Oceanologia No. 53 (4) / 11
Contents
Papers
-
SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range: Bogdan Woźniak, Katarzyna Bradtke, Mirosław Darecki, Jerzy Dera, Joanna Dudzińska-Nowak, Lidia Dzierzbicka-Głowacka, Dariusz Ficek, Kazimierz Furmańczyk, Marek Kowalewski, Adam Krężel, Roman Majchrowski, Mirosława Ostrowska, Marcin Paszkuta, Joanna Stoń-Egiert, Małgorzata Stramska, Tomasz Zapadka
-
SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results: Bogdan Woźniak, Katarzyna Bradtke, Mirosław Darecki, Jerzy Dera, Joanna Dudzińska-Nowak, Lidia Dzierzbicka-Głowacka, Dariusz Ficek, Kazimierz Furmańczyk, Marek Kowalewski, Adam Krężel, Roman Majchrowski, Mirosława Ostrowska, Marcin Paszkuta, Joanna Stoń-Egiert, Małgorzata Stramska, Tomasz Zapadka
-
Remote sensing reflectance of Pomeranian lakes and the Baltic: Dariusz Ficek, Tomasz Zapadka, Jerzy Dera
-
Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature: Lidia Dzierzbicka-Głowacka, Karol Kuliński, Anna Maciejewska, Jaromir Jakacki, Janusz Pempkowiak
-
Temporal changes in the concentrations of zinc and cadmium in the sedimentary strata of Nozha Hydrodrome, Alexandria, Egypt: Ahmed E. Rifaat, Hoda H.H. Ahdy
-
Spatio-temporal patterns of PAHs, PCBs and HCB in sediments of the western Barents Sea: Agata Zaborska, Jolynn Carroll, Ksenia Pazdro, Janusz Pempkowiak
-
Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea): Jana Kobelyanskaya, Valentyna P. Bobykina,
Halina Piekarek-Jankowska
Papers
SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range
Oceanologia 2011, 53(4), 897-924
http://dx.doi.org/10.5697/oc.53-4.897
Bogdan Woźniak1,3,*,
Katarzyna Bradtke2,
Mirosław Darecki1,
Jerzy Dera1,
Joanna Dudzińska-Nowak4,
Lidia Dzierzbicka-Głowacka1,
Dariusz Ficek3,
Kazimierz Furmańczyk4,
Marek Kowalewski2,
Adam Krężel2,
Roman Majchrowski3,
Mirosława Ostrowska1,
Marcin Paszkuta2,
Joanna Stoń-Egiert1,
Małgorzata Stramska1,4,
Tomasz Zapadka3
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: wozniak@iopan.gda.pl
*corresponding author
2Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland
3Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland
4Institute of Marine and Coastal Sciences, University of Szczecin,
Mickiewicza 18, Szczecin 70-383, Poland
keywords:
Marine optics in Poland, satellite monitoring, remote sensing system, Baltic Sea
Received 23 August 2011, revised 25 October 2011, accepted 1 November 2011.
This work was carried out within the framework of the SatBałtyk project funded by the European Union through European Regional Development Fund,
(contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment") and also as a part of IO PAS's statutory research.
The paper was presented in part at the 6th International Conference "Current Problems in the Optics of Natural Waters" St. Petersburg, Russia, 6-10 September 2011.
Abstract
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by a Polish
team. The main aim of the five-year SatBałtyk (2010-2014) research project (Satellite Monitoring of the Baltic Sea Environment)
is to prepare the technical infrastructure and set in motion operational procedures for the satellite monitoring of the Baltic
environment. This system is to characterize on a routine basis the structural and functional properties of this sea on the basis
of data supplied by the relevant satellites. The characterization and large-scale dissemination of the following properties of
the Baltic is anticipated: the solar radiation influx to the sea's waters in various spectral intervals, energy balances of
the short- and long-wave radiation at the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea
surface temperature distribution, dynamic states of the water surface, concentrations of chlorophyll a and other phytoplankton
pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling events, and the characteristics of
primary organic matter production and photosynthetically released oxygen in the water. It is also intended to develop and, where
feasible, to implement satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the
state of the sea's ice cover, and forecasting the hazards from current and future storms and providing evidence of their
effects in the Baltic coastal zone. The ultimate objective of the project is to implement an operational system for the routine
determination and dissemination on the Internet of the above-mentioned features of the Baltic in the form of distribution maps as well
as plots, tables and descriptions characterizing the state of the various elements of the Baltic environment. The main sources
of input data for this system will be the results of systematic recording by environmental satellites and also special-purpose
ones such as TIROS N/NOAA, MSG (currently Meteosat 9), EOS/AQUA and ENVISAT. The final effects of the SatBałtyk project are to
be achieved by the end of 2014, i.e. during a period of 60 months. These two papers present the results obtained during the first
15 months of the project. Part 1 of this series of articles contains the assumptions, objectives and a description of the most important
stages in the history of our research, which constitute the foundation of the current project. It also discusses the way in which SatBałtyk
functions and the scheme of its overall operations system. The second article (Part 2), will discuss some aspects of its practical
applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
References
Abramowitz M., Stegun I., 1972, Handbook of mathematical functions, Dover Publ., New York, 1046 pp.
Antal T.K., Venediktov P. S., Konev Yu.N., Matorin D.N., Hapter R., Rubin A.B., 1999, Assessment of vertical profiles of photosynthesis of phytoplankton by fluorescentic method, Oceanology, 39 (2), 314–320.
Antal T.K., Venediktov P. S., Matorin D.N., Ostrowska M., Woźniak B., Rubin A.B., 2001, Measurement of phytoplankton photosynthesis rate using a pump- and-probe fluorometer, Oceanologia, 43 (3), 291–313.
Antoine D., André J.M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cyc., 10 (1), 56–69.
http://dx.doi.org/10.1029/95GB02832
Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cyc., 10 (1), 42–55.
http://dx.doi.org/10.1029/95GB02831
Arst H., 2003, Optical properties and remote sensing of multicomponental water bodies, Springer-Praxis, New York, 231 pp.
Barange M., Field J.G., Harris R.P., Hofmann E.E., Perry R. I., Werner F. (eds.), 2010, Marine ecosystems and global change, Oxford Univ. Press, New York, 464 pp.
Belkin I.M., O’Reilly J.E., 2009, An algorithm for oceanic front detection in chlorophyll and SST satellite imagery, J. Marine Syst., 78 (3), 319–326.
http://dx.doi.org/10.1016/j.jmarsys.2008.11.018
Blumberg A. F., Mellor G. L., 1987, A description of the three-dimensional coastal ocean circulation model, [in:] Three-dimensional coastal ocean models, N. Heaps (ed.), Am. Geophys. Union, Madison, 1–16.
Bradtke K., Herman A., Urbański J.A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 52 (3), 345–362.
http://dx.doi.org/10.5697/oc.52-3.345
Brekke C., Solberg A., 2005, Oil spill detection by satellite remote sensing, Remote Sens. Environ., 95 (1), 1–13.
http://dx.doi.org/10.1016/j.rse.2004.11.015
Bryan K.A., 1969, Numerical method for the study of the circulation of the World Ocean, J. Comput. Phys., 4 (3), 347–376.
http://dx.doi.org/10.1016/0021-9991(69)90004-7
Burenkov V. I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., Shevchenko V.P., 2001a, An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner, Oceanology, 41, 622–628.
Burenkov V. I., Vedernikov V. I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., 2001b, Application of the ocean color data gathered by the SeaWiFS satellite scanner for estimating the bio-optical characteristics of waters in the Barents Sea, Oceanology, 41, 461–468.
Campbell J., Antoine D., Armstrong R., Arrigo K., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., Hoepner N., Iverson R., Keifer D., Lohrenz S., Marra J., Morel A., Ryan J., Vedemikov V., Waters K., Yentsch C., Yoder J., 2002, Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cyc., 16 (3), 74–75.
http://dx.doi.org/10.1029/2001GB001444
Carr M.-E., Friedrichs M.A., Schmeltz M., Aita M.N., Antoine D., Arrigo K.R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E.T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepner N., Ishizaka J., Kameda T., Le Quere C., Lohrenz S., Marra J., Melin F., Moore K., Morel A., Reddy T.E., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K., Yamanaka Y., 2006, A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53 (5–7), 741–770.
http://dx.doi.org/10.1016/j.dsr2.2006.01.028
Chen W.-Y., Seiner J., Suzuki T., Lackner M. (eds.), 2011, Handbook of climate change mitigation, Vol. 1 & 2, 1st edn., Springer, New York, 4000 pp.
Cox M.D., 1984, A primitive equation, 3-dimensional model of the ocean, GFDL Ocean Group Tech. Rep. No. 1, Princeton Univ., 250 pp.
Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509–538.
Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., 26 (2), 247–260.
http://dx.doi.org/10.1080/01431160410001720298
Darecki M., Kowalczuk P., Krężel A., Sagan S., 1993, Chlorophyll vs AVHRR satellite data during SKAGEX experiment, SiMO, 64, 49–59.
Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326–350.
http://dx.doi.org/10.1016/j.rse.2003.10.012
David M., 1988, Handbook of applied advanced geostatistical ore reserve estimation, Elsevier Sci. Publ., Amsterdam, 344 pp.
Dera J., 1963a, A probe for studying the stratification of water masses in the sea, Acta Geophys. Pol., 11, 179–185, (in Polish).
Dera J., 1963b, Some optical properties of the waters of the Gulf of Gdańsk as indices of the structure of its water masses, Acta Geophys. Pol., 13, 15–39, (in Polish).
Dera J., 1967, Measurements of optical quantities characterizing the conditions of photosynthesis in the Gulf of Gdańsk, Acta Geophys. Pol., 15, 187–208, (in Polish).
Dera J., 1971, Irradiance in the euphotic zone of the sea, Oceanologia, 1, 9–98, (in Polish with English summmary).
Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., 7, IOPAN, Sopot, 110 pp.
Dera J., 2010, The SatBałtyk project: Satellite Monitoring of the Baltic Sea Environment, Oceanologia, 52 (2), 319–324.
http://dx.doi.org/10.5697/oc.52-2.319
Dera J., Hapter R., Malewicz B., 1975, Fluctuation of light in the euphotic zone and its influence on primary production of organic matter, Merentutkimuslait. Julk., 239, 58–66.
Dera J., Olszewski J., 1969, Widzialność podwodna, Post. Fiz., 20, 473–487.
Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533–582.
http://dx.doi.org/10.5697/oc.52-4.533
Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591–619.
Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41–71.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011, Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea, Oceanologia, 53 (1), 449–470.
http://dx.doi.org/10.5697/oc.53-1-TI.449
Dudzińska-Nowak J., 2006, Coastline long-term changes of the selected area of the Pomeranian Bay, coastal dynamic, geomorphology and protection, EUROCOAST – LITTORAL 2006, A. Tubielewicz (ed.), Gdańsk, 163–170.
Falkowski P.G., Knoll A.H. (eds.), 2007, The evolution of aquatic photoautotrophs, Acad. Press, New York, 456 pp.
Ficek D., 2001, Modelling the quantum yield of photosynthesis in different marine basins, Diss. and monogr., 14, IOPAS, Sopot, 224 pp., (in Polish).
Ficek D., Kaczmarek S., Stoń-Egiert J.,Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4),
533–555.
Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S.,Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395–423.
Ficek D., Ostrowska M., Kuzio M., Pogosyan S. I., 2000a, Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study, Oceanologia, 42 (2), 243–249.
Ficek D., Woźniak B., Majchrowski R., Ostrowska M., 2000b, Influence of non-photosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231–242.
Furmańczyk K., 1985, Rzeźba dna strefy brzegowej na zdjęciach lotniczych i satelitarnych, Mater. Konf. Nauk., "Satelity w służbie morza", PAN, UGM, Gdynia, 6–8 maja 1985, 78–88.
Furmańczyk K., 1994, Strefa brzegowa Półwyspu Helskiego w świetle kompleksowej interpretacji zdjęć satelitarnych, Zesz. Nauk., 2, 61–80.
Furmańczyk K., Dudzińska-Nowak J., 2009, Extreme storm impact to the coastline changes – South Baltic example, J. Coast. Res., 56 (2), 1637–1640.
Furmańczyk K.K., Dudzińska–Nowak J., Furmańczyk K.A., Paplińska-Swerpel B., Brzezowska N., 2011, Dune erosion as a result of the significant storms at the western Polish coast (Dziwnów Spit example), Proc. 11th Int. Coastal Symp., Szczecin, J. Coast. Res., 57 (Sp. Iss. 64), 756–759.
Glantz M.H. (ed.), 1988, Societal responses to regional climate change. Forecasting by analogy, West View Press, Boulder-London, 403 pp.
Gordon H.R., Morel A., 1983, Remote assessment of ocean color for interpretation of satellite visible imagery, [in:] Lecture notes on coastal and estuarine studies, M. Bowman (ed.), Springer-Verlag, New York, 114 pp.
Herman-Iżycki L., Jakubiak B., Nowiński K., Niezgódka B., 2002, UMPL – the numerical weather prediction system for operational applications, [in:] Research works based on the ICM’s UMPL numerical weather prediction system results, Wyd. ICM, Warsaw, 14–27.
Houghton J., 1997, Global warming: the complete briefing, Cambridge Univ. Press, Cambridge, 251 pp.
Houghton R.A., 2005, The contemporary carbon cycle, [in:] Biogeochemistry. An analysis of global change, W.H. Schlesinger (ed.), Elsevier, San Diego, 473–513.
Hunke E., Lipscomb W., 2010, CCE: the Los Alamos Sea Ice Model documentation and software users manual version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos Natl. Lab., New Mexico, 76 pp.
Hus L., Furmańczyk K., 1985, Przegląd wybranych zjawisk lodowych rejonu Antarktyki w oparciu o zdjęcia satelitarne, Proc. Int. Symp. Photogramm. Remote Sens. Sea, Szczecin, 153–171.
Jonasz M., Fournier G.R., 2007, Light scattering by particles in water: Theoretical and experimental constraints, Acad. Press, San Diego, 714 pp.
Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea investigation (Case 2 waters), Oceanologia, 37 (2), 285–297.
Kostianoy A., Litovchenko K., Lavrova O., Mityagina M., Bocharova T., Lebedev S., Stanichny S., Soloviev D., Sirota A., Pichuzhkina O., 2006, Operational satellite monitoring of oil spill pollution in the southeastern Baltic Sea: 18 months experience, Environ. Res. Eng. Manag., 4 (38), 70–77.
Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52 (3), 431–471.
http://dx.doi.org/10.5697/oc.52-3.431
Kowalewska H., Krężel A., 1991, Zachmurzenie nad Południowym Bałtykiem w oparciu o dane ze stacji brzegowych i zdjęć satelitarnych, Zesz. Nauk. Uniw. Szcz., 86, 47–64.
Kowalewski M., 1997, A three-dimensional, hydrodynamic model of the Gulf of Gdańsk, Oceanol. Stud., 26 (4), 77–98.
Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon, Boreal Environ. Res., 16 (Suppl. A), 27–41.
Kowalewski M., Krężel A., 2004, System automatycznego dowiązania geograficznego i korekcji geometrycznej danych AVHRR, Arch. Fotogram. Kartograf. Teledetek., XIIIb, 397–407.
Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5–32.
Krężel A., 1992, Influence of aerosols on the solar energy inflow to the Baltic surface (An example of Southern Baltic), Przegl. Geofiz., XXXVII (1–2), 27–36, (in Polish).
Krężel A., 1997, AVHRR images as a tool in marine suspended analyses in polar regions, Oceanol. Stud., 26 (2–3), 21–30.
Krężel A., Kozłowski L., Paszkuta M., 2008, A simple model of light transmission through the atmosphere, Oceanologia, 50 (2), 125–146.
Krężel A., Kozłowski Ł., Szymanek L., Szymelfenig M., 2005a, Influence of coastal upwelling on chlorophyll-like pigments concentration in the surface water along Polish coast of the Baltic Sea, Oceanologia, 47 (4), 433–452.
Krężel A., Ostrowski M., Szymelfenig M., 2005b, Sea surface temperature distribution during upwelling along the Polish Baltic Sea coast, Oceanologia, 47 (4), 415–432.
Krężel A., Paszkuta M., 2011, Automatic detection of cloud cover over the Baltic Sea, J. Atmos. Ocean. Tech., 28, 1117–1128.
http://dx.doi.org/10.1175/JTECH-D-10-05017.1
Lieth H., Whittaker R.H., 1975, Primary productivity of the biosphere, Springer-Verlag, New York, 339 pp.
Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Stud. i rozpr., 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589–599.
Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157–175.
Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the "in vivo" spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191–202.
Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709–722.
http://dx.doi.org/10.4319/lo.1977.22.4.0709
Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski Ł., Krajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J.,
Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes – Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19–22 March 2007, Oceanologia, 50 (1), 95–113.
Odum E.P., 1971, Fundamentals of ecology, 3rd edn., Saunders, Philadelphia, 574 pp.
Olszewski J., 1973, An analysis of underwater visibility conditions in the sea, based on the example of the Gulf of Gdańsk, Oceanologia, 2, 153–225, (in Polish with English summary).
Olszewski J. (ed.), 1995, Marine physics (8), SiMO, 68, 149 pp.
Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea, Part I: Description of the ProDeMo model, Oceanologia, 47 (4), 477–516.
Ostrowska M., 2001, The application of fluorescence methods of the study of marine photosynthesis, Rozpr. i monogr., 15, IOPAS, Sopot, 194, (in Polish).
Ostrowska M., Majchrowski R., Matorin D.N., Woźniak B., 2000a, Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical "in situ" chlorophyll fluorometry, Oceanologia, 42 (2), 203–219.
Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Ficek D., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 49 (4), 471–489.
Ostrowska M., Matorin D.N., Ficek D., 2000b, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination, Oceanologia, 42 (2), 221–229.
Pelevin V.N., Woźniak B., Koblentz-Mishke O. J., 1991, Algorithm for estimating primary production in the sea from satellite sensing, Oceanologia, 31, 57–72.
Platt T., Sathyendranath S., 1993a, Estimators of primary production for interpretation of remotely-sensed data on ocean color, J. Geophys. Res., 98 (C8), 14561–14576.
http://dx.doi.org/10.1029/93JC01001
Platt T., Sathyendranath S., 1993b, The remote sensing of ocean primary productivity – use of a new data compilation to test satellite algorithms – comment, J. Geophys. Res., 98 (C9), 16583–16584.
http://dx.doi.org/10.1029/93JC01314
Platt T., Sathyendranath S., Cavarhill C.M., Lewis M.R., 1988, Ocean primary production and available light: further algorithms for remote sensing, Deep-Sea Res., 35 (6), 855–879.
http://dx.doi.org/10.1016/0198-0149(88)90064-7
Platt T., Sathyendranath S., Longhurst A., 1995, Remote-sensing of primary production in the ocean – promise and fulfilment, Philos. T. Roy. Soc. B, 348, 191–201.
http://dx.doi.org/10.1098/rstb.1995.0061
Robinson I. S., 2010, Discovering the ocean from space, Springer-Verlag, Berlin, Heidelberg, 638 pp.
http://dx.doi.org/10.1007/978-3-540-68322-3
Rozwadowska A., 2007, Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region, Oceanologia, 49 (2), 165–184.
Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307–330.
Sandven S., Johannesen O.M., 2006, Sea ice monitoring by remote sensing, [in:] Manual of remote sensing, Vol. 6. Remote sensing of the marine environment, J.F.R. Gower (ed.), 3rd edn., ASPRS Publ., Bethesda, 241–283.
Sathyendranath S., Platt T., Cavarhill C.M., Warnock R.E., Lewis M.R., 1989, Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Res., 36 (3), 431–453.
Sathyendranath S., Platt T., Stuart V., 2000, Remote sensing of ocean colour: Recent advances, exciting possibilities and unanswered questions, Proc. 5th Pacific Ocean Remote Sens. Conf. (PORSEC), 1, 6 pp.
http://dx.doi.org/10.1016/0198-0149(89)90046-0
Schwarzer K., Diesing M., Larson M., Niedermeyer R.-O., Schumacher W., Furmańczyk K., 2003, Coastline evolution at different time scales – examples from the Pomeranian Bight, southern Baltic Sea, Mar. Geol., 194 (1–2), 79–101.
http://dx.doi.org/10.1016/S0025-3227(02)00700-4
Semtner A. J., 1974, A general circulation model for the World Ocean, UCLA Dept. Meteorol. Tech. Rep., 8, 99 pp.
Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Powers J.G., 2008, A description of the advanced research WRF. Version 3, Technical Note NCAR/TN-475+STR, Natl. Cent. Atmos. Res., Boulder, 125 pp., [http://www.mmm.ucar.edu/wrf/users/docs/arw v3.pdf].
Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP), Los Alamos Natl. Lab., New Mexico, 75 pp.
Steemann-Nielsen E., 1975, Marine photosynthesis: with special emphasis on the ecological aspects, Elsevier Sci., Amsterdam, 152 pp.
Trenberth K.E. (ed.), 1992, Climate system modelling, Cambridge Univ. Press, Cambridge, 788 pp.
Woźniak B., 1973, An investigation of the influence of the components of seawater on the light field in the sea, SiMO, 6, 69–132, (in Polish).
Woźniak B., 1990, Statistical relations between photosynthesis and abiotic conditions of the marine environment; an initial prognosis of the World Ocean productivity ensuing from warming up of the Earth, Oceanologia, 29, 147–174.
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011, SatBałtyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results, in this issue.
Woźniak B., Dera J., 2000, Luminescence and photosynthesis of marine phytoplankton – a brief presentation of new results, Oceanologia, 42 (2), 137–156.
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.
Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187–210.
Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the "in vivo" spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177–190.
Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002a, Dependence of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439–459.
Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., Kaczmarek S., Kuzio M., 2002b, The current bio-optical study of marine phytoplankton, Opt. Appl., XXXII (4), 731–747.
Woźniak B., Dera J., Koblentz-Mishke O. J., 1992a, Modeling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics XI, Proc. SPIE, 1750, 246–275.
http://dx.doi.org/10.1117/12.140655
Woźniak B., Dera J., Koblentz-Mishke O. J., 1992b, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5–38.
Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997a, "IOPAS initial model" of marine primary production for remote sensing application, Oceanologia, 39 (4), 377–395.
Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean – the IOPAS initial model for remote sensing application, Proc. SPIE, 3222, 516–528.
Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995, Algorithm for estimating primary production in the Baltic by remote sensing, SiMO, 68, 91–123.
Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007a, Photosynthesis quantum yield in the Baltic; a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527–542.
Woźniak B., Hapter R., Dera J., 1989, Light curves of marine phytoplankton photosynthesis in the Baltic, Oceanologia, 27, 61–78.
Woźniak B., Hapter R., Jonasz M., 1980, An introductory analysis of the rate and energetic efficiency of photosynthesis in the Gulf of Gdańsk, [in:] Baltic ecosystems, Proc. Int. Symp. COMECON, Part 2, MIR, Gdynia, 400–414, (in Russian).
Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451–508.
Woźniak B., Krężel A., Dera J., 2004, Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) – an ongoing project in Poland, Oceanologia, 46 (3), 445–455.
Woźniak B., Majchrowski R., Ostrowska M., Ficek D., Dera J., Kunicka J., 2007b, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: Non-photosynthetic pigment absorption factor, Oceanologia, 49 (4), 513–526.
Woźniak B., Ostrowska M., 1990a, Composition and resources of photosynthetic pigments of the sea phytoplankton, Oceanologia, 29, 91–115.
Woźniak B., Ostrowska M., 1990b, Optical absorption properties of phytoplankton in various seas, Oceanologia, 29, 117–146.
Woźniak B., Pelevin V.N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25–55.
Woźniak M., Krężel A., 2010, Sea surface temperature retrieval from MSG/SEVIRI data in the Baltic Sea area, Oceanologia, 52 (3), 331–344.
http://dx.doi.org/10.5697/oc.52-3.331
Zapadka T., Krężel A., Woźniak B., 2008, Longwave radiation budget at the Baltic Sea surface from satellite and atmospheric model data, Oceanologia, 50 (2), 147–166.
Zapadka T., Woźniak B., Dera J., 2007, A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea, Oceanologia, 49 (4), 449–470.
Zapadka T., Woźniak S.B., Woźniak B., 2001, A simple formula for Baltic Sea surface net infrared radiation flux, Oceanologia, 43 (3), 265–277.
SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results
Oceanologia 2011, 53(4), 925-958
http://dx.doi.org/10.5697/oc.53-4.925
Bogdan Woźniak1,3,*,
Katarzyna Bradtke2,
Mirosław Darecki1,
Jerzy Dera1,
Joanna Dudzińska-Nowak4,
Lidia Dzierzbicka-Głowacka1,
Dariusz Ficek3,
Kazimierz Furmańczyk4,
Marek Kowalewski2,
Adam Krężel2,
Roman Majchrowski3,
Mirosława Ostrowska1,
Marcin Paszkuta2,
Joanna Stoń-Egiert1,
Małgorzata Stramska1,4,
Tomasz Zapadka3
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: wozniak@iopan.gda.pl
*corresponding author
2Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland
3Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland
4Institute of Marine and Coastal Sciences, University of Szczecin,
Mickiewicza 18, Szczecin 70-383, Poland
keywords:
marine optics in Poland, satellite monitoring, remote sensing system, Baltic Sea
Received 23 August 2011, revised 25 October 2011, accepted 1 November 2011.
This work was carried out within the framework of the SatBałtyk project funded by the European Union through European Regional Development Fund,
(contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment") and also as a part of IO PAS's statutory research.
The paper was presented in part at the 6th International Conference "Current Problems in the Optics of Natural Waters" St. Petersburg, Russia, 6-10 September 2011.
Abstract
This paper is the second part of the description of the first stage of the SatBałtyk project's implementation. Part 1 (Woźniak
et al. 2011, in this issue) presents the assumptions and objectives of SatBałtyk and describes the most important stages in the history
of our research, which is the foundation of this project. It also discusses the operation and general structure of the SatBałtyk
system. Part 2 addresses various aspects of the practical applicability of the SatBałtyk Operational System to Baltic ecosystem monitoring.
Examples are given of the Baltic's characteristics estimated using the preliminary versions of the algorithms in this Operational
System. At the current stage of research, these algorithms apply mainly to the characteristics of the solar energy influx and
the distribution of this energy among the various processes taking place in the atmosphere-sea system, and also to the radiation
balance of the sea surface, the irradiance conditions for photosynthesis and the condition of plant communities in the water, sea surface
temperature distributions and some other marine phenomena correlated with this temperature. Monitoring results obtained with these
preliminary algorithms are exemplified in the form of distribution maps of selected abiotic parameters of the Baltic, as well as
structural and functional characteristics of this ecosystem governed by these parameters in the Baltic's many basins. The maps cover
practically the whole area of the Baltic Sea. Also given are results of preliminary inspections of the accuracy of the
magnitudes shown on the maps. In actual fact, the errors of these estimates are relatively small. The further practical application
of this set of algorithms (to be gradually made more specific) is therefore entirely justified as the basis of the SatBałtyk
system for the effective operational monitoring of the state and functioning of Baltic ecosystems. This article also outlines
the plans for extending SatBałtyk to include the recording of the effects and hazards caused by current and expected storm
events in the Polish coastal zone.pects of its practical applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
References
Bird R.E., Riordan C., 1986, Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres, J. Clim. Appl. Meteorol., 25 (1), 87–97.
http://dx.doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509–538.
Darula S., Kittler R., Gueymard C.A., 2005, Reference luminous solar constant and solar luminance for illuminance calculations, Sol. Energy, 79 (5), 559–565.
http://dx.doi.org/10.1016/j.solener.2005.01.004
Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533–582.
http://dx.doi.org/10.5697/oc.52-4.533
Ficek D., 2001, Modelling the photosynthesis quantum yield in various marine basins, Diss. and monogr., 14, IOPAS, Sopot, 224 pp., (in Polish).
Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S.,Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395–423.
Ficek D., Majchrowski R., Ostrowska M., Woźniak B., 2000, Influence of nonphotosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231–242.
Gueymard C.A., 2004, The sun’s total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 76 (4), 423–453.
http://dx.doi.org/10.1016/j.solener.2003.08.039
Keevallik S., Loitjärv K., 2010, Solar radiation at the surface in the Baltic Proper, Oceanologia, 52 (4), 583–597.
http://dx.doi.org/10.5697/oc.52-4.583
Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52 (3), 431–471.
Kowalewski M., 1997, A three-dimensional, hydrodynamic model of the Gulf of Gdańsk, Oceanol. Stud., 26 (4), 77–98.
Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon, Boreal Environ. Res., 16 (Suppl. A), 27–41.
Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5–32.
Krężel A., 1997, A model of solar energy input to the sea surface, Oceanol. Stud., 26 (4), 21–34.
Krężel A., Kozłowski Ł., Paszkuta M., 2008, A simple model of light transmission through the atmosphere over the Baltic Sea utilising satellite data, Oceanologia, 50 (2), 125–146.
Krężel A., Paszkuta M., 2011, Automatic detection of cloud cover over the Baltic Sea, J. Atmos. Ocean. Tech., 28 (9), 1117–1128.
http://dx.doi.org/10.1175/JTECH-D-10-05017.1
Krężel A., Szymanek L., Kozłowski Ł., Szymelfenig M., 2005, Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea, Oceanologia, 47 (4), 433–452.
Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Stud. i rozpr., 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
Majchrowski R., Stoń-Egiert J., Ostrowska M., Woźniak B., Ficek D., Lednicka B., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 2. Accessory pigment distribution, Oceanologia, 49 (4), 491–511.
METEO-FRANCE, 2010, Algorithm theoretical basis document for cloud products, Météo-France/Centre de Météorologie Spatiale.
Neckel H., Labs D., 1981, Improved data of solar spectral irradiance from 0.33 to 1.25 μm, Sol. Phys., 74 (1), 231–249.
http://dx.doi.org/10.1007/BF00151293
Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Ficek D., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 49 (4), 471–489.
Roelvink D., Reniers A., van Dongeren A., van Thiel de Vries J., McCall R., Lescinski J., 2009, Modelling storm impacts on beaches, dunes and barrier islands,
Coast. Eng., 56 (11–12), 1133–1152.
http://dx.doi.org/10.1016/j.coastaleng.2009.08.006
Rozwadowska A., 2004, Optical thickness of stratiform clouds over the Baltic inferred from on-board irradiance measurements, Atmos. Res., 72 (1–4), 129–147.
http://dx.doi.org/10.1016/j.atmosres.2004.03.012
Rozwadowska A., 2007, Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region, Oceanologia, 49 (2), 165–184.
Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307–330.
Spencer J.W., 1971, Fourier series representation of the position of the Sun, Search, 2 (5), 172 pp.
Walton C.C., Pichel W.G., Sapper J.F., May D.A., 1998, The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites, J. Geophys. Res., 103 (C12), 27 999–28 012.
http://dx.doi.org/10.1029/98JC02370
Woźniak B., 1985, Elements of photosynthetic energetics in the southern Baltic, [in:] Utilisation of solar energy in the photosynthesis process of the Black and Baltic Sea phytoplankton, O. I. Koblentz-Mishke, B. Woźniak & Yu.E. Ochakovskiy (eds.), Inst. Okeanol. ANSSSR, Moscow, 205–230, (in Russian).
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011, SatBałtyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 1: Assumptions, scope and operating range, in this issue.
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp. Woźniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003a, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007a, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527–542.
Woźniak B., Hapter R., Dera J., 1989, Light curves of marine phytoplankton photosynthesis in the Baltic, Oceanologia, 27, 61–78.
Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451–508.
Woźniak B., Majchrowski R., Ostrowska M., Ficek D., Kunicka J., Dera J., 2007b, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: Non-photosynthetic pigment absorption factor, Oceanologia, 49 (4), 513–526.
Woźniak B., Rozwadowska A., Kaczmarek S., Woźniak S.B., Ostrowska M., 2003b, Seasonal variability of the solar radiation flux and its utilisation in the Southern Baltic, ICES Coop. Res. Rep. No. 257, 280–298.
Woźniak M., Krężel A., 2010, Sea surface temperature retrieval from MSG/SEVIRI data in the Baltic Sea area, Oceanologia, 52 (3), 331–344.
http://dx.doi.org/10.5697/oc.52-3.331
Zapadka T., Krężel A., Woźniak B., 2008, Long-wave radiation budget at the Baltic Sea surface from satellite and atmospheric model data, Oceanologia, 50 (2),
147–166.
Remote sensing reflectance of Pomeranian lakes and the Baltic
Oceanologia 2011, 53(4), 959-970
http://dx.doi.org/10.5697/oc.53-4.959
Dariusz Ficek,1,*,
Tomasz Zapadka,1,
Jerzy Dera2
1Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: ficek@apsl.edu.pl
*corresponding author
keywords:
reflectance spectra, chlorophyll a concentration, suspended particulate matter, coloured dissolved organic matter, optical properties of Pomeranian lakes, Baltic Sea
Received 28 September 2011, revised 17 October 2011, accepted 24 October 2011.
The study was partially financed by MNiSW (Ministry of Science and Higher Education) as a research project N N306 066434 in the
years 2008-2011. The partial support for this study was also provided by the SatBaltyk project (Satellite Monitoring of the
Baltic Sea Environment) funded by the European Union from the European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
The paper was presented at the 6th International Conference "Current Problems in Optics of Natural Waters", St. Petersburg,
Russia, 6-10 September 2011.
Abstract
The remote sensing reflectance Rrs, concentrations of chlorophyll a and other pigments Ci,
suspended particulate matter concentrations CSPM and coloured dissolved organic matter absorption coefficient aCDOM(λ)
were measured in the euphotic zones of 15 Pomeranian lakes in 2007-2010. On the basis of 235 sets of data points obtained from simultaneous
estimates of these quantities, we classified the lake waters into three types. The first one, with the lowest aCDOM(440 nm) (usually between 0.1 and 1.3 m-1
and chlorophyll a concentrations 1.3 < Ca < 33 mg m-3), displays a broad peak on the reflectance
spectrum at 560-580 nm and resembles the shape of the remote sensing reflectance spectra usually observed in the Baltic Proper.
A set of Rrs spectra from the Baltic Proper is given for comparison.
The second lake water type has a very high CDOM absorption coefficient (usually aCDOM(440 nm) > 10 m-1, up to 17.4 m-1 in Lake
Pyszne; it has a relatively low reflectance (Rrs < 0.001 sr-1) over the entire spectral range, and two visible reflectance spectra peaks at ca 650 and 690-710 nm. The third type of lake water represents waters with a lower CDOM absorption coefficient (usually aCDOM(440 nm) < 5 m-1) and a high chlorophyll a concentration (usually Ca > 4 mg m-3, up to 336 mg m-3 in Lake Gardno).
The remote sensing reflectance spectra in these waters always exhibit three peaks (Rrs > 0.005 sr-1): a broad one at 560-580 nm,
a smaller one at ca 650 nm and a well-pronounced one at 690-720 nm.
These Rrs(λ) peaks correspond to the relatively low absorption of light by the various optically active components of the lake water and
the considerable scattering (over the entire spectral range investigated) due to the high SPM concentrations there.
The remote sensing maximum at λ ≈ 690-720 nm is higher still as a result of the natural fluorescence of chlorophyll a. Empirical
relationships between the spectral reflectance band ratios at selected wavelengths and the various optically active components for these lake waters are also established: for example, the chlorophyll a concentration in surface water layer Ca = 6.432 e4.556X, where X = [max Rrs (695 ≤ λ ≤ 720) - Rrs(λ = 670)] / max Rrs (695 ≤ λ ≤ 720), and the coefficient of determination R2 = 0.95.
References
Choiński A., Limnologia fizyczna Polski (Physical limnology of Poland), 2007,Wyd. Nauk. UAM, 547 pp.
Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509–538.
Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., 26 (2), 247–260.
http://dx.doi.org/10.1080/01431160410001720298
Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3–4), 237–250.
http://dx.doi.org/10.1080/01431160410001720298
Gitelson A.A., Schalles J. F., Hladik C.M., 2007, Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study, Remote Sens. Environ., 109, 464–472.
http://dx.doi.org/10.1016/j.rse.2007.01.016
Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K. S., Clark D.K., 1988, A semi-analytical radiance model of ocean color, J. Geophys. Res., 93 (D9), 10909–10924.
http://dx.doi.org/10.1029/JD093iD09p10909
Gordon H.R., Morel A., 1983, Remote assessment of ocean color for interpretation of satellite visible imagery, [in:] Lecture notes on coastal and estuarine studies, M. Bowman (ed.), Springer-Verlag, New York, 114 pp.
Kowalczuk P., Darecki M., Zabłocka M., Górecka I., 2010, Validation of empirical and semi-analytical remote sensing algorithms for estimating absorption by Coloured Dissolved Organic Matter in the Baltic Sea from SeaWiFS and MODIS imagery, Oceanologia, 52 (2), 171–196.
http://dx.doi.org/10.5697/oc.52-2.171
Mitchell B.G., Kiefer D.A., 1988, Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean, Deep-Sea Res., 35 (5), 665–689.
http://dx.doi.org/10.1016/0198-0149(88)90025-8
Mueller J.L., Austin R.W., 1995, Ocean optics protocols for SeaWiFS validation, Revision 1, S.B. Hooker, E.R. Firestone & J.G. Acker (eds.), NASA Tech. Memo. 104566, Vol. 25, NASA, Greenbelt, MD.
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.
Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature
Oceanologia 2011, 53(4), 971-992
http://dx.doi.org/10.5697/oc.53-4.971
Lidia Dzierzbicka-Głowacka*,
Karol Kuliński,
Anna Maciejewska,
Jaromir Jakacki,
Janusz Pempkowiak
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
keywords:
POC modelling, phytoplankton, zooplankton, detritus
Received 2 September 2011, revised 31 October 2011, accepted 3 November 2011.
The study was financially supported by the Polish Ministry of Science and Higher Education (grants: N N305 111636 and N N306 404338) and Baltic-C - the BONUS funded project.
Abstract
This paper discusses predictions of particulate organic carbon (POC) concentrations in the southern Baltic Sea. The study is
based on the one-dimensional Particulate Organic Carbon Model (1D POC), described in detail by Dzierzbicka-Głowacka et al. (2010a).
The POC concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations.
Temporal changes in the phytoplankton biomass are caused by primary production, mortality, grazing by zooplankton and sinking. The
zooplankton biomass is affected by ingestion, excretion, faecal production, mortality and carnivorous grazing. The changes in
the pelagic detritus concentration are determined by the input of dead phytoplankton and zooplankton, the natural mortality of
predators, faecal pellets, and sinks - sedimentation, zooplankton grazing and biochemical decomposition.
The model simulations were done for selected locations in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland
Deep) under predicted conditions characterized by changes of temperature, nutrient concentrations and light availability. The
results cover the daily, monthly, seasonal and annual POC concentration patterns in the upper water layer. If the assumed trends in light, nutrients
and temperature in the southern Baltic correctly predict the conditions in 2050, our calculations indicate that we can expect a two- to
three-fold increase in POC concentration in late spring and a shift towards postponed maximum POC concentration. It can also be anticipated
that, as a result of the increase in POC, oxygenation of the water layer beneath the halocline will decrease, while the supply of food to organisms at higher
trophic levels will increase.
References
BACC Author Team, 2008, Assessment of climate change for the Baltic Sea basin, Springer-Verlag, Berlin, 473 pp.
Caldeira K., Wicket M.E., 2003, Anthropogenic carbon and ocean pH, Nature, 425 (6956), 365–371.
http://dx.doi.org/10.1038/425365a
ChenW., Wagnersky P. J., 1993, High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures, Mar. Chem., 41 (1–3), 167–171.
http://dx.doi.org/10.1016/0304-4203(93)90115-5
Chisholm S.W., 2000, Stirring times in the Southern Ocean, Nature, 407 (6805), 685–686.
http://dx.doi.org/10.1038/35037696
Czyszek W., Wensierski W., Dera J., 1979, Solar radiation energy inflow and absorption in the Baltic water, SiMO, 26, 105–140, (in Polish).
Doos K., Meier H.E.M., Doscher R., 2004, The Baltic haline conveyor belt or the overturningcir culation and mixing in the Baltic, Ambio, 33 (4–5), 258–262.
Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591–619.
Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41–71.
Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) – numerical simulations, Biogeosciences, 3, 635–650.
Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010a, Particulate Organic Carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621–648.
http://dx.doi.org/10.5697/oc.52-4.621
Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010b, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7, 2247–2259.
http://dx.doi.org/10.5194/bg-7-2247-2010
GrzybowskiW., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693–704.
Hagström Å., Azam F., Kuparinen J., Zweifel U.-L., 2001, Pelagic plankton growth and resource limitations in the Baltic Sea, [in:] A systems analysis of the Baltic Sea, F.V. Wulff, L.A. Rahm & P. Larsson, Springer-Verlag, Berlin, 177–210.
HELCOM, 1996, The third periodic assessment of the state of the marine environment of the Baltic Sea, Baltic Sea Environ. Proc. No. 64B, Helsinki Commission, Helsinki, 252 pp.
Hygum B.H., Petersen J.W., Søndergaard M., 1997, Dissolved organic carbon released by zooplankton grazing activity – a high quality substrate pool for bacteria, J. Plankton Res., 19 (1), 97–111.
http://dx.doi.org/10.1093/plankt/19.1.97
Kuliński K., Dzierzbicka-Glowacka L., Maciejewska A., Pempkowiak J., 2011, Parameterisation of a zero-dimensional Pelagic Detritus Model, Gdańsk Deep, Baltic Sea, Ochr. Środ., 13, 187–206.
Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38–44.
http://dx.doi.org/10.1016/j.ecss.2007.11.017
Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim. Dyn., 27 (1), 39–68.
http://dx.doi.org/10.1007/s00382-006-0124-x
Meier H. E.M., Kjellstr¨om E., Graham L.P., 2006, Estimating uncertainties of projected Baltic Sea salinity in the late 21st century, Geophys. Res. Lett., 33, L15, 705.
http://dx.doi.org/10.1029/2006GL026488
Nagata T., 2000, Production mechanisms of dissolved organic matter, [in:] Microbial ecology of the oceans, D. L. Kirchman (ed.), Wiley-Liss, Inc., New York, 121–152.
Omstedt A., Gustafsson E., Wesslander K., 2009, Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Cont. Shelf Res., 29 (7),
870–885.
Pempkowiak J., 1985, The input of biochemically labile and resistant organic matter to the Baltic Sea from the Vistula River, SCOPE/UNEP, 58, 345–350.
Pempkowiak J., Kupryszewski G., 1980, The input of organic matter to the Baltic from the Vistula River, Oceanologia, 12, 79–98.
Pempkowiak J., Walkusz-Miotk J., Bełdowski J., Walkusz W., 2006, Heavy metals in zooplankton from the Southern Baltic, Chemosphere, 62 (10), 1697–1708.
http://dx.doi.org/10.1016/j.chemosphere.2005.06.056
Pempkowiak J., Widrowski M., Kuliński W., 1984, Dissolved organic carbon and particulate carbon in the Southern Baltic in September, Proc. XIV Conf. Baltic Oceanograph., IMGW. Gdynia, 699–713.
Petterson C.A., Allard B., Boren H., 1997, River discharge of humic substances and humic-bound metals to the Gulf of Bothnia, Estuar. Coast. Shelf Sci., 44 (5),
533–541.
http://dx.doi.org/10.1006/ecss.1996.0159
Pocklington R., Pempkowiak J., 1984, Contribution of humic substances by the Vistula River to the Baltic Sea, [in:] Transport of carbon and minerals in major world rivers, E.T. Degens, S. Kempe & H. Soliman (eds.), SCOPE/UNEP, 55 (2), Hamburg, 365–370.
Pohl C., Hennings U., Peterson I., Siegel H., Trace metal budget, transport, modification and sink in the transition area between the Oder and Peene rivers and the Southern Pomeranian Bight, Mar. Pollut. Bull., 36 (8), 598–616.
Raymont J., 1976, Plankton and productivity in the oceans, Pergamon, Oxford, 660 pp.
Renk H., 2000, Primary production in the southern Baltic, Stud. Mater. Sea Fish. Inst., Gdynia, 35 (A), 78 pp.
Renk H., Ochocki S., 1998, Photosynthetic rate and light curves of phytoplankton in the southern Baltic, Oceanologia, 40 (4), 331–344.
Thomas H., Bozec Y., de Baar H. J.W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner G., Borges A.V., 2005, The carbon budget of the North Sea, Biogeosciences, 2 (1), 87–96.
http://dx.doi.org/10.5194/bg-2-87-2005
Thomas H., Pempkowiak J., Wulff F., Nagel K., 2003, Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: A paradox or a buffer for eutrophication?, Geophys. Res. Lett., 30 (21), 2130.
http://dx.doi.org/10.1029/2003GL017937
Tortell P.D., Martin C.L., Corkum M.E., 2006, Inorganic carbon uptake and intracellular assimilation by subarctic Pacific phytoplankton assemblages, Limnol. Oceanogr., 51 (5), 2102–2110.
http://dx.doi.org/10.4319/lo.2006.51.5.2102
Turnewitsch R., Springer B.M., Kiriakoulakis K., Vilas J.C., Aristegui J.,Wolff G., Peine F., Werk S., Graf G., Waniek J. J., 2007, Determination of particulate organic carbon (POC) in seawater: the relative methodological importance of artificial gains and losses in two glass-fiber-based techniques, Mar. Chem., 105 (3–4), 208–228.
http://dx.doi.org/10.1016/j.marchem.2007.01.017
Voipio A., 1981, The Baltic Sea, Elsevier Sci. Publ., Amsterdam, 123–143.
Voss M., Emeis K.-C., Hille S., Neumann T., Dippner J.W., 2005, The nitrogen cycle of the Baltic Sea from an isotopic perspective, Global Biogeochem. Cyc., 19, GB3001.
http://dx.doi.org/10.1029/2004GB002338
Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the western Gdańsk basin, Stud. Mater. Sea Fish. Inst., Gdynia.
Temporal changes in the concentrations of zinc and cadmium in the sedimentary strata of Nozha Hydrodrome, Alexandria, Egypt
Oceanologia 2011, 53(4), 993-1004
http://dx.doi.org/10.5697/oc.53-4.993
Ahmed E. Rifaat*,
Hoda H.H. Ahdy
National Institute of Oceanography and Fisheries (NIOF),
Al Anfushi 21556, Alexandria, Egypt;
e-mail: aerifaat@yahoo.co.uk, e-mail: threeha1@yahoo.com
*corresponding author
keywords:
metals, core sediment, enclosed pond, temporal change
Received 26 July 2011, revised 24 October 2011, accepted 3 November 2011.
Abstract
This study is concerned with the temporal changes in the levels of zinc and cadmium in the sediments of Nozha Hydrodrome during
the past 100 years. Seven sediment core samples, covering the study area, were collected from the bottom of the Hydrodrome.
A five-step sequential extraction technique was applied to determine the solid phase concentrations of zinc and cadmium. Zinc gives
an idea of the quantities of sewage effluents, while cadmium provides an indication of the amounts of agricultural discharges.
The vertical distribution curves show that the average total concentrations of zinc in the sediments increased at a rate of
2.5 µg g-1 y-1 from 1900 to 1950 and at 1.5 µg g-1 y-1 from 1950 to 1990. Since 1990 the zinc
concentration in Nozha Hydrodrome sediments has been decreasing at 1.5 µg g-1 y-1. The average total cadmium concentration exhibits
a different vertical distribution pattern: it increased at a rate of 0.42 µg g-1 y-1 from 1900 to 1950, after
which it became constant from 1950 to 1970. Since 1970 it has been increasing at 0.53 µg g-1 y-1. The ongoing increase
in cadmium concentrations in the sediments is due to the increase in agricultural discharges into the Hydrodrome, especially as
significant amounts of phosphate fertilizers are used to nourish the soil around the Hydrodrome. The rise in cadmium concentrations
since 1900 has been accompanied by a similar increase in zinc concentrations with time resulting from the discharge of untreated
sewage into the Hydrodrome. In 1990 a sewerage system and sewage treatment plant came into operation, as a result of which discharges
of domestic effluent into the Hydrodrome ceased. Since then the amount of zinc in sediments has been decreasing steadily.
References
Abd El-Azim H., El-Moselhy Kh.M., 2005, Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction, J. Marine Syst., 56 (3–4), 363–374.
http://dx.doi.org/10.1016/j.jmarsys.2004.12.001
Ahdy H.H.H., 1982, Distribution of heavy metals in Lake Mariut and Nozha Hydrodrome and their accumulation in fish, M. Sc. thesis, Alex. Univ., Alexandria, 177 pp.
Ahdy H.H.H., Saad M.A.H., 2006, Heavy metals in the core sediments of Lake Mariut and Nozha Hydrodrome, Egypt. J. Aqua. Res., 32 (2), 292–307.
ANZECC & ARMCANZ, 2000, Australian and New Zealand guidelines for fresh and marine water quality, National Water Quality Management Strategy Paper 4, Vol. 2. Chapt. 8, Sec. 4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canaberra, 678 pp.
Balls P.W., 1989, The partition of trace metals between dissolved and particulate phases in European coastal waters. A compilation of field data and comparison with laboratory studies, Nether. J. Sea Res., 23 (1), 7–14.
http://dx.doi.org/10.1016/0077-7579(89)90037-9
Bi C. J., 2003, Seasonal variation and chemical species distribution of rhizospere heavy metals on tidal flat in Shanghai, Oceanol. Limnol. Sinica, 34 (2), 194–200.
Boughriet A., Ouddane B., Fisher J.C., Wartel M., Leman G., 1992, Variability of dissolved Mn and zinc in the Seine estuary and chemical speciation of these metals in suspended matter, Water Resour., 26 (10), 1359–1378.
http://dx.doi.org/10.1016/0043-1354(92)90130-V
Calamari D., Naeve H. (eds.), 1994, Review of pollution in the African aquatic environment, CIFA Tech. Paper 25, FAO UN, 118 pp. [http://www.fao.org/docrep/008/v3640e/V3640E00.htm].
CEQG, 1999, Canadian sediment quality guidelines for the protection of aquatic life, Canadian Council of Ministers of the Environment, 5 pp.
Comber S.D.W., Gunn A.M., Whalley C., 1995, Comparison of the partitioning of trace metals in the Humber and Mersey estuaries, Mar. Poll. Bull., 30 (12), 851–860.
http://dx.doi.org/10.1016/0025-326X(95)00092-2
Dassenakis M., Andrianos H., Depiazi G., Konstantas A., Karabela M., Sakellari A., Scoullos M., 2003, The use of various methods for the study of metal pollution in marine sediments, the case of Euvoikos Gulf, Greece, Appl. Geochem., 18, 781–794.
http://dx.doi.org/10.1016/S0883-2927(02)00186-5
Dong D.M., Li H. L., Li Y., Fang C. S., Li X.H., Xu C.Y., 2004, Distribution of heavy metals in sediments from the Yitong River: Changchun section, Res. Soil Water Conserv., 11 (1), 96–136.
El-Rayis O.A., Saad M.A.H., 1990, Heavy metal pollution in lagoon Mariut on the southern coast of the eastern Mediterranean Sea, J. KAU Mar. Sci., 1, 6–26.
Fang T., Li X.D., Zhang G., 2005, Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River estuary, south China, Ecotoxicol Environ. Saf., 61 (13), 420–431.
http://dx.doi.org/10.1016/j.ecoenv.2004.10.004
Huang J., Huang R., Jiao J. J., Chen K., 2007, Speciation and mobility of heavy metals in mud in coastal reclamation areas in Shenzhen, China, J. Environ. Geol., 53 (1), 221–228.
http://dx.doi.org/10.1007/s00254-007-0636-7
Kinne O. (ed.), 1984, Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters, John Wiley & Sons, Chichester, 618 pp.
Lambert R., Grant C., Sauvé S., 2007, Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers, Sci. Total Environ., 378 (3), 293–305.
http://dx.doi.org/10.1016/j.scitotenv.2007.02.008
Luo M., Li J., Cao W., Wang M., 2008, Study of heavy metal speciation in branch sediments of Poyang Lake, J. Environ. Sci., 20 (2), 161–166.
http://dx.doi.org/10.1016/S1001-0742(08)60025-X
Moustafa M., A-Elazeem W., Yousef B., 2009, Wastewater pollution control in El-Kalaa drain – Alexandria Governorate, Thirteenth International Water Technology Conference, IWTC, Hurghada, Egypt, 941–950.
Nordberg G. F., Fowler B.A., Nordberg M., Friberg L., 2007, Handbook on the toxicology of metals, Elsevier, Amsterdam, 1024 pp.
Perin G., Fabris R., Manente S., Rebello-Wagener A., Hamacher C., Scotto S., 1997, A Five year study on the heavy metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation, Water Res., 31 (12), 3017–3028.
http://dx.doi.org/10.1016/S0043-1354(97)00171-1
Petersen W., Wallmann K., Li P.L., Schroeder F., Knauth H.D., 1995, Exchange of trace elements at the sediment-water interface during early diagenesis processes, Mar. Freshwater Res., 46 (1), 19–26.
Ros J.P.M., Slooff W. (eds.), 1987, Integrated criteria document. Cadmium, Netherlands National Institute for Public Health and the Environment, RIVM Rep. No. 758476004, 373 pp.
Saad M.A.H., 1987, Limnological studies on the Nozha Hydrodrome, Egypt, with special reference to the problems of pollution, Sci. Total Environ., 67, 195–214.
http://dx.doi.org/10.1016/0048-9697(87)90212-9
Saad M.A.H., Ahdy H.H.H., 2006, Speciation of heavy metals in Lake Mariut core sediments, 7th Int. Conf. on Geochemistry, Fac. Sci., Alex. Univ., Alexandria, Egypt, 6–7 Sept. 2006; V. III, 73–86.
Saad M.A.H., Safty A.M., 2004, Environmental problems in two Egyptian shallow lakes subjected to different leves of pollution, Eighth International Water Technology Conference, IWTC8 2004, Alexandria, Egypt, 379–391.
Saeed M. S., Shaker I.M., 2008, Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the northern Delta Lakes, Egypt, 8th Int. Symp. on Tilapia in Aquaculture, 475–490.
Scoullos M., Constantianos V., 1996, Assessment of the state of pollution of the Mediterranean Sea by zinc, copper and their compounds, UNEP/MAP Tech. Rep. Ser. No. 105, 130 pp.
Steinberg C.E.W., Tayarani-Dastmalian T., 1993, Changes in metal speciation in a sediment core from an acidified Black Forest lake (Wildsee, Germany), Water Air Soil Poll., 68 (3–4), 525–537.
http://dx.doi.org/10.1007/BF00478474
Taylor M.D., 1997, Accumulation of cadmium derived from fertilisers in New Zealand soils, Sci. Total Environ., 208 (1–2), 123–126.
http://dx.doi.org/10.1016/S0048-9697(97)00273-8
Taylor M.P., Kesterton R.G.H., 2002, Heavy metal contamination of an arid river environment: Gruben River, Namibia, Geomorphology, 42 (3–4), 311–327.
http://dx.doi.org/10.1016/S0169-555X(01)00093-9
Tessier A., Campbell P.G.C., Bisson M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51 (7), 844–850.
http://dx.doi.org/10.1021/ac50043a017
Thawornchaisit U., Polprasert C., 2009, Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils, J. Hazard. Mater., 165 (1–3), 1109–1113.
WDNR, 2003, Consensus-based sediment quality guidelines; Recommendations for use & application, Wisconsin Dept. Natural Resour., WT-732 2003, 35 pp.
Wu P., Liu C.Q., Ahang G.P., Yang Y.G., 2004, Chemical forms and ecological risks of heavy metals in river sediment at carbonatite mining area, Rural Eco-Environ., 20 (3), 28–31.
WWCG, 1992, Alexandria wastewater masterplan program update, A report for the Alexandria General Organisation for Sanitary DrainageWWCG in association with WARITH/ECG, 248 pp.
Youssef D.H., Masoud M. S., 2004, Behavior of some acid-base indicators in some Egyptian aquatic environments, Bull. Chem. Technol. Macedonia, 23 (1), 37–46.
Yuan C., Shi J., He B., Liu J., Liang L., Jiang G., 2004, Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction, Environ. Int., 30 (6), 769–783.
http://dx.doi.org/10.1016/j.envint.2004.01.001
Zhu G.W., Chen Y.X., Zhou G.D., Wang F.P., Wu J.B., 2001, Distribution of heavy metals in the sediments from the Grand Canal (Hangzhou section), China Environ. Sci., 21 (1), 65–69.
Spatio-temporal patterns of PAHs, PCBs and HCB in sediments of the western Barents Sea
Oceanologia 2011, 53(4), 1005-1026
http://dx.doi.org/10.5697/oc.53-4.1005
Agata Zaborska1,*,
Jolynn Carroll2,3,
Ksenia Pazdro1,
Janusz Pempkowiak1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: agata@iopan.gda.pl
*corresponding author
2Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment,
Tromsø 9296, Norway
3Department of Geology, University of Tromsø,
Dramsveien 201, Tromsø 9037, Norway
keywords:
Arctic, organic contaminants, POPs, sediment accumulation
Received 10 October 2011, revised 25 October 2011, accepted 3 November 2011.
Abstract
We examine the composition and levels of organic contaminants (PAHs, PCB, HCB) in four sediment cores collected from the Barents Sea.
We assess the influence of temporal variations in contaminant supplies and post-depositional reworking on contaminant distribution. Anthropogenic
levels of ∑12 PAH reached 95 ng g-1, higher inventories dominated by BKF were observed at southern stations, while northern stations exhibited
lower inventories with PHE as the dominant compound. The PCB composition was similar at all stations dominated by CB 101, 138 and 153. ∑7 PCB
concentrations were higher at northern stations. The observed composition and spatio-temporal pattern of organic contaminants is in accordance with
long-range transport supplies.
References
Ab Razak I.A., Li A., Christensen E.R., 1996, Association of PAHs, PCBs, Cs-137 and Pb-210 with clay, silt and organic carbon in sediments, Water Sci. Technol., 34 (7–8), 29–35.
http://dx.doi.org/10.1016/S0273-1223(96)00719-6
AMAP, 2004, AMAP assessmment 2002: Persistent organic pollutants in the Arctic, Arctic Monitoring and Assessments Programme (AMAP), Oslo.
Axelman J., Bandh C., Broman D., Carman R., Jonsson P., Larsson H., Linder H., Näf C., Pettersen H., 1995, Time-trend analysis of PAH and PCB sediment fluxes in the northern Baltic proper using different dating methods, Mar. Freshwater Res., 46 (1), 37–144.
Behar F., Leblond C., Saint-Paul P., 1989, Quantitative analysis of pyrolysis effluents in an open and closed system, Oil Gas Sci. Technol., 44 (3), 87–411.
Boitsov S., Jensen H.K.B., Klungsøyr J., 2009a, Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea, Mar. Environ. Res., 68 (5), 236–245.
http://dx.doi.org/10.1016/j.marenvres.2009.06.013
Boitsov S., Jensen H.K.B., Klungsøyr J., 2009b, Geographical variations in hydrocarbon levels in sediments from the western Barents Sea, Norw. J. Geol., 89, 91–100.
Breivik K., Sweetman A., Pacyna J.M., Jones K.C., 2002, Towards a global historical emission inventory for selected PCB congeners – a mass balance approach: 2. Emissions, Sci. Total Environ., 290 (1–3), 199–224.
http://dx.doi.org/10.1016/S0048-9697(01)01076-2
Budzinski H., Jones I., Bellocq J., Piérard C., Garrigues P., 1997, Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary, Mar. Chem., 58 (1–2), 85–97.
Carroll J., Lerche I., 2003, Sedimentary processes: Quantification using radionuclides, Elsevier, Amsterdam, 272 pp.
Carroll J., Savinov V., Savinova T., Dahle S., McCrea R., Muir D.C.G., 2008a, PCBs, PBDEs and pesticides released to the Arctic Ocean by the Russian Rivers Ob and Yenisei, Environ. Sci. Technol., 42 (1), 69–74.
http://dx.doi.org/10.1021/es071673l
Carroll J., Zaborska A., Papucci C., Schirone A., Carroll M., Pempkowiak J., 2008b, Accumulation of organic carbon in the western Barents Sea, Deep-Sea
Res. Pt. II, 55 (20–21), 2361–2371.
http://dx.doi.org/10.1916/j.dsr2.2008.05.005
CEPA (Canadian Environmental Act), 1993, Priority Substances List Assessment Report: Trichloroethylene, Environment Canada, Health Canada, Ottawa, Ontario.
Dahle S., Matishov G.G., Savinov V.M., Savinova T.N., Velvin R., Jørgensen E., Virin A. I., Evenset A., 2000, Organochlorines in harbours in northern
Norway and Russia, Proceedings of the Workshop on Persistent Organic Pollutants (POPs) in the Arctic: Human Health and Environmental Concerns, (Rovaniemi 18–20 January 2000), Univ. Arctic, Rovaniemi, Abstract 10, 1–4.
Dahle S., Savinov V., Klungsøyr J., Boitsov S., Plotitsyna N., Zhilin A., Savinova T., Petrova V., 2009, Polyaromatic hydrocarbons (PAHs) in the Barents Sea
sediments: small changes over the recent 10 years, Mar. Biol. Res., 5 (1), 101–108.
http://dx.doi.org/10.1080/17451000802512259
Dahle S., Savinov V.M., Matishov G.G., Evenset A., Næs, K., 2003, Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay, Sci. Tot. Environ., 306 (1–3), 57–71.
http://dx.doi.org/10.1016/S0048-9697(02)00484-9
Gustaffsson Ö., Axelman J., Broman D., Eriksson M., Dahlgaard H., 2001, Process-diagnostic patterns of chlorobiphenyl congeners in two radiochronically
characterized sediment cores from the northern Baffin Bay, Chemosphere, 45 (6–7), 759–766.
http://dx.doi.org/10.1016/S0045-6535(01)00088-1
Halsall C. J. Sweetman A. J., Barrie L.A., Jones K.C. 2001,Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic, Atmos.
Environ., 35 (2), 255–267.
http://dx.doi.org/10.1016/S1352-2310(00)00195-3
Hop H., Pavlova O., 2008, Distribution and biomass transport of ice-amphipods in Svalbard waters, Deep-Sea Res. Pt. II, 55 (20–21), 2292–2307.
http://dx.doi.org/10.1016/j.dsr2.2008.05.023
Iwata H., Tanabe S., Aramoto M., Sakai N., Tatsukawa R., 1994, Persistent organochlorine residues in sediments from the Chukchi Sea, Bering Sea
and Gulf of Alaska, Mar. Pollut. Bull., 28 (12), 746–753.
http://dx.doi.org/10.1016/0025-326X(94)90334-4
Kuzyk Z.A., Stow J.P., Burgess N.M., Solomon S.M., Reimer K. J., 2005, PCBs in sediments and the coastal food web near a local contaminant
source in Saglek Bay, Labrador, Sci. Total Environ., 351–352, 264–284.
http://dx.doi.org/10.1016/j.scitotenv.2005.04.050
Lide D.R. (ed.), 1991, CRC Handbook of chemistry and physics, 1991–1992, 72nd edn., Taylor & Framcis, Boca Raton, FL, 3–96.
Lohmann R., Jurado E., Pilson M.E.Q., Dachs J., 2006, Oceanic deep water formation as a sink of persistent organic pollutants, Geophys. Res. Lett.,
33 (12), L12607.
http://dx.doi.org/10.1029/2006GL025953
Næs K., Knutzen J., Berglind L., 1995, Occurrence of PAH in marine organisms and sediments from smelter discharge in Norway, Sci. Total Environ.,
163 (1–3), 93–106.
http://dx.doi.org/10.1016/0048-9697(95)04490-R
Næs K., Oug E., 1998, The distribution and environmental relations of polycyclic aromatic hydrocarbons (PAHs) in sediments from Norwegian smelter-affected
fjords, Chemosphere, 36 (3), 561–576.
http://dx.doi.org/10.1016/S0045-6535(97)00361-5
Pavlov V., Pavlova O., Korsnes R., 2004, Sea ice fluxes and drift trajectories from potential pollution sources, computed with a statistical sea ice model of the Arctic Ocean, J. Marine Syst., 48 (1–4), 133–157.
Pazdro K., 2004, Persistent Organic Pollutants in sediments from the Gulf of Gdańsk, Pol. Ann. Environ. Prot., 6, 63–76.
Pfirman S. L., Eicken H., Bauch D., Weeks W. F., 1995, The potential transport of pollutants by Arctic sea ice, Sci. Total Environ., 159 (2–3), 129–146.
http://dx.doi.org/10.1016/0048-9697(95)04174-Y
Pfirman S. L., Kögeler J.W., Rigor I., 1997, Potential for rapid transport of contaminants from the Kara Sea, Sci. Total Environ., 202 (1–3), 111–122.
http://dx.doi.org/10.1016/S0048-9697(97)00108-3
Qiao M., Wang C., Huang S., Wang D., Wang Z., 2006, Composition, sources, and potential toxicological significance of PAHs in the surface sediments
of the Meiliang Bay, Taihu Lake, China, Environ. Int., 32 (1), 28–33.
http://dx.doi.org/10.1016/j.envint.2005.04.005
Rodrigues J. L.M., Kachel C.A., Aiello M.R., Quensen J. F., Maltseva O.V., Tsoi T.V., Tiedje J.M., 2006, Degradation of aroclor 1242 dechlorination products
in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb), Appl. Environ. Microbiol., 72 (4), 2476–2482.
http://dx.doi.org/10.1128/AEM.72.4.2476-2482.2006
Savinov V.M., Savinova T.N., Carroll J., Matishov G.G., Dahle S., Naes K., 2000, Polycyclic aromatic hydrocarbons (PAHs) in sediments of the
White Sea, Russia, Mar. Pollut. Bull., 40 (10), 807–818.
http://dx.doi.org/10.1016/S0025-326X(00)00004-7
Savinov V.M., Savinova T.N., Matishov G.G., Dahle S., Næs K., 2003, Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia, Sci. Total Environ., 306 (1–3), 39–56.
http://dx.doi.org/10.1016/S0048-9697(02)00483-7
Sericano J.L., Brooks J.M., Champ M.A., Kennicutt M.C., Makeyev V.V., 2001, Trace contaminant concentrations in the Kara Sea and its adjacent
rivers, Russia, Mar. Pollut. Bull., 42 (11), 1017–1030.
http://dx.doi.org/10.1016/S0025-326X(00)00236-8
Skotvold T., Savinov V., 2003, Regional distribution of PCBs and presence of technical PCB mixtures in sediments from Norwegian and Russian
Arctic Lakes, Sci. Total Environ., 306 (1–3), 85–97.
http://dx.doi.org/10.1016/S0048-9697(02)00486-2
Stange K., Klungsøyr J., 1997, Organochlorine contaminants in fish and polycyclic aromatic hydrocarbons in sediments from the Barents Sea, J. Mar. Sci., 54, 318–332.
Strachan W.M. J., Burniston D.A., Williamson M., Bohdanowicz H., 2001, Spatial differences in persistent organochlorine pollutant concentrations
between the Bering and Chukchi Seas, Mar. Pollut. Bull., 43 (1–6), 132–142.
http://dx.doi.org/10.1016/S0025-326X(01)00078-9
Sundfjord A., Fer I., Kasajima Y., Svendsen H., 2007, Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea,
J. Geophys. Res., 112, C05008.
http://dx.doi.org/10.1029/2006JC003524
Thibodeaux L. J., Bierman V. I., 2003, The Bioturbation-driven chemical release process, Environ. Sci. Technol., 37 (13), 252A–258.
http://dx.doi.org/10.1021/es032518j
Tronczyński J., Munschy C., Héas-Moisan K., Guiot N., Truquet I., Olivier N., Men S., Furaut A., 2004, Contamination of the Bay of Biscay by polycyclic aromatic hydrocarbons (PAHs) following the T/V "Erika" oil spill, Aquat. Living Resour., 17 (03), 243–259.
http://dx.doi.org/10.1051/alr:2004042
Valette-Silver N., Hameedi M. J., Efurd D.W., Robertson A., 1999, Status of the contamination in sediments and biota from the Western Beaufort Sea (Alaska), Mar. Pollut. Bull., 38 (8), 702–722.
http://dx.doi.org/10.1016/S0025-326X(99)00034-X
Vandieken V., Nickel M., Jørgensen B.B., 2006, Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways, Mar. Ecol.-Prog. Ser., 322 (3376), 15–27.
http://dx.doi.org/10.3354/meps322015
Van Zoest R., Van Eck G.T.M., 1993, Historical input and behavior of hexachlorobenzene, polychlorinated-biphenyls and polycyclic aromatic-hydrocarbons in two dated sediment cores from the Scheldt Estuary, SW Netherlands, Mar. Chem., 44 (1), 95–103.
Wania F., Su Y., 2004, Quantifying the Global Fractionation of Polychlorinated Biphenyls, Ambio, 33 (3), 161–168.
Yunker M.B., Macdonald R.W., 1995, Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea shelf,
Arctic, 48 (2), 118–129.
Yunker M.B., Snowdon L.R., MacDonald R.W., Smith J.N., Fowler M.G., Skibo D.N., McLaughlin F.A., Danyushevskaya A. I., Petrova V. I., Ivanov G. I.,
1996, Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas, Environ. Sci. Technol., 30 (4), 1310–1320.
http://dx.doi.org/10.1021/es950523k
Zaborska A., Carroll J., Papucci C., Toricelli L., Carroll M., Walkusz-Miotk J., Pempkowiak J., 2008, Recent sediment accumulation rates for the western margin of the Barents Sea, Deep-Sea Res. Pt. II, 55 (20–21), 2352–2360.
http://dx.doi.org/10.1016/j.dsr2.2008.05.026
Zaborska A., Mietelski J.W., Carroll J., Papucci C., Pempkowiak J., 2010, Sources and distributions of 137Cs, 238Pu and 239,240Pu in the Barents Sea, J. Environ. Radioactiv., 101 (4), 323–331.
http://dx.doi.org/10.1016/j.jenvrad.2010.01.006
Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea)
Oceanologia 2011, 53(4), 1027-1043
http://dx.doi.org/10.5697/oc.53-4.1027
Jana Kobelyanskaya1,*,
Valentyna P. Bobykina2,
Halina Piekarek-Jankowska 1
1Department of Marine Geology, Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland;
e-mail: solnyszko@ocean.univ.gda.pl
*corresponding author
2Laboratory of Coastal Systems, Atlantic Department of the P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences,
Prospect Mira 1, Kaliningrad 236000, Russia
keywords:
morphology, lithodynamics, grain size, coastal zone, nearshore, Vistula Spit, Gulf of Gdańsk
Received 1 August 2011, revised 28 September 2011, accepted 19 October 2011.
This transborder research was inspired by the Laboratory of Coastal Systems, Atlantic Department of the P.P. Shirshov Institute of Oceanology,
Russian Academy of Sciences, by the Department of Marine Geology, Institute of Oceanography, University of Gdańsk
and by the system project "InnoDoktorant - Scholarships for Ph.D. students, 1st edition", co-financed by the European Union within the framework of the European
Social Fund.
The authors are particularly indebted to Dr B. V. Chubarenko, Dr V. L. Boldyrev, Dr V. A. Chechko, D. A. Domnin, V. Y. Kurchenko and K. V. Karmanov.
The data of the winds speed and directions was supplied by the ARMAAG Foundation.
Abstract
The paper presents a lithodynamic interpretation of the Polish-Russian morphological and lithological research project along the marine coastal zone
of the Vistula Spit, carried out between July and September 2008. 78.4% of the coastal zone is characterized by a balanced environment, with fractional
transport of sediments as bed and suspended load. Deposition was observed in 8.2% of the study area. A dynamic environment with a deficit of bed
material, local turbulences and erosive trends were found in 13.2% of the coastal zone. The critical erosive current velocities vary from 16 to 20-26
cm s-1.
References
Babakov A., 2008, Characteristics of the bottom currents on the Gulf of Gdańsk near the piers of Baltiysk harbour, according to results of measurements, Sci. Proc. Russ. Geograph. Soc. (Kaliningrad Branch), 7 (1), CD-ROM, G1–G6, (in Russian).
Badiukova E.N., Varusienko A.N., Solovieva G.D., 1996, The origin of the Vistula Spit in the Holocene, Mar. Geol., 36 (5), 769–773, (in Russian).
Baraniecki J., Racinowski R., 1996, The application of graining parameters of the rubble from the lower part of the back-swash of the shore stream zone
to the determination of evolution tendencies of the Wolin Island coast, [in:] Lithodynamics of the seashore, Meyer Z. (ed.), PAS, Tech. Univ. Szcz., Szczecin, 27–38.
Blott S. J., Pye K., 2001, Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26 (11), 1237–1248.
http://dx.doi.org/10.1002/esp.261
Bobykina V.P., BoldyrevW. L., Domnin D.A., Karmanov K.V., Kobelyanskaya J., Kurczenko V.Y., Piekarek-Jankovska H., Chechko V.A., Chubarenko B.V., 2009, The results of the transborder experiment on the lithodynamic study of the Vistula Spit coastal zone, [in:] Lithodynamics of the marine bottom contact zone, GEOS, Moscow, 60–63, (in Russian).
Bobykina V.P., Karmanov K.V., 2009, Dynamics of the Gulf of Gdańsk coast and the relation with anthropogenic impact. Creation and exploitation of artificial coastal land areas, SO RAN, Siberian Dept., RAS, Novosibirsk, 119–124, (in Russian).
Boldyrev V. L., Bobykina V.P., 2001, General characteristics of the morphology and dynamics of the Vistula Spit, [in:] Ecological problems of Kaliningrad and the Baltic, Kaliningrad State Univ., Kaliningrad, 88–92, (in Russian).
Chechko V.A., 2007, Contemporary sedimentary processes in the Vistula Lagoon, Baltic Sea, Lomonosov Moscow State Univ., IO RAN, Moscow, 1–186, (in Russian).
Chechko V.A., Chubarenko B.V., Boldyrev V. L., Bobykina V.P., Kurchenko V.Y., Domnin D.A., 2008, Dynamics of the marine coastal zone of the sea near the entrance moles of the Kaliningrad seaway channel, Water Resour., 35 (6), 652–661.
http://dx.doi.org/10.1134/S0097807808060043
Folk R. L., Ward W.C., 1957, Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Res., 27, 3–26.
Hjulström F., 1935, Studies of the morphological activity of rivers as illustrated by the River Fyris, Bull. Geol. Inst. Univ. Uppsala, 25, 221–528.
Kobelyanskaya J., Leont’yev I.O., 2011, The sediment transport in the nearshore of the Vistula Spit during the storm waves, [in:] Shores and beaches of the Baltic Sea. South-Eastern segment, Habidov A. (ed.), SB RAS, Novosibirsk, (in press), (in Russian).
Kowalewski M., 2002, An operational hydrodynamic model of the Gulf of Gdańsk, [in:] Research work based on the ICM’s UMPL numerical weather prediction system results, B. Jakubiak (ed.), ICM, Warszawa, 109–119.
Musielak S., 1980, The present coastal processes in the Bay of Gdańsk. Research problems in the Baltic area, Peribalticum, 1, 17–29, (in Polish).
Passchier S., Uścinowicz S., Laban C., 1997, Sediment supply and transport directions in the Gulf of Gdańsk as observed from SEM analysis of quartz grain surface textures, Vol. 158, PIG, Warszawa, p. 24.
Passega R., 1964, Grain size representation by CM patterns as a geological tool, J. Sediment. Petrol., 34 (4), 830–847.
Racinowski R., Szczypek T., Wach J., 2001, Presentation and interpretation of the research results on the granulation of quaternary sediments, Silesia Univ. Publ., Katowice, 84–119, (in Polish).
Rosa B., Wypych K., 1980, The spits of the Southern Baltic coastal zone, Peribalticum, 1, 31–34, (in Polish).
Ryabkova O. I., 2002, Dynamics of the marine coast, 1:1000000, Geographical Atlas of Kaliningrad Oblast, Kaliningrad State Univ., Kaliningrad, p. 157.
Smith W.H. F., Sandwell D.T., 1997, Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277 (5334), 1956–1962.
http://dx.doi.org/10.1126/science.277.5334.1956
Solovieva G.D., Badiukova E.N., 1997, Geomorphologic characteristics of the Vistula Spit, the Baltic Sea, Geomorphology, 2, 82–89, (in Russian).
Tomczak A., 1995, Geological structure and Holocene evolution of the Polish coastal zone, Vol. 149, PIG, Warszawa, 149, 90–102.
Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments, J. Geol., 30 (5), 377–392.
http://dx.doi.org/10.1086/622910
Zawadzka-Kahlau E., 1999, Evolutional trends of the Polish coast of the Southern Baltic, GTN, Gdańsk, 142 pp., (in Polish).