J. M., De Wachter R., 1994, Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16s ribosomal RNA sequence analysis Microbiology, 140, 2159-2164. http://dx.doi.org/10.1099/13500872-140-8-2159

Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S., 2007, Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake, FEMS Microbiol. Lett., 266 (1), 49-53. http://dx.doi.org/10.1111/j.1574-6968.2006.00496.x

Yoshida T., Yuki Y., Lei S., Chinen H., Yoshida M., 2003, Quantitative detection of toxic strains of the cyanobacterial genus Microcystis by competitive PCR Microbes Environ., 18 (1), 16-23. http://dx.doi.org/10.1264/jsme2.18.16

Zhang M., Kong F., Tan X., Yang Z., Cao H., Xing P., 2007, Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation, World J. Microb. Biot., 23 (5), 663-670. http://dx.doi.org/10.1007/s11274-006-9280-8

Zurawell R. W., Chen H., Burke J. M., Prepas E. E., 2005, Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments, J. Toxicol. Env. Health B Crit., 8 (1), 1-37.

full, complete article (PDF - compatibile with Acrobat 4.0), 321.4 kB

Communications



New data on the non-indigenous cladoceran Cercopagis pengoi (Ostroumov 1891) in the Gulf of Gdańsk (Baltic Sea)
Oceanologia 2010, 52(1), 147-151
http://dx.doi.org/10.5697/oc.52-1.147

Luiza Bielecka*, Stella Mudrak
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: ocelb@univ.gda.pl
*corresponding author

keywords: Invasive species, Cercopagis pengoi, southern Baltic, new occurrence

Received 16 December 2009, revised 22 February 2010, accepted 8 March 2010.

This research was supported by grant No BW/1395-5-0263-8 from the University of Gdańsk.
Abstract
New data on the distribution of the invasive Ponto-Caspian species, Cercopagis pengoi, in the Gulf of Gdańsk are presented. The species, recorded in 2006, for the first time occurred continuously throughout the summer (July-August) at stations situated in the eastern and western parts of the gulf.

  References ref

Antsulevich A., Välipakka P., 2000, Cercopagis pengoi-new important food object of the Baltic herring in the Gulf of Finland, Int. Rev. Hydrobiol., 85 (5-6), 609-619. http://dx.doi.org/10.1002/1522-2632(200011)85:5/6<609::AID-IROH609>3.0.CO;2-S

Bielecka L., Krajewska-Sołtys A., Szymanek L., Szymelfenig M., 2005, Mesozooplankton in the Hel upwelling region (the Baltic Sea), Oceanol. Hydrobiol. Stud., 34 (Suppl. 2), 137-161.

Bielecka L., Żmijewska M. I., Szymborska A., 2000, A new predatory cladoceran Cercopagis (Cercopagis)pengoi (Ostroumov 1891)in the Gulf of Gdańsk, Oceanologia, 42 (3), 371-374.

Duriš Z., Jurasz W., Kubláková M., Vařecha D., 2000,Ponto Caspian invading water ea Cercopagis pengoi in the Gulf of Gdańsk,Poland (Crustacea, Cladocera), Acta Fac. Rerum Nat. Univ. Ostraviensis, Biol. Ekol., 192 (6-7), 51-56.

Gorokhova E., Aladin N., Dumont H. J., 2000, Further expansion of the genus Cercopagis (Crustacea, Branchiopoda, Onychopoda) in the Baltic Sea, with notes on the taxa present and their ecology, Hydrobiologia, 429 (1-3), 207-218. http://dx.doi.org/10.1023/A:1004004504571

Krylov P. I., Bychenkov D. E., Panov V. E., Rodionova N. V., Telesh I. V., 1999, Distribution and seasonal dynamic of the Ponto Caspian invader Cercopagis pengoi (Crustacea,Cladocera)in the Neva Estuary (Gulf of Finland), Hydrobiologia, 393 (1), 227-232. http://dx.doi.org/10.1023/A:1003558919696

Leppäkoski E., Gollasch S., Gruszka P., Ojaveer H., Olenin S., Panov V., 2002, The Baltic-a sea of invaders, Can. J. Fish. Aquat. Sci., 59 (7), 1175-1188. http://dx.doi.org/10.1139/f02-089

Leppäkoski E., Mihnea P. E., 1996, Enclosed seas under man induced change: a comparison between the Baltic and Black Seas, Ambio, 25 (6), 380-389.

Leppäkoski E.,Olenin S., 2000, Non native species and rates of spread: lessons from the brackish Baltic Sea, Biol. Invasions, 2 (2), 151-163. http://dx.doi.org/10.1023/A:1010052809567

Naumenko E. N., 2009, Zooplankton in different types of estuaries (using Curonian and Vistula estuaries as an example), Inl. Water Biol., 2 (1), 72-81.

Ojaveer H., Lumberg A., 1995, On the role of Cercopagis (Cercopagis) pengoi (Ostroumov)in Parnu Bay and the NE part of the Gulf of Riga ecosystem, Proc. Estonian Acad. Sci. Ecol., 5 (1/2), 20-25.

Ojaveer H., Simm M., Lankov A., 2004, Population dynamics and ecological impact of the non indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea), Hydrobiologia, 522 (1-3), 261-269. http://dx.doi.org/10.1023/B:HYDR.0000029927.91756.41

Olszewska A., 2006, New records of Cercopagis pengoi (Ostroumov 1891) in the southern Baltic, Oceanologia, 48 (2), 319-321.

Olszewska A., Bielecka L., 2004, Predatory water ea Cercopagis pengoi in the Polish zone of the Southern Baltic, Int. Conf. 'Baltic Sea-the Sea of Aliens', Gdynia, 25-27 August 2004, Abstracts, 42-43.

Polunina J. J., 2005, Populations of two predatory cladocerans in the Vistula Lagoon - the native Leptodora kindti and non indigenous Cercopagis pengoi, Oceanol. Hydrobiol. Stud., 34 (1), 249-260.

Strake S., 2002, The contribution of nonindigenous Cercopagis pengoi (Ostroumov) in the mesozooplankton community and its population in the Gulf of Riga, Proc. Estonian Acad. Sci. Biol. Ecol., 51 (2),91-102.

Uitto A., Gorokhova E., Valippaka P., 1999, Distribution of the non indigenous Cercopagis pengoi in the coastal waters of the eastern Gulf of Finland, ICES J. Mar. Sci., 56 (Suppl. 1), 49-57.

Żmudziński L., 1998, Cercopagis pengoi (Cladocera) conquered the southern Baltic Sea, Balt. Coast. Zone, 2, 95-96.

full, complete article (PDF - compatibile with Acrobat 4.0), 4.1 MB