Oceanologia No. 53 (1) / 11
Contents
Acknowledgements
Papers
-
Seasonal variability in the optical properties of Baltic aerosols: Agnieszka Zdun, Anna Rozwadowska, Susanne Kratzer
-
Flow, waves and water exchange in the Suur Strait, Gulf of Riga, in 2008: Urmas Raudsepp, Jaan Laanemets, Getli Haran, Victor Alari, Juss Pavelson, Tarmo Kõuts
-
Meteorological influences on the surface hydrographic patterns of the North Aegean Sea: Georgios Sylaios
-
Changes in Atlantic Water characteristics in the south-eastern Mediterranean Sea as a result of natural and anthropogenic activities: Mohamed A. Said, Makram A. Gerges, Ibrahim A. Maiyza, Maged A. Hussein, Ahmed A. Radwan
-
Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland): Zbigniew Pruszak, Rafal Ostrowski, Jan Schönhofer
-
Occurrence and germination of dinoflagellate cysts in surface sediments from the Red Sea off the coasts of Saudi Arabia: Zakaria A. Mohamed, Abdulrahman M. Al-Shehri
-
Development and growth of Temora longicornis: numerical simulations using laboratory culture data: Lidia Dzierzbicka-Głowacka, Anna Lemieszek, Iwona Maria Żmijewska
-
New and "visiting" fish species collected off the western coast of Poland (Baltic Sea) in 2007-2008 with a description of their parasite fauna: Beata Więcaszek, Ewa Sobecka, Stanisław Dudko, Sławomir Keszka
Communications
Papers
Seasonal variability in the optical properties of Baltic aerosols
Oceanologia 2011, 53(1), 7-34
http://dx.doi.org/10.5697/oc.53-1.007
Agnieszka Zdun1,*, Anna Rozwadowska1, Susanne Kratzer2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: zdun@iopan.gda.pl
*corresponding author
2Stockholm University,
Svante Arrheniusvägen 21A, SE-106 91 Stockholm, Sweden
keywords:
aerosol optical thickness, Ångström exponent, seasonal variability, Baltic Sea
Received 30 June 2010, revised 1 December 2010, accepted 13 December 2010.
Abstract
A five-year dataset of spectral aerosol optical thickness was used to analyse the seasonal variability of aerosol optical properties (the aerosol optical
thickness (AOT) at wavelength λ=500 nm, AOT(500) and the Ångström exponent for the 440-870 nm spectral range,
α(440, 870)) over the Baltic Sea and dependence of these optical properties on meteorological factors (wind direction, wind speed and relative
humidity). The data from the Gotland station of the global radiometric network AERONET (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov)
were taken to be representative of the Baltic Sea conditions. Meteorological observations from Fårosund were also analysed.
Analysis of the data from 1999 to 2003 revealed a strong seasonal cycle in AOT(500) and α(440, 870). Two maxima of monthly mean values of AOT(500)
over the Baltic were observed. In April, an increase in the monthly mean aerosol optical thickness over Gotland most probably resulted from agricultural waste straw
burning, mainly in northern Europe and Russia as well as in the Baltic states, Ukraine and Belarus. During July and August, the aerosol optical thickness was
affected by uncontrolled fires (biomass burning). There was a local minimum of AOT(500) in June.
Wind direction, a local meteorological parameter strongly related to air mass advection, is the main meteorological factor influencing the variability
of aerosol optical properties in each season. The highest mean values of AOT(500) and α(440, 870) occurred with easterly winds in both spring and summer,
but with southerly winds in autumn.
References
Birmilli W., Wiedensohler A., Heintzenberg J., Lehmann K., 2001, Atmospheric particle number size distribution in central Europe: statistical relations to air masses and meteorology, J. Geophys. Res., 106 (D23), 32005–32018.
Carlund T., Hakånsson B., Land P., 2005, Aerosol optical depth over the Baltic Sea derived from AERONET and SeaWiFS measurement, Int. J. Remote Sens., 26 (2), 233–245.
http://dx.doi.org/10.1080/01431160410001720306
Chylek P., Henderson B., Mishchenko M., 2003, Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval, J. Geophys. Res., 108 (D24), 4764 pp.
d’Almeida G., Koepke P., Shettle E.P., 1991, Atmospheric aerosols: global climatology and radiative characteristics, A. Deepak Publ., Hampton, Va., 561 pp.
Draxler R.R., Rolph G.D., 2003, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, http://www.arl.noaa.gov/ready/hysplit4.html, OAA Air Resour. Lab., Silver Spring, MD.
Dubovik O., Holben B., Eck T. F., Smirnov A., Kaufman Y. J., King M.D., Tanr’e D., Slutsker I., 2002, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59 (3), 590–608.
http://dx.doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
Dubovik O., King M.D., 2000, A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105 (D16), 20673–20696.
http://dx.doi.org/10.1029/2000JD900282
Eck T. F., Holben B.N., Reid J. S., Dubovik O., Smirnov A., O’Neill N.T., Slutsker I., Kinne S., 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104 (D24), 31333–31350.
http://dx.doi.org/10.1029/1999JD900923
El-Metwally M., Alfaro S.C., Abdel Wahab M., Chatenet B., 2008, Aerosol characteristics over urban Cairo: seasonal variations as retrieved from Sun photometer measurements, J. Geophys. Res., 113, D14219.
http://dx.doi.org/10.1029/2008JD009834
Formenti P., Andreae M.O., Andreae T.W., Galani E., Vasaras A., Zerofos C., Amiridis V., Orlovsky L., Karnieli A., Wendisch M., Wex H., Holben B.N., Maenhaut W., Lelieveld J., 2001, erosol optical properties and large-scale transport of air masses: observation at a coastal and a semiarid site in the eastern Mediterranean during summer 1998, J. Geophys. Res., 106 (D9), 9807–9826.
http://dx.doi.org/10.1029/2000JD900609
Gao B.-C., Montes M. J., Ahmad Z., Davis C.O., 2000, Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, Appl. Optics, 39 (6), 887–896.
http://dx.doi.org/10.1364/AO.39.000887
PMid:18337964
Glantz P., Nilsson D.E., von Hoyningen-HueneW., 2006, Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean, Atmos. Chem. Phys. Discuss., 6, 11621–11651.
http://dx.doi.org/10.5194/acpd-6-11621-2006
Holben B.N., Eck T. F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y. J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A., 1998, AERONET – a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66 (1), 1–16.
Holton J.R., Curry J.A., Pyle J.A., 2003, Encyclopaedia of atmospheric science, Vol. 1, Acad. Press, Amsterdam, Boston, 53 pp.
Ichoku C., Kaufman Y. J., Remer L.A., Levy R., 2004, Global aerosol remote sensing from MODIS, Adv. Space Res., 34, 820–827.
http://dx.doi.org/10.1016/j.asr.2003.07.071
Jeong M.-J, Li Z., Andrews E., Tsay S.-C., 2007, Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202.
http://dx.doi.org/10.1029/2006JD007176
Kastendeuch P.P., Najjar G., 2003, Upper-air wind profiles investigation for tropospheric circulation study, Theor. Appl. Climatol., 75, 149–165.
http://dx.doi.org/10.1007/s00704-003-0736-6
Kauffman Y. J., Smirnov A., Holben B.N., Dubovik O., 2001, Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28 (17), 3251–3254.
http://dx.doi.org/10.1029/2001GL013312
Kratzer S., Vinterhav C., 2010, Improvement of MERIS level 2 products in Baltic Sea coastal areas by applying the Improved Contrast between Ocean and Land processor (ICOL) – data analysis and validation, Oceanologia, 52 (2), 211–236.
Kuśmierczyk-Michulec J., 2009, Ångström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development, Oceanologia, 51 (1), 5–38.
Kuśmierczyk-Michulec J., de Leeuw G., Gonzalez C.R., 2002, Empirical relationships between mass concentration and Ångström parameter, Geophys. Res. Lett., 29 (7), 1145.
http://dx.doi.org/10.1029/2001GL014128
Kuśmierczyk-Michulec J., Marks R., 2000, The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and North Seas, J. Aerosol Sci., 31 (11), 1299–1316.
http://dx.doi.org/10.1016/S0021-8502(00)00032-X
Kuśmierczyk-Michulec J., Rozwadowska A., 1999, Seasonal changes of the aerosol optical thickness for the atmosphere over the Baltic Sea – preliminary results, Oceanologia, 41 (2), 27–145.
Kuśmierczyk-Michulec J., Schulz M., Ruellan S., Krüger O., Plate E., Marks R., de Leeuw G., Cachier H., 2001, Aerosol composition and related optical properties in the marine boundary layer over the over the Baltic Sea, J. Aerosol Sci., 32 (8), 933–955.
http://dx.doi.org/10.1016/S0021-8502(00)00122-1
Niemi J.V., Tervahattu H., Koskentalo T., Sillanpää M., Hillamo R., Kumala M., Vehkamäki H., 2003, Studies on the long-range transport episodes of particles in Finland in March and August 2002, No. 10, Helsinki Metropolit. Area Council, Helsinki, 58 pp.
Niemi J.V., Tervahattu H., Vehkamäki H., Martikainen J., Laakso L., Kumala M., Aarnio P., Koskentalo T., Sillanpää M., Makkonen U., 2005, Characterization of aerosol particles episodes in Finland caused by wildfires in Eastern Europe, Atmos. Chem. Phys., 5 (8), 2299–2310.
http://dx.doi.org/10.5194/acp-5-2299-2005
Flow, waves and water exchange in the Suur Strait, Gulf of Riga, in 2008
Oceanologia 2011, 53(1), 35-56
http://dx.doi.org/10.5697/oc.53-1.035
Urmas Raudsepp*, Jaan Laanemets, Getli Haran, Victor Alari, Juss Pavelson, Tarmo Kõuts
Marine Systems Institute, Tallinn University of Technology,
12618 Akadeemia 15a, Tallinn, Estonia;
e-mail: raudsepp@phys.sea.ee
*corresponding author
keywords:
flow, water exchange, waves, modelling, shear velocity, strait, Baltic Sea
Received 23 June 2010, revised 26 August 2010, accepted 23 November 2010.
The work was partially supported by the Estonian Science Foundation (Grant 7283) and by the Estonian Road Administration project Perspective
Development Plan for the Transportation of Passengers and Cargo across the Suur Strait and Strategic Environmental Impact Assessment.
Abstract
Wind, flow and wave measurements were performed in November-December in 2008 in the relatively narrow
and shallow Suur Strait connecting the waters of the Väinameri and the Gulf of Riga.
During the measurement period wind conditions were extremely variable, including a severe storm on 23 November. The flow speed
along the strait varied between ±0.2 m s-1, except for the 0.4 m s-1 that occurred after the storm as a result of the sea
level gradient. The mean and maximum significant wave heights were 0.53 m and 1.6 m respectively. Because of their longer fetch, southerly
winds generated higher waves in the strait than winds from the north. All wave events caused by the stronger southerly winds
induced sediment resuspension, whereas the current-induced shear velocity slightly exceeded the critical value for resuspension
only when the current speed was 0.4 m s-1. A triple-nested two-dimensional high resolution (100 m in the Suur Strait) circulation model and the SWAN
wave model were used to simulate water exchange in 2008 and the wave-induced shear velocity field in the Suur Strait respectively.
Circulation model simulations demonstrated that water exchange was highly variable, that cumulative transport followed an evident seasonal cycle, and that there was an gross
annual outflow of 23 km3 from the Gulf of Riga. The horizontal distribution of wave-induced shear velocity
during the strong southerly wind event indicated large shear velocities and substantial horizontal variability. The shear
velocities were less than the critical value for resuspension in the deep area of the Suur Strait.
References
Alari V., Raudsepp U., Kõuts T., 2008, Wind wave measurements and modelling in Küdema Bay, Estonian Archipelago Sea, J. Marine Syst., 74 (Suppl. 1), S30–S40.
http://dx.doi.org/10.1016/j.jmarsys.2007.11.014
Booij N., Ris R.C., Holthuijsen L.H., 1999, A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res., 104 (C4), 7649–7666.
http://dx.doi.org/10.1029/98JC02622
Holthuijsen L.H., 2007, Waves in oceanic and coastal waters, Cambridge Univ. Press, New York, 404 pp.
http://dx.doi.org/10.1017/CBO9780511618536
Komen G. J., Cavaleri L., Donelan M., Hasselmann S., Janssen P.A.E.M., 1994, Dynamics and modelling of ocean waves, Cambridge Univ. Press, Cambridge, 532 pp.
http://dx.doi.org/10.1017/CBO9780511628955
Kuhrts C., Fennel W., Seifert T., 2004, Model studies of transport of sedimentary material in the western Baltic, J. Marine Syst., 52 (1–4), 167–190.
http://dx.doi.org/10.1016/j.jmarsys.2004.03.005
Launiainen J., Laurila T., 1984, Marine wind characteristics in the northern Baltic Sea, Finnish Mar. Res., 250, 52–86.
Mardiste H., 1995, Eestit piirava mere hüdroloogilise uurimise ajalugu (kuni 1917 aastani), Teaduse ajaloo lehekülgi Eestist, XI, TA Kirjastus, Tallinn, 58–78.
Mulligan R.P., Hay A.E., Bowen A. J., 2008, Wave-driven circulation in a coastal bay during the landfall of a hurricane, J. Geophys. Res., 113, C05026, 1–10. 56 U. Raudsepp, J. Laanemets, G. Haran, V. Alari, J. Pavelson, T. Kõuts
Otsmann M., Astok V., Suursaar Ü., 1997, A model for water exchange between the Baltic Sea and the Gulf of Riga, Nordic Hydrol., 28 (4–5), 351–364.
Otsmann M., Suursaar Ü., Kullas T., 2001, The oscillatory nature of the flows in the system of straits and small semienclosed basins of the Baltic Sea, Cont. Shelf Res., 21 (15), 1577–1603.
http://dx.doi.org/10.1016/S0278-4343(01)00002-4
Seifert T., Fennel W., Kuhrts C., 2009, High resolution model studies of transport of sedimentary material in the south-western Baltic, J. Marine Syst., 75 (3–4), 382–396.
http://dx.doi.org/10.1016/j.jmarsys.2007.01.017
Seifert T., Kayser B., Tauber F., 2001, Bathymetry data of the Baltic Sea, Baltic Sea Res. Inst., Warnemünde.
Sipelgas L., Raudsepp U., Kõuts T., 2006, Operational monitoring of suspended matter distribution using MODIS images and numerical modelling, Adv. Space Res., 38 (10), 2182–2188.
http://dx.doi.org/10.1016/j.asr.2006.03.011
Soomere T., Keevallik S., 2003, Directional and extreme wind properties in the Gulf of Finland, Proc. Estonian Acad. Sci. Eng., 9, 73–90. SWAN team, 2008, SWAN Cycle III version 40.72.
Suursaar Ü., Astok V., Alenius P., Kullas T., Otsmann M., 1998, Thermohaline regime and currents in the Suur Strait and Hari Strait in 1996–1997, EMI Rep. Ser., 9, 6–22.
Suursaar Ü., Astok V., Kullas T., N˜omm A., Otsmann M., 1995, Currents in the Suur Strait and their role in the nutrient exchange between the Gulf of Riga and the Baltic Proper, Proc. Estonian Acad. Sci. Ecol., 5, 103–123.
Suursaar Ü., Astok V., Kullas T., Otsmann M., Alenius P., 1996, Thermohaline regime and currents in the Suur Strait in 1993–1995, EMI Rep. Ser., 3, 7–58.
Suursaar Ü., Kullas T., Otsmann M., 2002, A model study of sea level variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res., 22 (14), 2001–2019.
http://dx.doi.org/10.1016/S0278-4343(02)00046-8
Van Rijn L.C., 2007, Unified view of sediment transport by currents and waves 1: initiation of motion, bed roughness and bed-load transport, J. Hydraul. Eng.– ASCE, 133 (6), 649–667.
http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649)
Van der Westhuysen A. J., Zijlema M., Battjes J.A., 2007, Nonlinear saturationbased whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54 (2), 151–170.
http://dx.doi.org/10.1016/j.coastaleng.2006.08.006
Meteorological influences on the surface hydrographic patterns of the North Aegean Sea
Oceanologia 2011, 53(1), 57-80
http://dx.doi.org/10.5697/oc.53-1.057
Georgios Sylaios
Department of Environmental Engineering, Democritus University of Thrace,
GR-67100 Xanthi, Greece;
e-mail: gsylaios@env.duth.gr
keywords:
water masses, meteorological influences, Black Sea Water, Samothraki Anticyclone, North Aegean Sea
Received 11 August 2010, revised 17 January 2011, accepted 18 January 2011.
The data analysed in this study were collected during the MEDITS project, supported and funded under different contracts in the period 1998-2001 by EU DG Fisheries.
Abstract
Hydrographic data from the North Aegean Sea were used to examine the summer variability of surface water masses during the period 1998-2001. Attention was placed on the surface hydrographic features of the area, such as the Black Sea Water (BSW) plume expansion, the frontal characteristics of the BSW with the Levantine
Intermediate Water (LIW) and the variability of submesoscale hydrographic features (such as the Samothraki Anticyclone). Strong
southerly wind stresses were found responsible for relaxing the horizontal density gradients across the BSW-LIW frontal zone
and displacing this front to the north of Lemnos Island, thus suppressing the Samothraki Anticyclone towards the Thracian
Sea continental shelf. Under northerly winds, the BSW-LIW front returns to its regular position (south of Lemnos Island), thus allowing the horizontal expansion of the
Samothraki gyre up to the Athos Peninsula. Present results indicate the importance of medium-term wind stress effects on the generation of Samothraki Anticyclone suppression/expansion events.
References
Bethoux J.P., Gentili B., 1999, Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes, J. Marine Syst., 20 (1–4), 33–47.
http://dx.doi.org/10.1016/S0924-7963(98)00069-4
Cordero S.G., 1999, The use of thermal satellite data in dense water formation studies in the Mediterranean Sea, J. Marine Syst., 20 (1–4), 175–186.
http://dx.doi.org/10.1016/S0924-7963(98)00081-5
Gertman I. F., Ovchinnikov I.M., Popov Yu. I., 1990, Deep-water formation in the Aegean Sea, CIESM Congr. Proc., 32 (1), 164 pp.
Ginzburg A. I., Kostianoy A.G., Sheremet N.A., 2004, Seasonal and interannual variability of the Black Sea surface temperature, as revealed from satellite data (1982–2000), J. Marine Syst., 52 (1–4), 33–50.
http://dx.doi.org/10.1016/j.jmarsys.2004.05.002
Groom S., Shutler J., Mottram G., 2005, Satellite data analysis for the North Aegean Sea, [in:] ANREC Project final report, [EU contract No. QLRT-2001- 01216 ANREC], 120–153.
Ivanov V.A., Kovalenko T.P., Nikolayenko Ye.G., 1989, Structure and characteristics of fronts in the Mediterranean Sea in summer of 1986, Oceanology, 29, 434–437.
Kazmin A., Zatsepin A.G., Kontoyiannis H., 2010, Comparative analysis of the long-term variability of winter surface temperature in the Black and Aegean Seas during 1982–2004 associated with the large-scale atmospheric forcing, Int. J. Climatol., 30 (9), 1349–1359.
Kontoyiannis H., Kourafalou V.H., Papadopoulos V., 2003, Seasonal characteristics of the hydrology and circulation in the Northwest Aegean Sea (eastern Mediterranean): observations and modelling, J. Geophys. Res., 108 (C9), 3302, doi:10.1029/2001JC001132.
http://dx.doi.org/10.1029/2001JC001132
Larnicol G., Ayoub N., Le Traon P.Y., 2002, Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data, J. Marine Syst., 33–34, 63–89.
http://dx.doi.org/10.1016/S0924-7963(02)00053-2
Lascaratos A., 1992, Hydrology of the Aegean Sea, [in:] Winds and currents of the Mediterranean Basin, H. Charnock (ed.), Rep. Meteorol. Oceanogr., Vol. 40, Harvard Univ., Stroudsberg, 313–334.
Latif M.A., Özsoy E., Oguz T., Ülüata ¨ U., 1991, Observations of the Mediterranean inflow into the Black Sea, Deep-Sea Res., 38 (Suppl. 2), 711–723.
http://dx.doi.org/10.1016/S0198-0149(10)80005-6
Lykousis V., Chronis G., Tselepides A., Price N.B., Theocharis A., Siokou-Frangou I., van Wambeke F., Danovaro R., Stavrakakis S., Duineveld G., Georgopoulos D., Ignatiades L., Souvermezoglou A., Voutsinou-Taliadouri F., 2002, Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea, J. Marine Syst., 33–34, 313–334.
http://dx.doi.org/10.1016/S0924-7963(02)00064-7
Mackas D. L., Tsurumi M., Galbraith M.D., Yelland D.R., 2005, Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species, Deep- Sea Res. Pt. II, 52 (7–8), 1011–1035.
http://dx.doi.org/10.1016/j.dsr2.2005.02.008
Oguz T., Sur H., 1989, A two-layer model of water exchange through the Dardanelles Strait, Oceanol. Acta, 12, 23–31.
Olson D. B., Kourafalou V.H., Johns W. E., Samuels G., Veneziani M., 2007, Aegean surface circulation from a satellite-tracked drifter array, J. Phys. Oceanogr., 37 (7), 1898–1917.
http://dx.doi.org/10.1175/JPO3028.1
Ovchinnikov I.M., 1966, Circulation in the surface and the intermediate layers of the Mediterranean, Oceanology, 6, 48–58.
Özsoy E., Ülüata Ü., 1997, Oceanography of the Black Sea: a review of some recent results, Earth-Sci. Rev., 42 (4), 231–272.
http://dx.doi.org/10.1016/S0012-8252(97)81859-4
Pinot J.-M., Tintore J., Lopez-Jurado J.L., Fernandez de Puelles M. L., Jansa J., 1995, Three-dimensional circulation of a mesoscale eddy/front system and its biological implications, Oceanol. Acta, 18 (4), 389–400.
Poulos S.E., Drakopoulos P.G., Collins M.B., 1997, Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview, J. Marine Syst., 13 (1–4), 225–244.
http://dx.doi.org/10.1016/S0924-7963(96)00113-3
Schlitzer R., 2005, Ocean data view, http://www.awi-bremerhaven.de/GEO/ODV.
Sempéré R., Panagiotopoulos C., Lafont R., Marroni B., van Wambeke F., 2002, Total organic carbon dynamics in the Aegean Sea, J. Marine Syst., 33–34, 355–364.
http://dx.doi.org/10.1016/S0924-7963(02)00066-0
Shi C., Nof D., 1993, The splitting of eddies along boundaries, J. Mar. Res., 51 (4), 771–795.
http://dx.doi.org/10.1357/0022240933223927
Siokou-Frangou I., Bianchi M., Christaki U., Christou E.D., Giannakourou A., Gotsis O., Ignatiades L., Pagou K., Pitta P., Psara S., Souvermezoglou E., van Wambeke F., Zervakis V., 2002, Carbon flow in the planktonic food-web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea), J. Marine Syst., 33–34, 335–353.
http://dx.doi.org/10.1016/S0924-7963(02)00065-9
Stanev E.V., Peneva E.L., 2002, Regional sea level response to global climate change: Black Sea examples, Global Planet. Change, 32 (1), 33–47.
http://dx.doi.org/10.1016/S0921-8181(01)00148-5
Stashchuk N., Hutter K., 2001, Modelling of water exchange through the Strait of the Dardanelles, Cont. Shelf Res., 21 (13–14), 1361–1382.
http://dx.doi.org/10.1016/S0278-4343(01)00017-6
Theocharis A., Georgopoulos D., 1993, Dense water formation over the Samothraki and Limnos Plateaux in the north Aegean Sea (Eastern Mediterranean Sea), Cont. Shelf Res., 13 (8–9), 919–939.
http://dx.doi.org/10.1016/0278-4343(93)90017-R
Ünlüata Ü., Oguz T., Latif M.A., Özsoy E., 1990, On the physical oceanography of Turkish Straits, [in:] The physical oceanography of sea straits, L. J. Pratt (ed.), Kluwer Acad. Publ., Dordrecht, 25–60.
Velaoras D., Laskaratos A., 2005, Deep water mass characteristics and interannual variability in the North and Central Aegean Sea, J. Marine Syst., 53 (1–4), 59–85.
http://dx.doi.org/10.1016/j.jmarsys.2004.05.027
Vlasenko V. I., Stashchuk N.N., Ivanov V.A., Nikolaenko E.G., Uslu O., Benli H., 1996, Influence of the water exchange through Dardanelles on the thermohaline structure of the Aegean Sea, Bull. Inst. Océanogr. Monaco, Spec. No. 17, 147–165.
Yüce H., 1995, Northern Aegean water masses, Estuar. Coast. Shelf Sci., 41 (3), 325–343.
http://dx.doi.org/10.1006/ecss.1995.0066
Yüce H., 1996, On the variability of Mediterranean water flow into the Black Sea, Cont. Shelf Res., 16 (11), 1399–1413.
http://dx.doi.org/10.1016/0278-4343(95)00078-X
Zervakis V., Georgopoulos D., 2002, Hydrology and circulation in the North Aegean (eastern Mediterranean) throughout 1997 and 1998, Mediterr. Marine Sci., 3 (1), 7–21.
Zervakis V., Georgopoulos D., Drakopoulos P.G., 2000, The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes, J. Geophys. Res., 105 (C11), 26103–26116.
http://dx.doi.org/10.1029/2000JC900131
Zervakis V., Karageorgis A.P., Kontoyiannis H., Papadopoulos V., Lykousis V., 2005, Hydrology, circulation and distribution of particulate matter in Thermaikos Gulf (NW Aegean Sea), during September 2001–October 2001 and February 2002, Cont. Shelf Res., 25 (19–20), 2332–2349.
http://dx.doi.org/10.1016/j.csr.2005.08.010
Zervakis V., Krasakopoulou E., Georgopoulos D., Souvermezoglou E., 2003, Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean, Deep-Sea Res. Pt. I, 50 (1), 53–71.
http://dx.doi.org/10.1016/S0967-0637(02)00144-9
Zodiatis G., 1994, Advection of the Black Sea Water in the North Aegean Sea, Global Atmos. Ocean. Syst., 2 (1), 41–60.
Zodiatis G., Alexandri S., Pavlakis P., Jonsson L., Kallos G., Demetropoulos A., Georgiou G., Theodorou A., Balopoulos E., 1996, Tentative study of flow patterns in the North Aegean Sea using NOAA-AVHRR images and 2D model simulation, Ann. Geophys., 14 (11), 1221–1231.
Changes in Atlantic Water characteristics in the south-eastern Mediterranean Sea as a result of natural and anthropogenic activities
Oceanologia 2011, 53(1), 81-95
http://dx.doi.org/10.5697/oc.53-1.081
Mohamed A. Said*, Makram A. Gerges, Ibrahim A. Maiyza, Maged A. Hussein, Ahmed A. Radwan
National Institute of Oceanography and Fisheries (NIOF),
Alexandria, Egypt;
e-mail: mamsaid2@hotmail.com
*corresponding author
keywords:
Atlantic water, temperature and salinity, trend, Mediterranean, Egypt
Received 8 July 2010, revised 3 January 2011, accepted 11 January 2011.
Abstract
The paper investigates the changes in the characteristics of Atlantic Water (AW) flowing eastwards along the Egyptian coast in the south-eastern
Mediterranean during the period 1959-2008.
Vertically, only one water mass could be observed in winter in the upper 200 m layer, whereas in
summer, there were three distinct water masses. The subsurface water mass, of Atlantic origin, occupying the 50-150 m layer and
characterized by low salinities from < 38.60 to 38.80 PSU, moves throughout the study area from west to east and spreads over a range of density between 27.5 and 28.5 σt.
Temperature and salinity have indicated increasing trends for both temperature and salinity during the last 25 years (1983-2008),
reaching 0.85°C decade-1 and 0.073 PSU dec-1, respectively, for the Mediterranean surface waters. For the Atlantic water,
the trends were 0.28°C dec-1 for temperature and 0.014 PSU dec-1 for salinity.
References
Abdel-Moati A.R., Said M.A., 1987, Hydrographic structure of the Mediterranean shelf waters off the Egyptian coast during 1983–1986, Thalassographica, 10 (2), 23–39.
Bethoux J.P., Gentili B., Raunet J., Tailliez D., 1990, Warming trend in the western Mediterranean deep water, Nature, 347 (6294), 660–662.
http://dx.doi.org/10.1038/347660a0
Brenner S., 1989, Structure and evolution of warm core eddies in the Mediterranean Levantine Basin, J. Geophys. Res., 94 (C9), 12 593–12 602.
Eid F.M., Said M.A., 1995, On the Ocean circulation off the Egyptian coast determined from steric height distribution, Estuar. Coast. Shelf Sci., 40 (2), 231–237.
http://dx.doi.org/10.1016/S0272-7714(05)80007-1
Gerges M.A., 1976, The damming of the Nile River and its effects on the Hydrographic conditions and circulation pattern in the southeastern Mediterranean and the Suez Canal, Acta Adriat., 18, 179–191.
Lacombe H., Tchernia P., 1960, Quelques traits generaux de l’hydrologie Mediterranean, Cah. Oceanogr., 12 (8), 527–547.
Millot C., 2007, Interannual salinification of the Mediterranean inflow, Geophys. Res. Lett., 34, L21609, doi:10.1029/2007GL031179.
http://dx.doi.org/10.1029/2007GL031179
Morcos S.A., 1972, Sources of Mediterranean intermediate water in the Levantine Sea, [in:] Studies in physical oceanography. A tribute to George Wüst on his 80th birthday, A. L. Gordon (ed.), Gordon & Breach, New York, 185–206.
Ovchinnikov I.M., 1984, The formation of the intermediate waters in the Mediterranean Sea, Okeanologiya, 26 (2), 217–225.
Ozturgut E., 1976, The sources and spreading of the Levantine intermediate water in the Eastern Mediterranean, SACLANTCEN-SN-92, 45 pp.
Özsoy E., Hecht A., Ünlüata Ü., 1989, Circulation and hydrography of the Levantine Basin. Results of POEM coordinated Experiment 1985–1986, Prog. Oceanogr., 22 (2), 125–170.
Özsoy E., Latif M.A., Ünlüata Ü., 1981, On the formation of the Levantine intermediate water, Rapp. Comm. Int. Mer Médit., 27 (6), 657–671.
Pascual J., Salat J., Palau M., 1995, Evolucion de la temperatura del mar entre 1973 y 1994, cerca la costa catalana, Actes Coll. Sci. OKEANOS, 95, 23–28.
POEM Group, 1992, General circulation of the Eastern Mediterranean, Earth-Sci. Rev., 32 (4), 285–309.
http://dx.doi.org/10.1016/0012-8252(92)90002-B
Reverdin G., Kestenare E., Frankignoul C., Delcroix T., 2007, Surface salinity in the Atlantic Ocean (30°S–50°N), Prog. Oceanogr., 73 (3–4), 311–340.
http://dx.doi.org/10.1016/j.pocean.2006.11.004
Rohling E. J., Bryden H., 1992, Man-induced salinity and temperature increases in Mediterranean deep water, J. Geophys. Res., 97 (C7), 11 191–11 981.
Said M.A., 1984, The spatial statistical structure of water temperature and salinity of the Mediterranean Sea, J. Meteorol. Climatol. Hydrol., 20, 6–61, (in Russian).
Said M.A., 1985, The sources of formation of the intermediate water masses in the Mediterranean Sea, Acta Adriat., 26 (2), 191–201.
Said M.A., 1990, Horizontal circulation of the Eastern Mediterranean waters during winter and summer seasons, Acta Adriat., 31 (1/2), 5–21.
Said M.A., Eid F.M., 1994a, A quantitative analysis on the Egyptian Mediterranean water, Acta Oceanol. Sin., 13 (2), 203–212.
Said M.A., Eid F.M., 1994b, Circulation pattern of the Egyptian Mediterranean waters during winter and summer seasons, Bull. Nat. Inst. Oceanogr. & Fisheries, ARE.
Said M.A., Karam A.M., 1990, On the formation of the intermediate water masses off the Egyptian Mediterranean coast, Arch. Hydrobiol., 120 (1), 111–122.
Said M.A., Maiyza I.A., Hussain M.A., Radwan A.A., 2007, Characteristics of the Egyptian Mediterranean water masses during the cold and warm winters, Acta Adriat., 48 (2), 145–159.
Said M.A., Rajkovic B., 1996, A study of water circulation along the Egyptian Mediterranean coast using a three dimensional numerical model, Int. J. Environ. Stud., 50 (3–4), 223–235.
http://dx.doi.org/10.1080/00207239608711059
Sukhovey V. F., Said M.A., 1985, The thermal interaction of the Mediterranean with the atmosphere, J. Meteorol. Hydrol., 9, 64–74, (in Russian).
Wüst G., 1961, On the vertical circulation of the Mediterranean Sea, J. Geophys. Res., 66 (10), 3261–3271.
http://dx.doi.org/10.1029/JZ066i010p03261
Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland)
Oceanologia 2011, 53(1), 97-120
http://dx.doi.org/10.5697/oc.53-1.097
Zbigniew Pruszak*, Rafal Ostrowski, Jan Schönhofer
Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN),
Kościerska 7, PL-80-328 Gdańsk, Poland;
e-mail: zbig@ibwpan.gda.pl
*corresponding author
keywords:
field investigations, multi-bar shore, shoreline, dune toe, wave energy dissipation
Received 6 October 2010, revised 21 January 2011, accepted 24 January 2011.
Abstract
The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,
dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8.
It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likely
to happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain respective rates of 0.7 m day-1 and 0.4 m day-1.
Deep-water wave energy of about 50 kJ m-1 constitutes the boundary between shore accumulation and erosion.
References
Aagaard T., Greenwood B., 2008, Infragravity wave contribution to surf zone sediment transport – the role of advection, Mar. Geol., 251 (1–2), 1–14.
http://dx.doi.org/10.1016/j.margeo.2008.01.017
Baquerizo A., Losada M., 2008, Human interaction with large scale coastal morphological evolution. An assessment of the uncertainty, Coast. Eng., 55 (7–8), 569–580.
http://dx.doi.org/10.1016/j.coastaleng.2007.10.004
Bobykina V., Boldyrev V., 2008, Tendency in shore dynamics in the Kaliningrad Oblast according to five year monitoring information, Proc. Int. Conf. ‘Integrated management, sustainable development indicators, spatial planning and monitoring of the South-Eastern Baltic coastal regions’, Kaliningrad, 26–30 March, (CD, in Russian).
Boldyrev V., 2008, State of the sea bottom in the littoral zones as a principal indicator of the shore dynamics, Proc. Int. Conf. ‘Integrated management, sustainable development indicators, spatial planning and monitoring of the South-Eastern Baltic coastal regions’, Kaliningrad, 26–30 March, (CD, in Russian).
Coco G., Huntley D.A., O’Hare T. J., 1999, Beach cusp formation: analysis of a self-organisation model, Proc. Coastal Sediments ’99, Hauppauge, Long Island, 21–23 June, 2190–2205.
Coco G., Huntley D.A., O’Hare T. J., 2001, Regularity and randomness in the formation of beach cusps, Mar. Geol., 178 (1–4), 1–9.
http://dx.doi.org/10.1016/S0025-3227(01)00187-6
Dette H., Uliczka K., 1987, Prototype investigation on the time-dependent dune recession and beach erosion, Coastal Sediments Conf. Proc., New Orleans, 1430–1444.
Dubrawski R., Zawadzka E. (eds.), 2006, Future of protection of the Polish sea shores, Wyd. IM, Gdańsk, 302 pp., (in Polish).
Girjatowicz J., 2009, Monthly and seasonal characteristics of water level on the Polish coast of the Baltic Sea, Inż. Mor. Geotech. No. 6, 445–451, (in Polish).
Guillen J., Stive M. J. F., Capobianco M., 1999, Shoreline evolution of the Holland coast on a decadal scale, Earth Surf. Proc. Land., 24 (6), 517–536.
http://dx.doi.org/10.1002/(SICI)1096-9837(199906)24:6<517::AID-ESP974>3.0.CO;2-A
Hanson H., Larson M., 1987, Comparison of analytic and numerical solution of the one-line model of shoreline changes, Coastal Sediments Conf. Proc., New Orleans, 500–514.
Hobbs C., Milligan D., Hardaway C., 1999, Long-term trends and short-term variability in shoreline changes rates: South Virginia, Proc. Coastal Sediments ’99, Vol. 2, Hauppauge, Long Island, 21–23 June, 1268–1283.
Hsu T.-W., Ou S.-H., Wang S.-K., 1994, On the prediction of beach changes by a new 2-D empirical eigenfunction model, Coast. Eng., 23 (3–4), 255–270.
http://dx.doi.org/10.1016/0378-3839(94)90005-1
Komar P., 1998, Beach processes and sedimentation, Prentice Hall, Upper Saddle River, N.J., 544 pp.
Kroon A., Larson M., Möller I., Yokoki H., Różyński G., Cox J., Larraude P., 2008, Statistical analysis of coastal morphological data sets over seasonal to decadal time scales, Coast. Eng., 55 (7–8), 581–600.
http://dx.doi.org/10.1016/j.coastaleng.2007.11.006
Kuriyama Y., Ito Y., Yanagishima S., 2008, Medium-term variation of bar properties and their linkages with environmental factors at Hasaki, Japan, Mar. Geol., 248 (1–2), 1–10.
http://dx.doi.org/10.1016/j.margeo.2007.10.006
Maiti S., Bhattacharya A.K., 2009, Shoreline changes analysis and application to prediction: a remote sensing and statistics based approach, Mar. Geol., 257 (1–4), 11–23.
http://dx.doi.org/10.1016/j.margeo.2008.10.006
Miller J.K., Dean R.G., 2007, Shoreline variability via empirical orthogonal function analysis: Part I temporal and spatial characteristics, Coast. Eng., 54 (2), 111–131.
http://dx.doi.org/10.1016/j.coastaleng.2006.08.013
Pruszak Z., Różyński G., Szmytkiewicz M., Skaja M., 1999, Quasi seasonal morphological shore evolution response to variable wave climate, Proc. Coastal Sediments ’99, Vol. 2, Hauppauge, Long Island, 21–23 June, 1081–1093.
Pruszak Z., Różyński G., Szmytkiewicz M., Skaja M., 2007, Field observation of edge waves and beach cusps on the South Baltic Sea coast, J. Coastal Res., 23 (4), 846–860.
http://dx.doi.org/10.2112/04-0293.1
Pruszak Z., Szmytkiewicz P., Ostrowski R., Skaja M., Szmytkiewicz M., 2008, Shallow-water wave energy dissipation in a multi-bar coastal zone, Oceanologia, 50 (1), 43–58.
Pruszak Z., Zawadzka E., 2005, Vulnerability of Poland’s coast to sea-level rise, Coast. Eng. J., 47 (2–3), 131–155.
http://dx.doi.org/10.1142/S0578563405001197
Quartel S., Kroon A., Ruessink B.G., 2008, Seasonal accretion and erosion patterns of a microtidal sandy beach, Mar. Geol., 250 (1–2), 19–33.
http://dx.doi.org/10.1016/j.margeo.2007.11.003
Reeve D.E., Fleming C.A., 1997, A statistical-dynamical method for predicting long term coastal evolution, Coast. Eng., 30 (3–4), 259–280.
http://dx.doi.org/10.1016/S0378-3839(96)00048-8
Różyński G., 2003, Data-driven modelling of multiple longshore bars and their interactions, Coast. Eng., 48 (3), 151–170.
http://dx.doi.org/10.1016/S0378-3839(03)00024-3
Stive M. J. F., Aarninkhoff S.G. J., Hamm L., Hanson H., Larson M., Wijnberg K., Nicholls R., Capobianco M., 2002, Variability of shore and shoreline evolution, Coast. Eng., 47 (2), 211–235.
http://dx.doi.org/10.1016/S0378-3839(02)00126-6
120 Z. Pruszak, R. Ostrowski, J. Schönhofer Thornton E.B., MacMahan J., Sallanger A.H., 2007, Rip currents, mega-cusps and eroding dunes, Mar. Geol., 240 (1–4), 151–167.
http://dx.doi.org/10.1016/j.margeo.2007.02.018
Van Rijn L.C., 2009, Prediction of dune erosion due to storms, Coast. Eng., 56 (4), 441–457.
http://dx.doi.org/10.1016/j.coastaleng.2008.10.006
Wright L.D., Short A.D., 1984, Morphodynamic variability of surf zones and beaches: a synthesis, Mar. Geol., 56 (1–4), 94–118.
http://dx.doi.org/10.1016/0025-3227(84)90008-2
Occurrence and germination of dinoflagellate cysts in surface sediments from the Red Sea off the coasts of Saudi Arabia
Oceanologia 2011, 53(1), 121-136
http://dx.doi.org/10.5697/oc.53-1.121
Zakaria A. Mohamed1,2,*, Abdulrahman M. Al-Shehri2
1Department of Botany, Faculty of Science, Sohag University,
Sohag - 82524, Egypt
2Department of Biology, College of Science, King Khalid University,
Abha - 9019, Saudi Arabia;
e-mail: mzakaria_99@yahoo.com
*corresponding author
keywords:
cyst, dinoflagellates, Red Sea, Saudi Arabia, toxic species
Received 27 September 2010, revised 23 November 2010, accepted 30 November 2010.
Abstract
The distribution and abundance of dinoflagellate cyst assemblages were investigated in surface sediments from south-western Red sea coasts of Saudi Arabia
at six sites during March 2010. A total of 19 taxa of dinoflagellate cysts were identified from all sites. The sampling sites showed a similar cyst assemblage, but they
differed in total cyst abundance (3 to 4083 cysts g-1 dry weight). Cyst abundance was strongly correlated with sediment characteristics, the highest
numbers being recorded in sediments with large contents of organic carbon, silt and clay. Cyst assemblages were dominated by cysts of potentially toxic
species, including Cochlodinium polykrikos, Prorocentrum minimum, Dinophysis acuminata, Alexandrium catenella and Scrippsiella
trochoidea. Most cysts germinated successfully at different rates at 15 and 25°C. This study suggests that surface sediments from all Saudi Red Sea
coasts should be monitored for the presence of dinoflagellate cysts to give ample warning of the presence and abundance of toxic species in a given area.
References
Alves-de-Souza C., Varela D., Navarrete F., Fernández P., Leal P., 2008, Distribution, abundance and diversity of modern dinoflagellate cyst assemblages from southern Chile (43-54°S), Bot. Mar., 51 (5), 399-410.
http://dx.doi.org/10.1515/BOT.2008.052
Anderson D.M., 1997, Bloom dynamics of toxic Alexandrium species in the northeastern U.S., Limnol. Oceanogr., 42 (5/2), 1009-1022.
Anderson D.M., Fukuyo Y., Matsuoka K., 1995, Cyst methodologies, [in:] Manual on harmful marine microalgae, IOC Manuals and Guides No. 33, G.M. Hallegraeff, D.M. Anderson & A.D. Cembella (eds.), UNESCO Publ., Paris, 229-245.
Anderson D.M., Stock C.A., Keafer B.A., Nelson A.B., Thompson B., McGillicuddy D. J., Keller M., Matrai P.A., Martin J., 2005, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep-Sea Res. Pt. II, 52 (19.21), 2522-2542.
Bravo I., Garcés E., Diogène J., Fraga S., Sampedro N., Figueroa R. I., 2006, Resting cysts of the toxigenic dinoflagellate genus Alexandrium in recent sediments from the Western Mediterranean coast, including first description of cysts of A. kutnerae and A. peruvianum, Eur. J. Phycol., 41 (3), 293-302.
http://dx.doi.org/10.1080/09670260600810360
Dale B., 1978, Peridinium faeroense, Palynology, 2 (1), 187-193.
http://dx.doi.org/10.1080/01916122.1978.9989173
Dale B., 1983, Dinoflagellate resting cysts: "benthic plankton", [in:] Survival strategies of the algae, G.A. Fryxell (ed.), Cambridge Univ. Press, Cambridge, 69-136.
Dale B., Fjellså A., 1994, Dinoflagellate cysts as paleoproductivity indicators: state of the art, potential and limits, [in:] Carbon cycling in the glacial ocean: constraints in the ocean's role in global change, R. Zahn, T. F. Pedersen, M.A. Kaminski & L. Laberie (eds.), Springer-Verlag, Berlin, 521-537.
de Vernal A., Marret F., 2007, Organic-walled dinoflagellates: tracers of sea-surface conditions, [in:] Proxies in late cenozoic paleoceanography, C. Hillaire-Marcel & A. de Vernal (eds.), Elsevier, Amsterdam, 371-408.
el Wakeel S.K., Riley J.P., 1957, The determination of organic carbon in marine muds, J. Cons. Int. Explor. Mer., 22 (2), 180-183.
Fahnenstiel G., Hong Y., Millie D., Doblin M., Johengen T., Reid D., 2009, Marine dinoflagellate cysts in the ballast tank sediments of ships entering the Laurentian Great Lakes, Verh. Int. Verein. Limnol., 30 (7), 1035-1038.
Fensome R.A., Williams G. L., 2004, Scotian Margin PalyAtlas: ver. 1., Geological Survey of Canada, open file 4677.
Figueroa R. I., Bravo I., Garcé E., 2005, Effects of nutritional factors and different parental crosses on the encystment and excystment of Alexandrium catenella (Dinophyceae) in culture, Phycologia, 44 (6), 658-670.
http://dx.doi.org/10.2216/0031-8884(2005)44[658:EONFAD]2.0.CO;2
Figueroa R. I., Garcés E., Bravo I., 2007, Comparative study of the life cycles of Alexandrium tamutum and Alexandrium minutum (Gonyaulacales, Dinophyceae) in culture, J. Phycol., 43 (5), 1039-1053.
http://dx.doi.org/10.1111/j.1529-8817.2007.00393.x
Folk R. L., Ward W.C., 1957, Brazos river bar: a study in the significance of grain size parameters, J. Sediment. Res., 27 (1), 3-26.
Fujii R., Matsuoka K., 2006, Seasonal change of dinoflagellates cyst flux collected in a sediment trap in Omura Bay, West Japan, J. Plankton Res., 28 (2), 131-147.
http://dx.doi.org/10.1093/plankt/fbi106
Garcés E., Bravo I., Vila M., Figueroa R. I., Maso M., Sampedro N., 2004, Relationship between vegetative cells and cyst production during Alexandrium minutum bloom in Arenys de Mar harbour (NW Mediterranean), J. Plankton Res., 26 (6), 637-645.
Genovesi B., Mouillot D., Vaquer A., Laabir M., Pastoureaud A., 2007, Towards an optimal sampling strategy for Alexandrium catenella (Dinophyceae) benthic resting cysts, Harmful Algae, 6 (6), 837-848.
http://dx.doi.org/10.1016/j.hal.2007.04.007
Godhe A., Karunasagar I., Karunasagar I., Karlson B., 2000, Dinoflagellate cysts in recent marine sediments from SW India, Bot. Mar., 43 (1), 39-48.
http://dx.doi.org/10.1515/BOT.2000.004
134 Z. A. Mohamed, A. M. Al-Shehri Godhe A., McQuoid M.R., 2003, Influence of benthic and pelagic environmental factors on the distribution of dinoflagellate cysts in surface sediments along the Swedish west coast, Aquat. Microb. Ecol., 32 (2), 185.201.
Guillard R.R. L., 1975, Culture of phytoplankton for feeding marine invertebrates, [in:] Culture of marine invertebrates animals, W. L. Smith & M.H. Chanley (eds.), Plenum Press, New York, 26-60.
Hallegraeff G.M., 1998, Transport of toxic dinoflagellates via ships' ballast water: bioeconomics risk assessment and efficacy of possible ballast water management strategies, Mar. Ecol.-Prog. Ser., 168, 297-309.
http://dx.doi.org/10.3354/meps168297
Hallegraeff G.M., Bolch C. J., 1992, Transport of diatom and dinoflagellate resting spores in ships' ballast water: implications for plankton biogeography and aquaculture, J. Plankton Res., 14 (8), 1067-1084.
http://dx.doi.org/10.1093/plankt/14.8.1067
Harland R., Nordberg K., Filipsson H. L., 2006, Dinoflagellate cysts and hydrographical change in Gullmar Fjord, west coast of Sweden, Sci. Total Environ., 355 (1.3), 204-231.
Hwang J.-D., Kang Y.Q., Suh Y. S., Cho K.D., Park S.E., Jang L.H., Lee N.K., 2002, Estimation of the range of the suspended solid from the Nakdong River using satellite imageries and numerical model, Korean Assoc. Geogr. Inf. Stud., 5 (2), 25-33.
Ishikawa A., Taniguchi A., 1996, Contribution of benthic cysts to the population dynamics of Scrippsiella spp. (Dinophyceae) in Ongawa Bay, northeast Japan, Mar. Ecol.-Prog. Ser., 140, 169-178.
http://dx.doi.org/10.3354/meps140169
Ishikawa A., Taniguchi A., 1997, In situ germination patterns of cysts, and bloom formation of some armored dinoflagellates in Onagawa Bay, north-east Japan, J. Plankton Res., 19 (11), 1783-1791.
http://dx.doi.org/10.1093/plankt/19.11.1783
Kremp A., Heiskanen A.-S., 1999, Sexuality and cyst formation of the spring-bloom dinoflagellate Scrippsiella hangoei in the coastal northern Baltic Sea, Mar. Biol., 134 (4), 771-777.
http://dx.doi.org/10.1007/s002270050594
Lewis J., Harris A. S.D., Jones K. J., Edmonds R. L., 1999, Long term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples, J. Plankton Res., 21 (2), 343-354.
http://dx.doi.org/10.1093/plankt/21.2.343
Marret F., Zonneveld K.A. F., 2003, Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobot. Palynol., 125 (1), 1-200.
Matsuoka K., Fukuyo Y., 2003, Taxonomy of cysts, [in:] Manual on harmful marine microalgae, G.M. Hallegraeff, D.M. Anderson & A.D. Cembella (eds.), Monographs on Oceanographic Methodology, Vol. 11, UNESCO Publ., Paris, 563-592.
Matsuoka K., Joyce L.B., Kotani Y., Matsuyama Y., 2003, Modern dinoflagellate cysts in hypertrophic coastal waters of Tokyo Bay, Japan, J. Plankton Res., 25 (12), 1461.1470.
Matsuoka K., Takeuchi T., 1995, Productivity of vegetative cells, planozygates and calcified cysts of dinoflagellate Alexandrium catenella (Whedon et Kofoid) Balech based on the field observation, Fossils, 59, 31-46.
Meksumpun S., Meksumpun C., Montani S., 2005, Effects of temperature on the germination of marine phytoflagellate cysts, Kasetsart J., 39 (1), 149-158.
Mohamed Z.A., Mesaad I., 2007, First report on Noctiluca scintillans blooms in the Red Sea off the coasts of Saudi Arabia: consequences of eutrophication, Oceanologia, 49 (3), 337-351.
Nehring S., 1993, Mechanisms for recurrent nuisance algal blooms in coastal zones: resting cyst formation as life-strategy of dinoflagellates, Proc. Int. Coastal Congr., ICC-Kiel, 1992, H. Sterr, J. Hofstade & H.-P. Plag (eds.), Peter Lang, Frankfurt, 454-467.
Olli K., Trunov K., 2010, Abundance and distribution of vernal bloom dinoflagellate cysts in the Gulf of Finland and Gulf of Riga (the Baltic Sea), Deep-Sea Res. Pt. II, 57 (3.4), 235-242.
Orlova T.Y., Morozova T.V., Gribble K.E., Kulis D.M., Anderson D.M., 2004, Dinoflagellate cysts in recent marine sediments from the east coast of Russia, Bot. Mar., 47 (3), 184-201.
http://dx.doi.org/10.1515/BOT.2004.019
Oshima Y., Bolch C. J., Hallegraeff G.M., 1992, Toxin composition of resting cysts of Alexandrium tamarense (Dinophyceae), Toxicon, 30 (12), 1539-1544.
http://dx.doi.org/10.1016/0041-0101(92)90025-Z
Oshima Y., Singh H.T., Fukuyo Y., Yasumoto T., 1982, Identification and toxicity of the resting cysts of Protogonyaulax found in Ofunato Bay, B. Jpn. Soc. Sci. Fish., 48 (9), 1303-1305.
Pati A.C., Belmonte G., Ceccherelli V.U., Boero F., 1999, The inactive temporary component: an unexplored fraction of meiobenthos, Mar. Biol., 134 (3), 419-427.
http://dx.doi.org/10.1007/s002270050558
Perez C.C., Roy S., Levasseur M., Anderson D.M., 1998, Control of germination of Alexandrium tamarense (Dinophyceae) cysts from the lower St. Lawrence estuary, (Canada), J. Phycol., 34 (2), 242-249.
http://dx.doi.org/10.1046/j.1529-8817.1998.340242.x
Persson A., Godhe A., Karlson B., 2000, Dinoflagellate cysts in recent sediments from the west coast of Sweden, Bot. Mar., 43 (1), 69-79.
http://dx.doi.org/10.1515/BOT.2000.006
Pfiester L.A., Anderson D.M., 1987, Dinoflagellate life cycles and their environmental control, [in:] The biology of dinoflagellates, F. J.R. Taylor (ed.), Blackwell Sci. Publ. Ltd., Oxford, 611-648.
Pitcher G.C., Joyce L.B., 2009, Dinoflagellate cyst production on the southern Namaqua shelf of the Benguela upwelling system, J. Plankton Res., 31 (8), 865-875.
http://dx.doi.org/10.1093/plankt/fbp040
Pospelova V., Chmura G. L., Boothman W. S., Latimer J. S., 2002, Dinoflagellate cyst records and human disturbance in two neighboring estuaries, New Bedford Harbor and Apponagansett Bay, Massachusetts (USA), Sci. Total Environ., 298 (1.3), 81-102.
Radi T., Pospelova V., de Vernal A., Barrie J.V., 2007, Dinoflagellate cysts as indicators of water quality and productivity in British Columbia estuarine environments, Mar. Micropaleontol., 62 (4), 269-297.
http://dx.doi.org/10.1016/j.marmicro.2006.09.002
Rochon A., de Vernal A., Turon J.-L., Matthiessen J., Head M. J., 1999, Distribution of recent dinoflagellate cysts in surface sediments from the North 136 Z. A. Mohamed, A. M. Al-Shehri Atlantic Ocean and adjacent seas in relation to sea-surface parameters, Am. Assoc. Stratigr. Palynol. Contrib. Ser., 35, 1-146.
Schwinghamer P., Hawryluk M., Powell C., MacKenzie C.H., 1994, Resuspended hypnozygotes of Alexandrium fundyense associated with winter occurrence of PSP in inshore Newfoundland waters, Aquaculture, 122 (2.3), 171-179.
Shannon C.E., Weaver W., 1949, The mathematical theory of communication, Univ. Illinois Press, Urbana, IL.
Shin H.H., Yoon Y.H., Matsuoka K., 2007, Modern dinoflagellate cysts distribution off the eastern part of Geoje Island, Korea, Ocean Sci. J., 42 (1), 31-39.
http://dx.doi.org/10.1007/BF03020908
Sprangers M., Dammers N., Brinkhuis H., van Weering T.C.E., Lotter A. F., 2004, Modern organic-walled dinoflagellate cyst distribution offshore NW Iberia; tracing the upwelling system, Rev. Palaeobot. Palyno., 128 (1.2), 97.106.
Utermöl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton-methodik, Mitt. Int. Ver. Limnol., 9 (1), 1-38.
Uzar S., Aydin H., Minareci E., 2010, Dinoflagellate cyst assemblages in the surface sediments from Izmir Bbay, Aegean Sea, Eastern Mediterranean, Sci. Res. Essays., 5 (3), 285-295.
Wang Z., Matsuoka K., Qi Y., Chen J., 2004, Dinoflagellate cysts in recent sediments from Chinese coastal waters, Mar. Ecol., 25 (4), 289-311.
http://dx.doi.org/10.1111/j.1439-0485.2004.00035.x
Wang Z.-H., Qi Y.-Z., Yang Y.-F., 2007, Cyst formation: an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom, J. Plankton Res., 29 (2), 209-218.
http://dx.doi.org/10.1093/plankt/fbm008
Development and growth of Temora longicornis: numerical simulations using laboratory culture data
Oceanologia 2011, 53(1), 137-161
http://dx.doi.org/10.5697/oc.53-1.137
Lidia Dzierzbicka-Głowacka1,*, Anna Lemieszek2, Iwona Maria Żmijewska2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
2Institute of Oceanography, University of Gdańsk
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland
keywords:
growth rate, development time, numerical simulations, Temora longicornis
Received 16 August 2010, revised 4 February 2011, accepted 10 February 2011.
This research was carried out with the support of a grant from the Polish State Committee of Scientific Research (No NN306 353239).
Abstract
Quantitative expressions are presented to describe the effects of temperature and food concentration on stage duration and growth
rate of Temora longicornis for each of the model stage groups (N1-N6 - naupliar stages, C1, C2, C3, C4, C5 - the five copepodid stages).
The calculations were made on the basis of experimental data from the literature for Temora longicornis from the south-eastern
and the southern North Sea. Relationships were obtained between the growth parameters and temperature for the 5-10°C temperature
range and food concentrations from 25 mgC m-3 to excess. Also computed was the total mean development time as a function of
the above-mentioned parameters, temperature and food availability.
The simulations computed here are similar to the experimental results. The growth rates for successive stages were obtained
according to the correction of the "Moult Rate" method, which allows the use of mean weights and stage durations. The calculations also suggest
that three complete generations of T. longicornis from the Gdańsk Deep (the southern Baltic Sea) can develop during a single
year.
References
Atkinson A., 1995, Omnivory and feeding selectivity in five copepod species during spring in the Bellingshausen Sea, Antarctica, ICES J. Mar. Sci., 52 (3-4), 385-396.
http://dx.doi.org/10.1016/1054-3139(95)80054-9
Campbell R.G., Wagner M.M., Teegarden G. J., Boudreau C.A., Durbin E.G., 2001, Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory, Mar. Ecol.-Prog. Ser., 221, 161-183.
http://dx.doi.org/10.3354/meps221161
Dzierzbicka-Głowacka L., 2004, Growth and development of copepodite stages of Pseudocalanus spp., J. Plankton Res., 26 (1), 49-60.
http://dx.doi.org/10.1093/plankt/fbh002
Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf, J. Marine Syst., 53 (1-4), 19-36.
Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650.
Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010b, Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621-648.
Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M. I., 2009a, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time, Oceanologia, 51 (2), 165-184.
Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M. I., 2009b, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production, Oceanologia, 51 (2), 185-201.
Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010a, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (7), 2247-2259.
http://dx.doi.org/10.5194/bg-7-2247-2010
Fennel W., 2001, Modeling of copepods with links to circulation model, J. Plankton Res., 23 (11), 1217-1232.
http://dx.doi.org/10.1093/plankt/23.11.1217
Fernández F., 1979, Nutrition studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida), Mar. Biol., 53 (2), 131-147.
http://dx.doi.org/10.1007/BF00389185
Fransz H.G., Gonzalez S.R., Klein Breteler W.C.M., 1989, Fecundity as a factor controlling the seasonal population cycle in Temora longicornis (Copepoda, Calanoida), [in:] Reproduction, genetics and distributions of marine organisms, J. S. Ryland & P.A. Tyler (eds.), 23rd European Marine Biology Symposium, School of Biological Sciences, Univ. Wales, Swansea, 5-9 September 1988, 23, 83-90.
Gruzov L.H., 1985, Methods of modeling the age dependent ration changes of plankton crustaceans feeding on variable quality of food, Int. Rev. Ges. Hydrobio., 70 (5), 633-655.
http://dx.doi.org/10.1002/iroh.19850700503
Halsband-Lenk C., Hirche H., Carlotti J. F., 2002, Temperature impact on reproduction and development of congener copepod populations, J. Exp. Mar. Biol. Ecol., 271 (2), 121-153.
http://dx.doi.org/10.1016/S0022-0981(02)00025-4
Harris R.P., Paffenhöfer G.A., 1976a, Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis M¨uller, J. Mar. Biol. Assoc. UK, 56 (3), 675-690.
http://dx.doi.org/10.1017/S0025315400020725
Harris R.P., Paffenhöfer G.A., 1976b, The effect of food concentration on cumulative ingestion and growth efficiency of two small marine planktonic copepods, J. Mar. Biol. Assoc. UK, 56 (4), 875-888.
http://dx.doi.org/10.1017/S0025315400020920
Hay S. J., Evans G.T., Gamble J.C., 1988, Birth, growth and death rates for enclosed populations of calanoid copepods, J. Plankton Res., 10 (3), 431-454.
http://dx.doi.org/10.1093/plankt/10.3.431
Hirst A.G., Bunker A. J., 2003, Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight, Limnol. Oceanogr., 48 (5), 1988-2010.
http://dx.doi.org/10.4319/lo.2003.48.5.1988
Hirst A.G., Kiorbe T., 2002, Mortality of marine planktonic copepods: global rates and patterns, Mar. Ecol.-Prog. Ser., 230, 195-209.
http://dx.doi.org/10.3354/meps230195
Hirst A.G., Peterson W.T., Rothery P., 2005, Errors in juvenile copepod growth rate estimates are widespread: problems with the Moult Rate method, Mar. Ecol.-Prog. Ser., 296, 263-279.
http://dx.doi.org/10.3354/meps296263
Houde S.E.L., Roman M.R., 1987, Effects of food quality on the functional ingestion response of the copepod Acartia tonsa, Mar. Ecol.-Prog. Ser., 40, 69-77.
http://dx.doi.org/10.3354/meps040069
Huntley M., Sykes P., Rohan S., Marin V., 1986, Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: Mechanisms, occurrence, significance, Mar. Ecol.-Prog. Ser., 28, 105-120.
http://dx.doi.org/10.3354/meps028105
Klein Breteler W.C.M., 1980, Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates, Mar. Ecol.-Prog. Ser., 2, 229-233.
http://dx.doi.org/10.3354/meps002229
Klein Breteler W.C.M., Fransz H.G., Gonzalez S.R., 1982, Growth and development of four calanoid copepod species under experimental and natural conditions, Neth. J. Sea Res., 16, 195-207.
http://dx.doi.org/10.1016/0077-7579(82)90030-8
Klein Breteler W.C.M., Gonzalez S.R., 1986, Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions, Mar. Ecol.-Prog. Ser., 119, 99-110.
http://dx.doi.org/10.3354/meps119099
Klein Breteler W.C.M., Schogt N., Gonzalez S.R., 1990, On the role of food quality and development of life stages, and genetic change of body size during cultivation of pelagic copepods, J. Exp. Mar. Biol. Ecol., 135 (3), 177-189.
http://dx.doi.org/10.1016/0022-0981(90)90117-U
Leandro S.M., Queiroga H., Rodriguez-Gra~na L., Tiselius P., 2006a, Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi Copepoda: Calanoida), Mar. Ecol.-Prog. Ser., 322, 189-197.
http://dx.doi.org/10.3354/meps322189
Leandro S.M., Tiselius P., Queiroga H., 2006b, Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions, Mar. Biol., 150, 121-129.
http://dx.doi.org/10.1007/s00227-006-0336-y
Martens P., 1980, Beiträge zum Mesozooplankton des Nordsylter Wattenmeeres, Helgol. Wiss. Meeresunters., 34, 41-53.
http://dx.doi.org/10.1007/BF01983540
McLaren I.A., 1963, Effects of temperature on growth of zooplankton and the adaptive value of vertical migration, J. Fish. Res. Board Can., 20, 685-727.
http://dx.doi.org/10.1139/f63-046
McLaren I.A., 1965, Some relationships between temperature and egg size, body size, development rate, and fecundity of the copepod Pseudocalanus, Limnol. Oceanogr., 10 (4), 528-538.
http://dx.doi.org/10.4319/lo.1965.10.4.0528
McLaren I.A., 1978, Generation lengths of some temperate marine copepods: estimation, prediction and implication, J. Fish. Res. Board Can., 35, 1330-1342.
http://dx.doi.org/10.1139/f78-208
McLaren I.A., Corkett C. J., Zillioux E. J., 1969, Temperature adaptations of copepod eggs from the Arctic to the tropics, Biol. Bull., 137 (3), 486-493.
http://dx.doi.org/10.2307/1540170
Moll A., Stegert Ch., 2007, Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea, J. Marine Syst., 64 (1-4), 35-46.
http://dx.doi.org/10.1016/j.jmarsys.2006.03.015
Person-Le Ruyet J., 1975, Elevage de copépodes calanoides. Biologie et dynamique des populations: premiers résultats, Ann. Inst. Océanogr. Paris, 51, 203-221.
Peterson W.T., 2001, Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance, Hydrobiologia, 453-454 (1), 91-105.
http://dx.doi.org/10.1023/A:1013111832700
Stegert Ch., Kreus M., Carlotii F., Moll A., 2007, Parameterisation of a zooplankton population model for Pseudocalanus elongatus using stage durations from laboratory experiments, Ecol. Model., 206 (3-4), 213-230.
http://dx.doi.org/10.1016/j.ecolmodel.2007.04.012
Twombly S., Burns C.W., 1996, Effects of food quality on individual growth and development in the freshwater copepod Boeckella triarticulata, J. Plankton Res., 18 (11), 2179-2196.
http://dx.doi.org/10.1093/plankt/18.11.2179
Wiktor K., 1990, Biomasa zooplanktonu w przybrzeżnych wodach Zatoki Gdańskiej, Oceanografia, 12, 109-134.
Załachowski W., Szypuła J., Krzykawski S., Krzykawska I., 1975, Feeding of some commercial fishes in the southern region of the Baltic Sea in 1971 and 1972, Pol. Arch. Hydrobiol., 22, 429-448.
New and "visiting" fish species collected off the western coast of Poland (Baltic Sea) in 2007-2008 with a description of their parasite fauna
Oceanologia 2011, 53(1), 163-179
http://dx.doi.org/10.5697/oc.53-1.163
Beata Więcaszek1,*, Ewa Sobecka2, Stanisław Dudko3, Sławomir Keszka1
1Department of Fish Systematics, West Pomeranian University of Technology,
Kazimierza Królewicza 4, PL-71-550 Szczecin, Poland;
e-mail: bwiecaszek@zut.edu.pl
*corresponding author
2Department of Fish Diseases, West Pomeranian University of Technology,
Kazimierza Królewicza 4, PL-71-550 Szczecin, Poland
3Department of Fishing Techniques, West Pomeranian University of Technology,
Kazimierza Królewicza 4, PL-71-550 Szczecin, Poland
keywords:
Mullus surmuletus, Chelidonichthys lucerna, Trachurus trachurus, Chelon labrosus, Pomeranian Bay, Szczecin Lagoon, Lake Dąbie, parasite fauna
Received 23 August 2010, revised 7 December 2010, accepted 24 January 2011.
Abstract
The first occurrence of striped red mullet Mullus surmuletus in the Pomeranian Bay (in 2007) and the occurrence of three very rarely noted species (tub gurnard Chelidonichthys lucerna, Atlantic horse mackerel Trachurus trachurus, thicklip grey mullet Chelon labrosus) collected in 2007-2008
in the Pomeranian Bay, Szczecin Lagoon and Lake Dąbie are reported. Their expansion is probably due to increased sea temperatures resulting
from climate change, as well as the inflow of saline water. The "visitors" hosted eight pathogens from four taxonomic groups: Protozoa,
Nematoda, Acanthocephala and Mollusca. Nematodes, the most numerous ones, were found in three host species. All the parasite species were
new for the hosts examined; only the larvae of the acanthocephalan Corynosoma strumosum had already been recorded in one of the hosts
(Chelidonichthys lucerna). The stomachs of almost all the fish examined were empty, but the species composition of the parasite fauna found showed that the fish must have ingested some food in the Pomeranian Bay.
References
Aro E., 2000, The spatial and temporal distribution patterns of cod (Gadus morhua callarias L.) in the Baltic Sea and their dependence on environmental variability – implications for fishery management, Acad. Diss., Dept. Ecol. Syst., Univ. Helsinki, 75 pp.
Bacevičius E., Karalius S., 2005, A survey of the data on swordfish (Xiphias gladius Linnaeus, 1758) detected in the southern and south-eastern part of the Baltic Sea, Bull. Sea Fish. Inst., 2 (165), 63–73.
Beare D. J., Burns F., Peach K., Reid D.G., 2004, Red mullet migration into the northern North Sea during late winter, J. Sea Res., 53 (3), 205–212.
http://dx.doi.org/10.1016/j.seares.2004.06.003
Blaber S. J.M., 1976, The food and feeding ecology of Mugilidae in the St. Lucia lake systems, Biol. J. Linn. Soc., 8 (3), 267–277.
http://dx.doi.org/10.1111/j.1095-8312.1976.tb00249.x
Czerniejewski P., Keszka S., Rybczyk A., 2008, Chelon labrosus (Risso, 1827) – the first record from Lake Dąbie (Poland), Oceanologia, 50 (2), 281–284.
Draganik B., 1996, Obiektywność i przydatność kryterium rzadkości w decyzjach dotyczących ochrony zagrożonych gatunków ryb, Zool. Pol., 41 (Suppl.), 17–22.
Ehrich S., Kloppmann M.H. F., Sell A. F., Bötcher U., 2006, Distribution and assemblages of fish species in the German waters of North and Baltic Seas and potential impact of wind parks, [in:] Offshore wind energy. Research on environmental impacts, J. Köller, J. Köppel & W. Peters (eds.), Springer, Berlin, 149–180.
Elmgren R., 1984, Trophic dynamics in the enclosed, brackish Baltic Sea, Rapp. P.-v. Réun., Cons. Int. Explor. Mer, 183, 152–169.
Elmgren R., Hill C., 1997, Ecosystem function at low biodiversity: the Baltic example, [in:] Marine biodiversity: patterns and processes, R. F.G. Ormond, J.G. Gage & M.V. Angels (eds.), Univ. Press, Cambridge, 319–336.
Eryilmaz L., Meriç N., 2005, Some biological characteristics of the Tub Gurnard, Chelidonichthys lucernus (Linnaeus, 1758) in the Sea of Marmara, Turk. J. Vet. Anim. Sci., 29 (2), 367–374.
Grabda-Kazubska B., Okulewicz A., 2005, Pasożyty ryb Polski. Nematoda, PTP, Warszawa, 168 pp.
Grygiel W., 2009, Niektóre obce i rzadkie gatunki ryb w polskich połowach na Bałtyku, Wiad. Ryb., MIR, 3–4 (168), 11–14.
Grygiel W., Trella K., 2007, Appearance of the ‘visiting’ fish species in the Polish research catches conducted in the southern Baltic (autumn–winter 1976–2004), ICES CM 2007/E:06, 1–19.
HELCOM, 2007, HELCOM Red List of threatened and declining species of lampreys and fish of the Baltic Sea, Baltic Sea Environ. Proc. No. 109, 40 pp.
Hulme M., Jenkins G. J., Lu X., Turnpenny J.R., Mitchell T.D., Jones R.G., Lowe J., Murphy J.M., Hassell D., Boorman P., McDonald R., Hill S., 2002 Climate change scenarios for the United Kingdom: The UKCIP02 scientific report, Tyndall Centr. Climate Change Res., School Environ. Sci., Univ. East Anglia, Norwich, 120 pp.
Kalogirou S., Corsini-Foka M., Sioulas A., Wennhage H., Phil L., 2010, Diversity, structure and function of fish assemblages associated with Posidonia oceanica beds in an area of the eastern Mediterranean Sea and the role of non-indigenous species, J. Fish Biol., 77 (10), 2338–2357, doi:10.1111./j.1095-8649.2010.02817.x.
Krzykawski S., Więcaszek B., Keszka S., 2001, The taxonomic review of representatives of the extremely rare species in Polish waters collected within 1993–1999, Folia Univ. Agric. Stetin. Piscaria, 218 (28), 53–62.
Lampart-Kałużniacka M., Heese T., Sokalska A., Arciszewski M., 2007, Obce gatunki ryb w Bałtyku – plaga czy sygnał zmian w Bałtyku?, Confer. ‘Ichthyology in the past and present time’, 19–20.04.2007, Olsztyn, 32 pp., (in Polish, with English summary).
Lehmann A., Krauss W., Hinrichsen H., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54 (3), 299–316.
http://dx.doi.org/10.1034/j.1600-0870.2002.00289.x
Lom J., 1995, Trichodinidae and other ciliates (Phylum Ciliophora), [in:] Fish diseases and disorders, P.T.K. Woo (ed.), CAB Int., Wallingford, 229–263.
MacKenzie K., Campbell N., Mattiucci S., Ramos P., Pinto A. L., Abaunza P., 2008, Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus L., Fish. Res., 89 (2), 136–145.
http://dx.doi.org/10.1016/j.fishres.2007.09.031
Matthäus W., Nehring D., Feistel R., Nausch G., Mohrholz V., Lass H.U., 2008, The inflow of highly saline water into the Baltic Sea, [in:] State and evolution of the Baltic Sea, 1952–2005. A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, 265–309.
Mohr H., 1988, Zur Biologie und fischereilichen Bedeutung der Meer¨asche an der deutschen Nord- und Osteseeküste, Protok. Fischereitech., Inst. Fangtech., Hamburg.
Moravec F., 1994, Parasitic nematodes of freshwater fishes of Europe, Kluwer Acad. Publ., Dordrecht, 473 pp.
Moravec F., 1998, Nematodes of freshwater fishes of the neotropical region, Academia, Praha, 464 pp.
Muller Y., 2004, Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire, Comm. Région. Biol., Rég. Nord Pas-de-Calais, France, 307 pp.
Nausch G., Feistel R., Lass H.-U., Nagel K., Siegel H., 2007, Hydrographisch-chemische Zustandseinschätzung der Ostsee 2006, Meereswiss. Ber., 70, 2–91.
Nausch G., Feistel R., Umlauf L., Nagel K., Siegel H., 2008, Hydrographisch-chemische Zustandseinschätzung der Ostsee 2007, Meereswiss. Ber., 72, 1–93.
Nehring S., 2002, Biological invasions into German waters: an evaluation of the importance of different human-mediated vectors for non-indigenous macrozoobenthic species, [in:] Invasive aquatic species of Europe: distributions, impact and management, E. Lepp¨akoski, S. Golasch & S. Olenin (eds.), Kluwer Acad. Publ., Dordrecht, 373–383.
Piatkowski U., Schaber M., 2007, Letter of intent – BONUS; the Baltic Sea Chelon labrosus: Origin, status and distribution, [BACHELOR Project], IFM-GEOMAR, Kiel.
Pilecka-Rapacz M., Sobecka E., 2004, Parasites of young Baltic cod, Gadus morhua callarias L. in the Gulf of Puck, Acta Ichthyol. Piscat., 34 (2), 235–240.
Pinnegar J.K., Engelhard G., Daskalov G.M., Dulvy N.K., 2008, Report of WP1. Chapter 12 – Changes in the distribution of fish, RECLAIM – REsolving CLimAtic IMpacts on Fish Stocks, 044133 (SSP8), 1–12.
Rohde K., 2005, Marine parasitology, CSIRO Publ., Callingwood, 592 pp.
Sanmartin Duran M. L., Quinteiro P., Ubeira F.M., 1989, Nematode parasites of commercially important fish in NW Spain, Dis. Aquat. Organ., 7, 75–77.
http://dx.doi.org/10.3354/dao007075
Skóra K.E., 1996, Nowe i rzadkie gatunki ryb w rejonie Zatoki Gdańskiej, Zool. Poloniae, 41 (Suppl.), 113–130.
Skóra K.E., 2000, Zmiany w ichtiofaunie Zatoki Gdańskiej i Puckiej na tle zmian wybranych elementów ekosystemu, R. Helski I, 115–146.
Skóra K.E., 2007, Cudowna barwena, Stac. Mor., Inst. Oceanol. Uniw. Gdańsk.,
http://hel.univ.gda.pl/aktu/2007/barwena.htm.
Sobecka E., Słomińska M., 2007, Species richness, diversity and specificity of the parasites of bream Abramis brama (L.) and perch Perca fluviatilis L. in the estuary of the Odra River, Poland, Helminthologia, 44 (4), 188–192.
http://dx.doi.org/10.2478/s11687-007-0030-8
Turan C., 2006, Phylogenetic relationships of Mediterranean Mullidae species (Perciformes) inferred from genetic and morphologic data, Sci. Mar., 70 (2), 311–318.
Uiblein F., 2007, Goatfishes (Mullidae) as indicators in tropical and temperate coastal habitat monitoring and management, Mar. Biol. Res., 3 (5), 275–288, doi:10.1080/17451000701687129.
http://dx.doi.org/10.1080/17451000701687129
Uiblein F., Heemstra P.C., 2010, A taxonomic review of the Western Indian Ocean goatfishes of the genus Upeneus (Family Mullidae), with the description of four new species, Smithiana Bull, 11, 35–71.
Uiblein F., Kohler C., Tian M.C., 1998, Quantitative examination of morphological variability among goatfishes of the genus Upeneus from the Malayan Province (Pisces: Perciformes: Mullidae), Senck. Marit., 28, 123–132.
http://dx.doi.org/10.1007/BF03043143
Whitehead P. J.P., Bauchot M.-L., Hureau J.-C., Nielsen J., Tortonese E., 1986, Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 2, UNESCO, Paris, 517–1007.
Wülker G., Schuurmans Stekhoven Jr. J.H., 1933, Acanthocephala. The fauna of the North Sea and Baltic, 24 (6.e). Akad. Verlagsgesell., Leipzig, 64 pp.
Communications
Changes in levels of infection with Schistocephalus solidus (Müller 1776) of the three-spined stickleback Gasterosteus aculeatus (Actinopterygii: Gasterosteidae) from the Gdynia Marina
Oceanologia 2011, 53(1), 181-187
http://dx.doi.org/10.5697/oc.53-1.181
Jolanta Morozińska-Gogol
Department of Aquatic Ecology, Pomeranian University,
Arciszewskiego 22B, PL-76-200 Słupsk, Poland;
e-mail: morgo@onet.eu
keywords:
parasite, Schistocephalus solidus, three-spined stickleback, Gdynia Marina, Gulf of Gdańsk
Received 19 April 2010, revised 17 December 2010, accepted 11 January 2011.
Abstract
This paper analyses the changes in the level of infection with the freshwater parasite Schistocephalus solidus of the three-spined
stickleback from the Gdynia Marina. Environmental factors such as salinity, pollution and eutrophication or the presence
of other species affect the transmission of parasites. Infection indices have been increasing since the 1990s. Differences in
the infection level of morphological forms were also found: this may be due to their environmental preferences.
Andrulewicz E., Witek Z., 2002, Anthropogenic pressure and environmental effects on the Gulf of Gdańsk: recent management efforts, [in:] Baltic coastal ecosystems, structure, function and coastal zone management, G. Schernewski & U. Schiewer (eds.), CEDES, Springer Verlag, Berlin, 119–139.
References
Bańbura J., 1994, Lateral plate morph differentiation on freshwater and marineó populations of the three-spined stickleback, Gasterosteus aculeatus, in Poland, J. Fish Biol., 44 (5), 773–783.
http://dx.doi.org/10.1111/j.1095-8649.1994.tb01254.x
Bańbura J., Przybylski M., 1987, Występowanie form morfologicznych ciernika Gasterosteus aculeatus o różnym stopniu opancerzenia wzdłuż polskiego wybrzeża Bałtyku, [Occurrence of morphological forms of the three-spined stickleback Gasterosteus aculeatus with different number of lateral plates along the Polish coast of the Baltic], XIV Zjazd Pol. Tow. Zool., 17–19 Sept. 1987, Szczecin, 12.
Barber I., Ruxton G.D., 1998, Temporal prey distribution affects the competitive ability of parasitized sticklebacks, Anim. Behav., 56 (6), 1477–1483.
http://dx.doi.org/10.1006/anbe.1998.0917 PMid:9933545
Bergersen R., 1996, Sticklebacks from Greenland, J. Fish Biol., 48 (4), 799–801.
http://dx.doi.org/10.1111/j.1095-8649.1996.tb01474.x
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W., 1997, Parasitology meets ecology on its own terms: Margolis et al. revisited, J. Parasitol., 83 (4), 575–583.
http://dx.doi.org/10.2307/3284227 PMid:9267395
Czapliński B., Sulgostowska T., Czaplińska D., 1992, Katalog fauny pasożytniczej Polski. Catalogus Faunae Parasiticae Poloniae, Część IV. Pasożyty ptaków Parasiti Avium, Zeszyt 2A. Tasiemce – Cestoda, [Catalogue of parasitic fauna of Poland, Part IV. Parasites of birds, Tapeworms – Cestoda], Pol. Tow. Parazytol., Warszawa, 184 pp.
Girdwoyń M., 1883, Pasożyty ryb naszych, [Parasites of our fish], Warszawa, 8 pp. Kanarek G., Rokicki J., 2005, The status of studies on the helminth fauna of the Great Cormorant (Phalacrocorax carbo sinensis) in northern Poland, Wiad. Parazytol., 51 (2), 165.
Kanarek G., Sitko J., Rolbiecki L., Rokicki J., 2003, Digenean fauna of the great cormorant Phalacrocorax carbo sinensis (Blumenbach, 1798) in the brackish waters of the Vistula Lagoon and the Gulf of Gdańsk (Poland), Wiad. Parazytol., 49 (3), 293–299.
PMid:16889033
Kavetska K.M., Królaczyk K., Kalisińska E., Kornyushin V.V., Korol E.N., 2008, Helmintofauna nurogęsi Mergus merganser L., 1758 z północno-zachodniej Polski, [Helminthofauna of the goosander Mergus merganser L., 1758 from the north-western Poland], Wiad. Parazytol., 54 (4), 325–330.
PMid:19338224
Lundberg C., 2005, Eutrophication in the Baltic Sea – from area-specific biological effects to interdisciplinary consequences, Åbo Akad. Univ., Åbo, 166 pp.
Marcogliese D. J., 1992, Metazoan parasites of sticklebacks on Sable Island, north-west Atlantic Ocean: biogeographic considerations, J. Fish Biol., 41 (3), 399–407.
http://dx.doi.org/10.1111/j.1095-8649.1992.tb02668.x
Möller H., 1978, The effects of salinity and temperature on the development and survival of fish parasites, J. Fish Biol., 12 (4), 311–323.
http://dx.doi.org/10.1111/j.1095-8649.1978.tb04176.x
Normant M., Kubicka M., Lapucki T., Czarnowski W., Michalowska M., 2005, Osmotic and ionic haemolymph concentrations in the Baltic Sea amphipod Gammarus oceanicus in relation to water salinity, Comp. Biochem. Phys. A, 141 (1), 94–99.
http://dx.doi.org/10.1016/j.cbpb.2005.04.007
Pojmańska, T., 1991, Pasożyty ryb Polski. Tasiemce – Cestoda. Klucze do oznaczania, [Parasites of fish from Poland. Cestoda. Taxonomic keys], Inst. Parazytol. PAN, Warszawa, 135 pp.
Reimchen T.E., Nosil P., 2001, Dietary differences between phenotypes with symmetrical and asymmetrical pelvis in the stickleback Gasterosteus aculeatus, Can. J. Zool., 79 (3), 533–539.
Rokicki J., Skóra K.E., 1989, The role of the stickleback Gasterosteus aculeatus L. as a host of plerocercoids Schistocephalus solidus (Müller, 1776) in the Bays of Gdańsk and Puck, Abstracts 11th BMB Symp., 11–16 Sept. 1989, Szczecin, Poland, p. 31.
Rokicki J., Strömberg J.-O., 1995, The influence of environment al factors on the external parasites of saithe Pollachius virens (L.), Acta Ichthyol. Piscat., 25 (2), 81–87.
Rolbiecki L., Rokicki J., Morozińska-Gogol J., Chibani M., 1999, Larval stages of helminths in fish from the Vistula Lagoon and the Gulf of Gdańsk in relation to bird occurrence, Bull. Sea Fish. Inst., 2 (147), 51–60.
Sures B., 2003, Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective, Parasitology, 126 (Suppl.), S53–S60.
http://dx.doi.org/10.1017/S003118200300372X PMid:14667172
Sures B., 2004, Environmental parasitology: relevancy of parasites in monitoring environmental pollution, Trends Parasitol., 20 (4), 170–177.
http://dx.doi.org/10.1016/j.pt.2004.01.014 PMid:15099556
Wedekind C., Milinski M., 1996, Do three-spined sticklebacks avoid consuming copepods, the first intermediate host of Schistocephalus solidus? – an experimental analysis of behavioural resistance, Parasitology, 112 (4), 371–383.
http://dx.doi.org/10.1017/S0031182000066609
Wootton R. J., 1976, The biology of the sticklebacks, London Acad. Press., 387 pp.
Zander C.D., 2007, Parasite diversity of sticklebacks from the Baltic Sea, Parasitol. Res., 100 (2), 287–297.
http://dx.doi.org/10.1007/s00436-006-0282-0 PMid:17036245