Oceanologia No. 54 (4) / 12
Contents
Papers
-
The impact of a non-uniform land surface on the radiation environment over an Arctic fjord - a study with a 3D radiative transfer model for stratus clouds over the Hornsund fjord, Spitsbergen:
Anna Rozwadowska, Izabela Górecka
-
Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea:Mirosława Ostrowska
-
Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean: Mirosława Ostrowska, Bogdan Woźniak, Jerzy Dera
-
Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland): Dariusz Ficek, Justyna Meler, Tomasz Zapadka, Bogdan Woźniak, Jerzy Dera
-
Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic: Evgenia Gurova, Boris Chubarenko
-
Influence of the wind field on the radiance of a marine shallow: evidence from the Caspian Sea: Genrik S. Karabashev, Marina A. Evdoshenko
-
Water column conditions in a coastal lagoon near Jeddah, Red Sea:
Alaa M. A. Albarakati, Fazal Ahmad
-
Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt:
Fedekar Fadel Madkour, Mona Mohamed Gaballah
-
First report of endosymbionts in Dreissenapolymorpha from the brackish Curonian Lagoon, SE Baltic Sea:
Romualda Chuševė, Sergey E. Mastitsky, Anastazja Zaiko
Papers
The impact of a non-uniform land surface on the radiation environment over an Arctic fjord - a study with a 3D radiative transfer model for stratus clouds over the Hornsund fjord, Spitsbergen
Oceanologia 2012, 54(4), 509-543
http://dx.doi.org/10.5697/oc.54-4.509
Anna Rozwadowska*, Izabela Górecka**
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: ania@iopan.gda.pl
*corresponding author,
**former affiliation
keywords:
Monte Carlo modelling, stratus, solar radiation, spatial variability, downward irradiance, plane-parallel bias, solar flux anomaly due to the uniform surface assumption, nadir radiance, Hornsund, Spitsbergen, Arctic
Received 10 June 2011, revised 18 April 2012,accepted 9 October 2012.
This research was carried within the framework of Polish Research Project NN307315436 founded by the Polish Ministry of Science and Higher Education in 2009-2011.
Abstract
This paper estimates the influence of land topography and cover on 3D radiative
effects under overcast skies in the Arctic coastal environment, in particular in the
Hornsund fjord region, Spitsbergen. The authors focus on the impact of a
non-uniform surface on:(1)the spatial distribution of solar fluxes
reaching the fjord surface, (2) spectral shortwave cloud radiative forcing at
the fjord surface, (3) the solar flux anomaly at the domain surface resulting
from the assumption of a uniform surface, i.e. the error due to plane parallel
assumptions in climate models, and (4) remote sensing of cloud optical
thickness over the fjord. Their dependence on spectral channel, cloud optical
thickness, cloud type, cloud base height, surface albedo and solar zenith
angle is discussed. The analysis is based on Monte Carlo simulations of solar
radiation transfer over a heterogeneous surface for selected channels of the
MODIS radiometer. The simulations showed a considerable impact of the land
surrounding the fjord on the solar radiation over the fjord. The biggest
differences between atmospheric transmittances over the fjord surface and over the
ocean were found for a cloud optical thickness τ = 12, low solar zenith angle θ,
high cloud base and snow-covered land. For τ = 12, θ = 53°, cloud base height 1.8 km and
wavelength λ = 469 nm, the enhancement in irradiance transmittance
over the fjord was 0.19 for the inner fjords and 0.10 for the whole fjord
(λ = 469 nm).The land surrounding the Hornsund fjord also had
a considerable impact on the spectral cloud radiative forcing on the fjord
surface and the solar flux anomaly at the domain surface due to the uniform
surface assumption. For the mouth and central part of the fjord the error due
to the use of channel 2 of the MODIS radiometer (λ = 858 nm) for
cloud optical thickness retrieval was < 1 in the case of low-level clouds
(cloud base height 1 km, nadir radiance, θ = 53°, cloud
optical thickness retrieved solely from MODIS channel 2). However, near the
shoreline (up to 2 km from it), especially over the inner fjords, the cloud
optical thickness was then overestimated by > 3 forτ = 5 and by
> 5 forτ = 20.
References
Arnold N. S., Rees W.G., Hodson A. J., Kohler J., 2006, Topographic controls on the surface energy balance of a high Arctic glacier, J. Geophys. Res., 111, F02011,
http://dx.doi.org/10.1029/2005JF000426
Arnold G.T., Tsay S.-C., King M.D., Li J.Y., Soulen P. F., 2002,
Airborne spectral measurements of surface-atmosphere anisotropy for arctic sea ice and tundra, Int. J. Remote Sens., 23 (18), 3763-3781,
http://dx.doi.org/10.1080/01431160110117373
Baran A. J., Shcherbakov V.N., Baker B.A., Gayet J.F., Lawson R.P., 2005,
On the scattering phase-function of non-symmetric ice-crystals, Q. J. R. Meteorol. Soc., 131 (611), 2609-2616,
http://dx.doi.org/10.1256/qj.04.137
Benner T.C., Curry J.A., Pinto J. O., 2001, Radiative transfer in the summertime
Arctic, J. Geophys. Res., 106 (D14), 15173-15183,
http://dx.doi.org/10.1029/2000JD900422
Berk A., Anderson G.P., Acharya P.K., Hoke M. L., Chetwynd J. H., Bernstein L. S., Shettle E.P., Matthew M.W., Alder-Golden S.M., 2003,
MODTRAN4. Version 3. Revision 1. Users manual, Air Force Res. Lab., Hanscom, AFB, MA., 91 pp.
Błaszczyk M., Jania J., Hagen J.O., 2009, Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.
Chen Y., Hall A., Liou K.N., 2006, Application of three-dimensional solar radiative
transfer to mountains, J. Geophys. Res., 111 (D21111),
http://dx.doi.org/10.1029/2006JD007163
D’Almeida G.A., Koepke P., Shettle E.P., 1991, Atmospheric aerosols. Global climatology and radiative characteristics,
A. DEEPAK Publ., Hampton, 561 pp.
Degünther M., Meerkötter R., 2000, Influence of inhomogeneous surface albedo on
UV irradiance: effect of a stratus cloud, J. Geophys. Res., 105 (D18), 22755-22761,
http://dx.doi.org/10.1029/2000JD900344
Dong X., Mace G.G., 2003, Arctic stratus cloud properties and radiative forcing
derived from ground-based data collected at Barrow, Alaska, J. Clim., 16 (3), 445-461,
http://dx.doi.org/10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2
Dunlap E., De Tracey B.M., Tang C.C. L., 2007, Short-wave radiation and sea ice
in Baffin Bay, Atmos.-Ocean, 45 (4), 195-210,
http://dx.doi.org/10.3137/ao.450402
Fu Q., 2007, A new parameterization of an asymmetry factor of cirrus clouds for
climate models, J. Atmos. Sci., 64 (11), 4140-4150,
http://dx.doi.org/10.1175/2007JAS2289.1
Grenfell T.C., Perovich D.K., 1984, Spectral albedos of sea ice and incident solar
irradiance in the southern Beaufort Sea, J. Geophys. Res., 89 (C3), 3573-3580,
http://dx.doi.org/10.1029/JC089iC03p03573
Grenfell T.C., Warren S.G., Mullen P.C., 1994, Reflection of solar radiation
by the Antarctic snow surface at ultraviolet, visible and near-infrared
wavelengths, J. Geophys. Res., 99 (D9), 18669-18684,
http://dx.doi.org/10.1029/94JD01484
Henyey L.G., Greenstein J. L., 1941, Diffuse radiation in the galaxy, Astrophys. J., 93, 70-83,
http://dx.doi.org/10.1086/144246
Hofierka J., 1997, Direct solar radiation modelling within an open GIS environment,
Proc. JEC-GI’97 conf., Vienna, Austria, IOS Press, Amsterdam, 575-584.
Hu Y.X., Stamnes K., 1993, An accurate parametrization of the radiative properties
of water clouds suitable for use in climate models, J. Climate, 6 (4), 728-742,
http://dx.doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2
Iwabuchi H., 2006, Efficient Monte Carlo methods for radiative transfer modeling,
J. Atmos. Sci., 63 (9), 2324-2339,
http://dx.doi.org/10.1175/JAS3755.1
King M. D., Platnick S., Yang P., Arnold G.T., Gray M. A., Riedi J. C., Ackerman
S.A., Liou K.-N., 2004, Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: application of airborne
multispectral MAS data, J. Atmos. Ocean. Technol., 21 (6), 857-875,
http://dx.doi.org/10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2
King M.D., Tsay S.-C., Platnick S.E., Wang M., Liou K.-N., 1997, Cloud
retrieval algorithms for MODIS: optical thickness, effective particle radius,
and thermodynamic phase, MODIS Algorithm Theoretical Basis Document
No. ATBD-MOD-05 MOD06 - Cloud product (23 December 1997, version 5), 79 pp.
Kolondra L., 2002, Problemy fotogrametrycznego pozyskiwania danych w badaniach
glacjologicznych (studium metodyczne na przykładzie Spitsbergenu), rozprawa
doktorska, Biblioteka Wydziału Nauk o Ziemi Uniwersytetu Śląskiego, 166 pp. + 3 mapy.
Kylling A., Dahlback A., Mayer B., 2000, The effect of clouds and surface albedo on
UV irradiances at a high latitude site, Geophys. Res. Lett., 27 (9), 1411-1414,
http://dx.doi.org/10.1029/1999GL011015
Kylling A., Mayer B., 2001, Ultraviolet radiation in partly snow covered terrain:
observations and three-dimensional simulations, Geophys. Res. Lett., 28 (19),
3665-3668,
http://dx.doi.org/10.1029/2001GL013034
Liou K.N., Lee W.-L., Hall A., 2007, Radiative transfer in mountains: application
to the Tibetan Plateau, Geophys. Res. Lett., 34, L23809,
http://dx.doi.org/10.1029/2007GL031762
Lubin D., Ricchiazzi P., Payton A., Gautier C., 2002, Significance of
multidimensional radiative transfer effects measured in surface fluxes at an
Antarctic coastline, J. Geophys. Res., 107 (D19), 4387,
http://dx.doi.org/10.1029/2001JD002030
Marchuk G., Mikhailov G., Nazaraliev M., Darbinjan R., Kargin B., Elepov B.,
1980, The Monte Carlo methods in atmospheric optics, Springer-Verlag, New York, 208 pp.
Marsaglia G., 1999, Random numbers for C: The END?, Message-ID36A5FC62.17C9CC33@stat.fsu.edu in newsgroups sci.math and
sci.stat.math, 20 Jan 1999, http://groups.google.com/group/sci.crypt/browse thread/thread/ca8682a4658a124d/
Marsaglia G., Zaman A., 1993, The KISS generator, Technical report, Florida State Univ., Tallahassee, FL.
Marshak A., Davis A. B. (eds.), 2005, 3D radiative transfer in cloudy atmospheres,
Springer-Verlag, Berlin-Heidelberg-New York, 686 pp.,
http://dx.doi.org/10.1007/3-540-28519-9
Marshak A., Davis A., Wiscombe W., Titov G., 1995, The verisimilitude of the
independent pixel approximation used in cloud remote sensing, Remote Sens. Environ., 52 (1), 71-78,
http://dx.doi.org/10.1016/0034-4257(95)00016-T
Mayer B., Degünther M., 2000, Comment on ‘Measurements of erythemal
irradiance near Davis Station, Antarctica: effect of inhomogeneous surface
albedo’, Geophys. Res. Lett., 27 (21), 3489-3490,
http://dx.doi.org/10.1029/1999GL011171
Mayer B., Hoch S.W., Whiteman C.D., 2010, Validating the MYSTIC threedimensional
radiative transfer model with observations from the complex
topography of Arizona’s meteor crater, Atmos. Chem. Phys., 10 (18), 8685-8696,
http://dx.doi.org/10.5194/acp-10-8685-2010
McComiskey A., Ricchiazzi P., Gautier C., Lubin D., 2006, Assessment of a three
dimensional model for atmospheric radiative transfer over heterogeneous
land cover, Geophys. Res. Lett., 33, L10813,
http://dx.doi.org/10.1029/2005GL025356
Ørbćk J.B., Hisdal V., Svaasand L.E., 1999, Radiation climate variability in
Svalbard: surface and satellite observations, Polar Res., 18 (2), 127-134,
http://dx.doi.org/10.1111/j.1751-8369.1999.tb00284.x
Perovich D. K., Richter-Menge J.A., Jones K.F., Light B., 2008, Sunlight, water,
and ice: extreme Arctic sea ice melt during the summer of 2007, Geophys.
Res. Lett., 35, L11501,
http://dx.doi.org/10.1029/2008GL034007
Pirazzini R., R¨ais¨anen P., 2008, A method to account for surface albedo
heterogeneity in single-column radiative transfer calculations under overcast
conditions, J. Geophys. Res., 113, D20108,
http://dx.doi.org/10.1029/2008JD009815
Platnick S., Li J.Y., King M.D., Gerber H., Hobbs P.V., 2001, A solar reflectance
method for retrieving the optical thickness and droplet size of liquid water
clouds over snow and ice surfaces, J. Geophys. Res., 106 (D14), 15185-15199,
http://dx.doi.org/10.1029/2000JD900441
Podgorny I., Lubin D., 1998, Biologically active insolation over Antarctic waters:
effect of a highly reflecting coastline, J. Geophys. Res., 103 (C2), 2919-2928,
http://dx.doi.org/10.1029/97JC02763
Ramanathan V., Cess R.D., Harrison E.F., Minnis P., Barkstrom B.R., Ahmad
E., Hartmann D., 1989, Cloud-radiative forcing and climate: results from
the Earth Radiation Budget Experiment, Science, 243 (4887), 57-63,
http://dx.doi.org/10.1126/science.243.4887.57
Ricchiazzi P., Gautier C., 1998, Investigation of the effect of surface heterogeneity
and topography on the radiation environment of Palmer Station, Antarctica,
with a hybrid 3-D radiative transfer model, J. Geophys. Res., 103 (D6), 6161-6176,
http://dx.doi.org/10.1029/97JD03629
Ricchiazzi P., Payton A., Gautier C., 2002, A test of three-dimensional radiative
transfer simulation using the radiance signatures and contrasts at a high
latitude coastal site, J. Geophys. Res.-Atmos., 107 (D22), 4650,
http://dx.doi.org/10.1029/2001JD001166
Rozwadowska A., 2008, Influence of the land topography and cover on the spatial
distribution of solar radiation balance components at the land and sea surface
in the Hornsund region, Spitsbergen - a pilot model study, IO PAS internal
report, Statutory research task I.1.1, 2008, 23 pp.
Rozwadowska A., Cahalan R., 2002, Plane-parallel biases computed from
inhomogeneous Arctic clouds and sea ice, J. Geophys. Res., 107 (D19), 4387,
http://dx.doi.org/10.1029/2002JD002092
Shupe M.D., Uttal T., Matrosov S.Y., 2005, Arctic cloud microphysics retrievals
from surface-based remote sensors at SHEBA, J. Appl. Meteorol., 44 (10), 1544-1562,
http://dx.doi.org/10.1175/JAM2297.1
Shupe M.D., Uttal T., Matrosov S.Y., Frisch A. S., 2001, Cloud water contents
and hydrometeor sizes during the FIRE Arctic Clouds Experiment, J.Geophys.
Res., 106 (D14), 15015-15028,
http://dx.doi.org/10.1029/2000JD900476
Smolskaia I., Nunez M., Michael K., 1999, Measurements of erythemal
irradiance near Davis Station, Antarctica: effect of inhomogeneous surface
albedo, Geophys. Res. Lett., 26 (10), 1381-1384,
http://dx.doi.org/10.1029/1999GL900190
Spada F., Krol M.C., Stammes P., 2006, McSCIA: application of the Equivalence
Theorem in a Monte Carlo radiative transfer model for spherical shell
atmospheres, Atmos. Chem. Phys., 6 (12), 4823-4842,
http://dx.doi.org/10.5194/acp-6-4823-2006
Stamnes K., Tsay S.-C., Laszlo I., 2000, DISORT, a general-purpose Fortran
program for discrete-ordinate method radiative transfer in scattering and
emitting layered media: documentation and methodology, ver. 1.1.
Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K., 1988, Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple scattering
and emitting layered media, Appl. Opt., 27 (12), 2502-2509,
http://dx.doi.org/10.1364/AO.27.002502
Szymanowski M., Kryza M., Migała K., Sobolewski P., Kolondra L., 2008,
Preliminary results of GIS-based solar radiation model for Hornsund area,
SW Spitsbergen. The dynamics and mass budget of Arctic glaciers, Extended
abstracts, Workshop and GLACIODYN (IPY) meeting, 29-31 January 2008,
Obergurgl (Austria), IASC Working group on Arctic Glaciology, Inst. Marine
Atmos. Res., Utrecht Univ., Utrecht, 126-128.
Šúri M., Hofierka J., 2004, A new GIS-based solar radiation. Model and its
application to photovoltaic assessments, Transactions GIS, 8 (2), 175-190,
http://dx.doi.org/10.1111/j.1467-9671.2004.00174.x
Thomas G., Stamnes K., 2002, Radiative transfer in the atmosphere and ocean,
Cambridge Univ. Press, Cambridge, 517 pp.
Tsay S.-C., Jayaweera K., 1984, Physical characteristics of Arctic stratus
clouds, J. Clim. Appl. Meteorol., 23 (4), 584-596,
http://dx.doi.org/10.1175/1520-0450(1984)023<0584:PCOASC>2.0.CO;2
Werenskioldbreen and surrounding areas, Spitsbergen, Svalbard, Norway;
orthophotomap 1:25 000, 2002, Uniwersytet Śląski, Wydział Biologii i Nauk
o Ziemi, Sosnowiec and Norsk Polarinstitutt, Tromso, Sosnowiec.
Werner I., Ikävalko J., Schünemann H., 2007, Sea-ice algae in Arctic pack ice
during late winter, Polar Biol., 30 (11), 1493-1504,
http://dx.doi.org/10.1007/s00300-007-0310-2
Winther J.-G., Gerland S., Orbak J. B., Ivanov B., Blanco A., Boike J., 1999,
Spectral reflectance of melting snow in a high Arctic watershed on Svalbard:
some implications for optical satellite remote sensing studies, Hydrol. Process.,
13 (12-13), 2033-2049,
http://dx.doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<2033::AID-HYP892>3.0.CO;2-M
Zhang Y., Li Z., Macke A., 2002, Retrieval of surface solar radiation budget under
ice cloud sky: uncertainty analysis and parameterization, J. Atmos. Sci.,
59 (20), 2951-2965,
http://dx.doi.org/10.1175/1520-0469(2002)059<2951:ROSSRB>2.0.CO;2
Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea
Oceanologia 2012, 54(4), 545-564
http://dx.doi.org/10.5697/oc.54-4.545
Mirosława Ostrowska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: ostra@iopan.gda.pl
keywords:
chlorophyll a fluorescence, marine photosynthesis, non-photochemical quenching, of the chlorophyll a fluorescence, quantum yields of deactivation processes
Received 7 August 2012, revised19 September 2012, accepted 27 September 2012.
Support for this study was provided by the project "Satellite Monitoring of the Baltic Sea Environment - SatBaltyk" funded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
Abstract
A semi-empirical, physical models have been derived of the quantum yield of
the deactivation processes (fluorescence, photosynthesis and heat production)
of excited states in phytoplankton pigment molecules. Besides some already
known models (photosynthesis and fluorescence), this novel approach
incorporates the dependence of the dissipation yield of the excitation energy
in phytoplankton pigment molecules on heat.The quantitative dependences of
the quantum yields of these three processes on three fundamental parameters of
the marine environment are defined: the chlorophyll concentration in the surface
water layer Ca(0) (the basin trophicity),
the irradiance PAR(z) and the temperature temp(z) at the study site.
The model is complemented with two other relevant models describing the
quantum yield of photosynthesis and of natural Sun-Induced Chlorophyll a
Fluorescence (SICF) in the sea, derived earlier by the author or with her
participation on the basis of statistical analyses of a vast amount of
empirical material. The model described in the present paper enables the
estimation of the quantum yields of phytoplankton pigment heat production for
any region and season, in waters of any trophicity at different depths from
the surface to depths of ca 60 m. The model can therefore be used to estimate
the yields of these deactivation processes in more than half the thickness of
the euphotic zone in oligotrophic waters and in the whole thickness (and
deeper) of this zone in mesotrophic and eutrophic waters. In particular these
relationships may be useful for a component analysis of the budget of light
energy absorbed by phytoplankton pigments, namely, its utilization in
fluorescence, photochemical quenching and nonphotochemical radiationless
dissipation - i.e. direct heat production.
References
Antoine D., Andre J.M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner)
chlorophyll, Global Biogeochem. Cy., 10 (1), 56–69,
http://dx.doi.org/10.1029/95GB02832
Babin M., Therriault J.C., Legendre L., Nieke B., Reuter R., Condal A., 1995, Relationship between the maximum quantum yield of carbon fixation and the
minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence, Limnol. Oceanogr., 40 (5), 956–968,
http://dx.doi.org/10.4319/lo.1995.40.5.0956
Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., 7, Inst. Oceanol. PAS, Sopot, 114 pp., (in Polish).
Falkowski P. (ed.), 1980, Primary productivity in the sea, Env. Sci. Res., 19, Plenum Press, New York, 531 pp.
Ficek D., 2001, Modelling the quantum yield of photosynthesis in various marine systems, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 224 pp., (in Polish).
Ficek D., Majchrowski R., Ostrowska M., Woźniak B., 2000, Influence of non-photosynthetic pigments on the measured quantum yield of photosynthesis,
Oceanologia, 42 (2), 231–242.
Goodwin T.W., 1952, The comparative biochemistry of the carotenoids, Chapman
and Hall Ltd., London, 336 pp.
Goodwin T.W., 1965, Chemistry and biochemistry of plant pigments, Acad. Press,
London, 583 pp.
Grzyb J., Latowski D., Strzałka K., 2006, Lipocalins – a family portrait, J. Plant Physiol., 163 (9), 895–915,
http://dx.doi.org/10.1016/j.jplph.2005.12.007
Huot Y., Brown C.A., Cullen J. J., 2005, New algorithms for MODIS sun-induced
chlorophyll fluorescence and a comparison with present data products, Limnol.
Oceanogr. Meth., 3, 108–130,
http://dx.doi.org/10.4319/lom.2005.3.108
Huot Y., Brown C.A., Cullen J. J., 2007, Retrieval of phytoplankton biomass from
simultaneous inversion of reflectance, the diffuse attenuation coefficient and
Sun-induced fluoresence in coastal waters, J. Geophys. Res., 112, C06013, 26 pp.,
http://dx.doi.org/10.1029/2006JC003794
Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu.E., 1985, Utilisation of solar
energy in the photosynthesis of the Baltic and Black Sea phytoplankton, Izd.
Inst. Okeanol., AN SSSR, Moscow, 336 pp., (in Russian).
Kolber Z., Falkowski P.G., 1993, Use of active fluorescence to estimate
phytoplankton photosynthesis ‘in situ’, Limnol. Oceanogr., 38 (8), 1646–1665,
http://dx.doi.org/10.4319/lo.1993.38.8.1646
Latowski D., Grzyb J., Strzałka K., 2004, The xanthophyll cycle – Molecular
mechanism and physiological significance, Acta Physiol. Plant., 26 (2), 197–212,
http://dx.doi.org/10.1007/s11738-004-0009-8
Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics
of marine phytoplankton, Diss and monogr., 1, Pom. Akad. Pedagog., Słupsk, 131 pp., (in Polish).
Maritorena S., Morel A., Gentili B., 2000, Determination of the fluorescence
quantum yield by oceanic phytoplankton in their natural habitat, Appl. Optics, 39 (36), 6725–6737,
http://dx.doi.org/10.1364/AO.39.006725
Matorin D.N., Venediktov P. S., Konev Yu.N., Kazemirko Yu.V., Rubin A.B.,
1996, Application of a double-flash, impulse, submersible fluorimeter in the
determination of photosynthetic activity of natural phytoplankton, Trans. Russ.
Acad. Sci. – Earth Sci. Sec., 350 (7), 1159–1161.
Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical
and climatological implications, Prog. Oceanogr., 26 (3), 263–306,
http://dx.doi.org/10.1016/0079-6611(91)90004-6
Morosinotto T., Caffarri S., Dall’Osto L., Bassi R., 2003, Mechanistic aspects of the
xanthophyll dynamics in higher plant thylakoids, Physiol. Plantarum, 119 (3), 347–354,
http://dx.doi.org/10.1034/j.1399-3054.2003.00213.x
Morrison J.R., 2003, In situ determination of quantum yield of phytoplankton
chlorophyll a fluorescence: A simple algorithm, observations, and a model,
Limnol. Oceanogr., 48 (2), 618–631,
http://dx.doi.org/10.4319/lo.2003.48.2.0618
OstrowskaM., 2001, The application of fluorescence methods to the study of marine
photosynthesis, Diss. and monogr., Inst. Oceanol. PAS, 15, Sopot, 194 pp., (in Polish).
Ostrowska M., 2010, Dependence of quantum yield of chlorophyll a fluorescence in
the sea on environmental factors – the preliminary results, Ocean Optics XX, Conf. Proc., Anchorage.
Ostrowska M., 2011, Dependence between the quantum yield of chlorophyll
a fluorescence in marine phytoplankton and trophicity in low irradiance level, Opt. Aplicata, 41 (3), 567–577.
Ostrowska M., 2012a, Model of the dependence of the sun-induced chlorophyll
a fluorescence quantum yield on the environmental factors in the sea, Opt. Express, 20 (21), 23 300–23 317,
http://dx.doi.org/10.1364/OE.20.023300
Ostrowska M., Majchrowski R., Matorin D.N., Woźniak B., 2000, Variability of
the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical
‘in situ’ chlorophyll fluorometry, Oceanologia, 42 (2), 203–219.
Ostrowska M., Woźniak B., Dera J., 2012b, Modelled quantum yields and energy
efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean, (in this volume).
Ruban A.V., Horton P., 1999, The xanthophyll cycle modulates the kinetics of
nonphotochemical energy dissipation in isolated light-harvesting complexes,
intact chloroplasts, and leaves of spinach, Plant. Phys., 2 (119), 531–542.
Standfuss J., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W.,
2005, Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5°A resolution, EMBO J., 24 (5), 919–928,
http://dx.doi.org/10.1038/sj.emboj.7600585
Steemann Nielsen E., 1975, Marine photosynthesis, with special emphasis on the
ecological aspect, Elsevier, Amsterdam-New York, 141 pp.
Westberry T.K., Siegel D.A., 2003, Phytoplankton natural fluorescence variability
in the Sargasso Sea, Deep-Sea Res. Pt. I, 50 (3), 417–434,
http://dx.doi.org/10.1016/S0967-0637(03)00019-0
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.
Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003,
Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002, Dependence
of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439–459.
Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for
estimating primary production in the ocean, Oceanologia, 33, 5–38.
Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship
between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246–275.
Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995,
Algorithm for estimating primary production in the Baltic by remote sensing, Stud. Mater. Oceanol., 68 (8), 91–123.
Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007, Quantum
yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527–542.
Woźniak B., Tyszka K., 2006, Raport z realizacji tematu 1.2: badanie i modelowanie
zasilania w energię ekosystemów morskich poprzez fotosyntezę, Zał. 7, Mater. Wew., Inst. Oceanol. PAN.
Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean
Oceanologia 2012, 54(4), 565-610
http://dx.doi.org/10.5697/oc.54-4.565
Mirosława Ostrowska1,*, Bogdan Woźniak1,2, Jerzy Dera1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: ostra@iopan.gda.pl
*corresponding author
2Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland
keywords:
World Ocean, Sun-Induced Chlorophyll a Fluorescence (SICF), photosynthesis, heat production by phytoplankton,
utilization budgets of the excitation energy of pigment molecules, quantum yields and energy efficiences
of chlorophyll a fluorescence; photochemical, and non-photochemical quenching of fluorescence
Received 21 August 2012, revised 27 September 2012, accepted 5 October 2012.
Support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk funded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
Abstract
The paper discusses the utilization budgets of the excitation energy of
phytoplankton pigment molecules activated on absorbing solar radiation under
various typical conditions obtaining in the World Ocean. The deactivation of these molecules following the conversion of
the excitation energy to the fluorescence of chlorophyll a, the photosynthesis of organic matter and heat is taken
into account. To this end, a great many model computations were performed;
these made use of the authors' earlier models of the dependence of the quantum
yields and energy efficiencies of the above processes on the three
principal environmental factors governing the functioning of marine plant
communities: the chlorophyll a concentration in the surface water layer
(the trophic index of waters), temperature and the underwater irradiance at
different depths in the sea. These model relationships were used to determine
vertical profiles of the quantum yields and energy efficiencies of the
chlorophyll a fluorescence, photosynthesis and heat production by
phytoplankton in different trophic types of sea in three different climatic
zones (tropical, temperate and polar), in two seasons of the year - June
(summer in the northern hemisphere) and January (winter in the northern
hemisphere). The results of the calculations are given for areas of oceanic
Case 1 waters, which cover more than 90% of the volume of all basins in
the World Ocean (according to the optical classification by Morel & Prieur
1977). The results of these calculations, though preliminary, provide
a comprehensive description of the range of variability of the
yields / efficiencies of the three deactivation processes. The results have
made it possible to summarize, within the context of the euphotic zone, of the
budgets of phytoplankton pigment molecule excitation energy expended on three
complementary processes, namely, the fluorescence of chlorophyll a, the
photochemical assimilation of inorganic carbon and the photosynthesis of
organic matter, and the radiationless, nonphotochemical conversion of the
pigment molecules' activation energy to heat.
References
Antoine D., Andre J.M., Morel A., 1996, Oceanic primary production: 2,
Estimation at global scale from satellite (Coastal Zone Color Scanner)
chlorophyll, Global Biogeochem. Cyc., 10 (1), 56–69,
http://dx.doi.org/10.1029/95GB02832
Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of
spectral light-photosynthesis model in view of application to satellite chlorophyll
observations, Global Biogeochem. Cyc., 10 (1), 42–55,
http://dx.doi.org/10.1029/95GB02831
Armbrust E.V., 2009, The life of diatoms in the world’s oceans, Nature, 459, 185– 192,
http://dx.doi.org/10.1038/nature08057
Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P.G., 1996,
Nitrogen- and irradiance-dependent variations of the maximum quantum yield
of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems,
Deep-Sea Res., 43 (8), 1241–1272,
http://dx.doi.org/10.1016/0967-0637(96)00058-1
Babin M., Therriault J.C., Legendre L., Nieke B., Reuter R., Condal A., 1995,
Relationship between the maximum quantum yield of carbon fixation and the
minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of
St. Lawrence, Limnol. Oceanogr., 40 (5), 956–968,
http://dx.doi.org/10.4319/lo.1995.40.5.0956
Bartley G.E., Scolnik P.A., 1995, Plant carotenoids: pigments for photoprotection,
visual attraction, and human health, Plant Cell., 7 (7), 1027-1038,
http://dx.doi.org/10.2307/3870055
Butler W. L., Kitajima M., 1975, Fluorescence quenching in photosystcm II of
chloroplasts, Biochim. Biophys. Acta, 376 (1), 116–125,
http://dx.doi.org/10.1016/0005-2728(75)90210-8
Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak
S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote
sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509–538.
Falkowski P. (ed.), 1980, Primary productivity in the sea, Env. Sci. Res., 19, Plenum Press, New York, 531 pp.,
http://dx.doi.org/10.1007/978-1-4684-3890-1
Ficek D., 2001, Modelling the quantum yield of photosynthesis in various marine
systems, Diss. and monogr., 14, Inst. Oceanol. PAS, Sopot, 224 pp., (in Polish).
Gershanovich D.E., Muromcev A.M., 1982, Okeanologicheskie osnovy biologicheskoj
produktyvnosti mirovogo okeana, Gidrometeoizdat, Leningrad, 32 pp.
Glantz M.H. (ed.), 1988, Societal responses to regional climate change. Forecasting
by analogy, West View Press, Boulder-London, 403 pp.
Govindjee (ed.), 1975, Bioenergetics of photosynthesis, Acad. Press, New York, 698 pp.
Huot Y., Brown C.A., Cullen J. J., 2005, New algorithms for MODIS sun-induced
chlorophyll fluorescence and a comparison with present data products, Limnol. Oceanogr. Meth., 3, 108–130,
http://dx.doi.org/10.4319/lom.2005.3.108
Huot Y., Brown C.A., Cullen J. J., 2007, Retrieval of phytoplankton biomass from
simultaneous inversion of reflectance, the diffuse attenuation coefficient and
Sun-induced fluoresence in coastal waters, J. Geophys. Res., 112, C06013,
http://dx.doi.org/10.1029/2006JC003794
Ke B., 2003, Photosynthesis Photobiochemistry and Photobiophysics, Kluwer Acad. Publ., New York, 792 pp.
Kellogg W.W., 1988, Human impact on climate, The evolution of an awareness,
[in:] Societal responses to regional climate change. Forecasting by analogy,
M.H. Glanz (ed.), West View Press, Boulder-London, 9–33.
Kirk J.T.O., 1994, Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, Gateshead, 509 pp.,
http://dx.doi.org/10.1017/CBO9780511623370
Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E., 1985, Utilisation of solar
energy in the photosynthesis of the Baltic and Black Sea phytoplankton, Izd. Inst. Okeanol., AN SSSR, Moscow, 336 pp., (in Russian).
Kolber Z., Falkowski P.G., 1993, Use of active fluorescence to estimate phytoplankton photosynthesis ‘in situ’, Limnol. Oceanogr., 38 (8), 1646–1665,
http://dx.doi.org/10.4319/lo.1993.38.8.1646
Kowda W.A., 1976, Biosphere and man, [in:] Biosphere and its resources, PWN, Warsaw, 9–58, (in Polish).
Kożuchowski K., Przybylak R., 1995, Greenhouse effect, Wiedza Powszechna, Warsaw, 220 pp., (in Polish).
Lieth H., Whittaker R.H., 1975, Primary productivity of the biosphere, Springer-Verlag, Berlin, 339 pp.
Maritorena S., Morel A., Gentili B., 2000, Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat, Appl. Opt., 39 (36), 6725–6737,
http://dx.doi.org/10.1364/AO.39.006725
Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics
of marine phytoplankton, Stud. i rozpr., 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
Michael J.B., O’Malley R.T., Siegel D.A., McClain C.R., Sarmiento J. L.,
Feldman G.C., Milligan A. J., Falkowski P.G., Letelier R.M. Boss E. S., 2006,
Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755,
http://dx.doi.org/10.1038/nature05317
Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical
and climatological implications, Prog. Oceanogr., 26 (3), 263–306,
http://dx.doi.org/10.1016/0079-6611(91)90004-6
Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol.Oceanogr., 22 (4), 709–722,
http://dx.doi.org/10.4319/lo.1977.22.4.0709
Morrison J.R., 2003, In situ determination of quantum yield of phytoplankton
chlorophyll
a fluorescence: A simple algorithm, observations, and a model, Limnol. Oceanogr., 48 (2), 618–631.
Najafpour M.M. (ed.), 2012, Advances in photosynthesis – fundamental aspects, InTech, Rijeka, 588 pp.,
http://dx.doi.org/10.5772/1385
OstrowskaM., 2001, The application of fluorescence methods to the study of marine
photosynthesis, Diss. and monogr., IO PAS, 15, Sopot, 194 pp., (in Polish).
Ostrowska M., 2011, Dependence between the quantum yield of chlorophyll
a
fluorescence in marine phytoplankton and trophicity in low irradiance level, Opt. Appl., 41 (3), 567–577.
Ostrowska M., 2012a, Model of the dependence of the sun-induced chlorophyll
a fluorescence quantum yield on the environmental factors in the sea,
Opt. Express, 20 (21), 23300–23317,
http://dx.doi.org/10.1364/OE.20.023300
Ostrowska M., 2012b, Model dependences of the deactivation of phytoplankton
pigment excitation energy on environmental conditions in the sea, (in this volume).
Timofeyev N.A., 1983, Radiation regime of the ocean, Nauk. Dumka, Kiyev, 247, (in Russian).
Trenberth K.E. (ed.), 1992, Climate system modelling, Cambridge Univ. Press, New York, 788 pp.
Pascal A.A., Liu Z., Broess K., van Oort B., van Amerongen H., Wang C., Horton P., Robert B., Chang W., Ruban A., 2005,
Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature, 436, 134–137,
http://dx.doi.org/10.1038/nature03795
Steemann Nielsen E., 1975, Marine photosynthesis, with special emphasis on the
ecological aspect, Elsevier, Amsterdam-New York, 141 pp.,
http://dx.doi.org/10.1016/S0422-9894(08)70477-X
Westberry T.K., Siegel D.A., 2003, Phytoplankton natural fluorescence variability
in the Sargasso Sea, Deep-Sea Res. Pt. I, 50 (3), 417–434,
http://dx.doi.org/10.1016/S0967-0637(03)00019-0
Weis E., Berry J.T., 1987, Quantum efficiency of photosystem II in relation to
energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys.
Acta, 894 (2), 198–208,
http://dx.doi.org/10.1016/0005-2728(87)90190-3
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A.,
Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011a, SatBałtyk – a Baltic environmental satellite remote sensing
system – an ongoing project in Poland. Part 1: assumptions, scope and operating range, Oceanologia, 53 (4),
http://dx.doi.org/10.5697/oc.53-4.897
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A.,
Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011b, SatBałtyk – a Baltic environmental satellite remote sensing
system – an ongoing project in Poland. Part 2: practical applicability and preliminary results, Oceanologia, 53 (4),
http://dx.doi.org/10.5697/oc.53-4.925
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.
Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002, Dependence
of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439–459.
Woźniak B., Dera J., Koblentz-Mishke O. I., 1992, Bio-optical relationships for estimating primary production in the ocean, Oceanologia, 33, 5–38.
Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007, Quantum
yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527–542.
Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska
M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical
apparatus, Oceanologia, 50 (4), 451–508.
Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland)
Oceanologia 2012, 54(4), 611-630
http://dx.doi.org/10.5697/oc.54-4.611
Dariusz Ficek1,*, Justyna Meler2, Tomasz Zapadka1, Bogdan Woźniak1,2, Jerzy Dera2
1Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland;
e-mail: ficek@apsl.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
keywords:
light absorption, light scattering, remote sensing reflectance, concentrations of optically active components, Pomeranian lakes (Poland)
Received 4 July 2012, revised 10 August 2012, accepted 24 August 2012.
This paper was carried out within the framework of the SatBaltyk project funded by the European Union through European Regional Development Fund, (contract
No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment"). The partial support for this study was also provided by the
MNiSW (Ministry of Science and Higher Education) as a research project N N306 066434 in the years 2008-2011 and also as a part of Pomeranian University and IO PAS's statutory research.
Abstract
This paper describes the results of comprehensive empirical studies of the
inherent optical properties (IOPs), the remote sensing reflectance Rrs(λ) and
the contents of the principal optically active components (OAC) i.e. coloured
dissolved organic matter (CDOM), suspended particulate matter (SPM) and
chlorophyll a, in the waters of 15 lakes in Polish Pomerania in 2007-2010.
It presents numerous spectra of the total absorption a(λ) and
scattering b(λ) ≈ bp(λ) of light in the visible
band (400-700 nm) for surface waters, and separately, spectra of absorption
by CDOM aCDOM(λ) and spectra of the mass-specific
coefficients of absorptionap*(SPM)(λ) and scattering
bp*(SPM)(λ) by SPM. The properties of these
lake waters are highly diverse, but all of them can be
classified as Case 2 waters (according to the optical classification by Morel
& Prieur 1977) and they all have a relatively high OAC content. The lakes
were conventionally divided into three types: Type I lakes have the lowest
OAC concentrations (chlorophyll concentration Ca
= (8.76 ± 7.4) mg m-3 and CDOM absorption coefficients
aCDOM(440) = (0.57 ± 0.22) m-1 (i.e. mean and standard
deviation), and optical properties (including spectra of Rrs(λ)
resembling those of Baltic waters. Type II waters have exceptionally high
contents of CDOM (aCDOM(440) = (15.37 ± 1.54) m-1),
and hence appear brown in daylight and have very low reflectances
Rrs(λ) (of the order of 0.001 sr-1). Type III waters are
highly eutrophic and contain large amounts of suspended matter, including
phytoplankton ((CSPM = (47.0 ± 39.4) g m-3,
Ca = (86.6 ± 61.5) mg m-3; aCDOM(440)
= (2.77 ± 0.86) m-1). Hence the reflectances Rrs(λ)
of these type of waters are on average one order of magnitude higher than
those of the other natural waters, reaching maximum values of 0.03 sr-1
in λbands 560-580 nm and 690-720 nm (see Ficek et al. 2011). The
article provides a number of empirical formulas approximating the
relationships between the properties of these lake waters.
References
Babin M., Morel A., Fourier-Sicre V., Fell F., Stramski D., 2003, Light scattering
properties of marine particles in coastal and open ocean waters as related
to the particle mass concentration, Limnol. Oceanogr., 48 (2), 843–859,
http://dx.doi.org/10.4319/lo.2003.48.2.0843
Choiński A., 2006, Catalogue of Polish lakes, Wyd. Nauk. UAM, Poznań, 600 pp., (in Polish).
Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008,
Algorithms for the remotesensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509–538.
Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS ocean colour chlorophyll
algorithms for the southern Baltic Sea, Int. J. Remote Sens., 26 (2), 247–260,
http://dx.doi.org/10.1080/01431160410001720298
Darecki M., Olszewski J., Kowalczuk S., 1995, A preliminary study of the spectral
characteristics of the upward radiance field in the surface layer of the Baltic.
An empirical algorithm for the remote detection of chlorophyll concentration,
Stud. Mater. Oceanol., 68 (8), 27–49.
Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical
characteristics of two contrasting Case 2 waters and their influence on remote
sensing algorithms, Cont. Shelf Res., 23 (3–4), 237–250,
http://dx.doi.org/10.1016/S0278-4343(02)00222-4
Dera J., 1992, Marine physics, Elsevier Oceanogr. Ser. (co-edition with PWN),
Amsterdam-Oxford-New York-Tokyo-Warszawa, 510 pp.
Falkowski P.G., Kiefer D.A., 1985, Chlorophyll a fluorescence in phytoplankton:
relationship to photosynthesis and biomass, J. Plankton Res., 7 (5), 715–31,
http://dx.doi.org/10.1093/plankt/7.5.715
Falkowski P.G., Wyman K., Ley A.C., Mauzerall D., 1986, Relationship of steadystate
photosynthesis to fluorescence in eukaryotic algae, Biochim. Biophys. Acta, 829, 183–92.
Ficek D., 2012, The bio-optical properties of Pomeranian lake waters, and their
comparison with those of other lake waters and the Baltic Sea, Diss. and monogr., IO PAS, (in Polish, in press).
Ficek D., Zapadka T., Dera J., 2011, Remote sensing reflectance of Pomeranian lakes and the Baltic, Oceanologia, 53 (4), 959–970,
http://dx.doi.org/10.5697/oc.53-4.959
Gordon H.R., Morel A., 1983, Remote assessment of ocean color for interpretation
of satellite visible imagery: A review, Springer-Verlag, New York, 114 pp.
Haltrin V. I., 2006, Absorption and scattering of light in natural waters, [in:] Light
scattering reviews single and multiple light scattering, Kokhanovsky A.A.(ed.), Praxis Publ. Ltd., Chichester, UK, 446–486.
Jańczak J., 1997, The atlas of Polish lakes. Vol II. Lakes of the river catchments in
the Pomerania region and the lower river basin of the Vistula, Bogucki Wyd. Nauk., Poznań, 256 pp., (in Polish).
Jeffrey S., Humphrey G., 1975, New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochem. Physiol. Pflanz., 167, 194–204.
Kaczmarek S., Stramski D., Stramska M., 2003, The new pathlength amplification factor investigation, Abstr. Publ., 149, Baltic Sea Sci. Congress, Helsinki.
Kowalczuk P., Sagan S., Olszewski J., Darecki M., Hapter R., 1999, Seasonal changes in selected optical parameters in the Pomeranian Bay in 1996–1997,
Oceanologia, 41 (3), 309–334.
Matorin D.N., Antal T.K., Ostrowska M., Rubin A.R., Ficek D., MajchrowskiR., 2004, Chlorophyll fluorimetry as a method for studying light absorption by
photosynthetic pigments in marine algae, Oceanologia, 46 (4), 519–31.
Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709–722,
http://dx.doi.org/10.4319/lo.1977.22.4.0709
Ostrowska M., 2001, Using the fluorometric method for marine photosynthesis
investigations in the Baltic, Diss. Monogr., IO PAS, 15, 194 pp., (in Polish).
Stoń-Egiert J., Kosakowska A., 2005, RP-HPLC determination of phytoplankton
pigments – comparison of calibration results for two columns, Mar. Biol., 147 (1), 251–260,
http://dx.doi.org/10.1007/s00227-004-1551-z
Stramska M., Stramski D., Hapter R., Kaczmarek S., Stoń-Egiert J., 2003, Biooptical relationships and ocean color algorithms for the north polar region of
the Atlantic, J. Geophys. Res., 108 (C5), 3143,
http://dx.doi.org/10.1029/2001JC001195
Tassan S., Ferrari G., 1995, An alternative approach to absorption measurements
of aquatic particles retained on filters, Limnol. Oceanogr., 40 (8), 1358–1368,
http://dx.doi.org/10.4319/lo.1995.40.8.1358
Tzortziou M., Subramaniam A., Herman J., Gallegos C., Neale P., Harding L.,
2007, Remote sensing reflectance and inherent optical properties in the mid
Chesapeake bay, Estuar. Coast. Shelf Sci., 72 (1–2), 16–32,
http://dx.doi.org/10.1016/j.ecss.2006.09.018
Van der Linde D.W., 1998, Protocol for the determination of total suspended matter
in oceans and coastal zones, JRC Tech. Note I.98.182, Brussels, 182.
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A.,
Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011, SatBałtyk – A Baltic environmental satellite remote sensing
system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925–958,
http://dx.doi.org/10.5697/oc.53-4.925
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York,
452 pp.
Woźniak S.B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent
optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53 (3), 691–729,
http://dx.doi.org/10.5697/oc.53-3.691
Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic
Oceanologia 2012, 54(4), 631-654
http://dx.doi.org/10.5697/oc.54-4.631
Evgenia Gurova*, Boris Chubarenko
Atlantic Branch of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
Pr. Mira 1, 236000 Kaliningrad, Russia;
e-mail: evguruna@gmail.com
*corresponding author
keywords:
coastal currents, submesoscale eddies, Baltic Sea, remote sensing, MODIS, SAR, CODAR
Received 11 April 2012, revised 6 July 2012, accepted 4 September 2012.
Abstract
This paper presents an overview of the sub-mesoscale eddies observed in the coastal
zone of the south-eastern Baltic near the shores of the Sambian Peninsula and the
Curonian Spit based on CODAR (high-frequency coast-based radar) measurements
and analysis of MODIS and ASAR satellite images for the period 30 March
2000-31December 2011. It was found that when winds are predominantly SW, S or W,
a wake eddy of varying size (up to 25 km in diameter) forms off Cape Taran and
can cover the area between the shoreline and the 65 m isobath. Its longest
lifetime, observed using MODIS images, was 6 days. Another location where
coastal sub-mesoscale eddies (up to 10-15 km in diameter) of varying form
regularly appear is the coastal slope near the southern and central part of
the Curonian Spit.
References
Aneer G., Löfgren S., 2007, Algal bloom – some questions and answers, County Admin. Board, Stockholm, 59 pp.
Babakov A.N., 2003, Spatio-temporal structure of currents and sediment transport
in the coastal zone of South-East Baltic (Sambian Peninsula and Curonian Spit), Ph.D. thesis, Kaliningrad, 273 pp., (in Russian).
Babakov A.N., Chubarenko B.V., Gorbatskiy V.V., Sivkov V.V., Gurova E. S.,
2008, Experience of surface currents remote measurements at the marine coast of Kaliningrad oblast, Proceedings of the Kaliningrad Branch of the
Russian Geographical Society, Vol. 7, Part 1 (CD-publication), Spec. issue, Kaliningrad, (in Russian).
Bassin C. J., Washburn L., Brzezinski M., McPhee-Shaw E., 2005, Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for
delivering nutrients to kelp forests in South California Bight, Geophys. Res. Lett., 32, L12604,
http://dx.doi.org/10.1029/2005GL023017
Boldyrev V. L., Lashenkov V.M., Ryabkova O. I., 1992, Evolution of western coast
of the Kaliningrad oblast under intensive anthropogenic influence, [in:] The
evolution of the coasts under sea level rising, Nauka Publ., Moscow, 212–225, (in Russian).
Brown O.B., Minnett P. J., 1999, The MODIS infrared sea-surface temperature
algorithm, Algorithm technical basis document, NASA Goddard Space Flight Center, Greenbelt, Ver. 2.0,
Chubarenko B.V., Wang Y., Chubarenko I.P., Hutter K., 2000, Barotropic wind-driven circulation pattern in a closed rectangular basin of variable depth
influenced by a peninsula or an island, Ann. Geophys., 18 (6), 706–727,
http://dx.doi.org/10.1007/s00585-000-0706-6
Emelyanov E.M., 1968, Quantitative distribution of marine suspended matter near
the coast of Sambian Peninsula – Curonian Spit (Baltic Sea), Oceanol. Invest., 18, 203–212, (in Russian).
Emelyanov E.M. (ed.), 2001, Geology of the Gdańsk Basin, Baltic Sea, Yantarny Skaz Publ., Kaliningrad, 494 pp.
Gorbatsky V., Gurova E., Babakov A., Chubarenko B., 2007, Radar measurements
of near-shore sea surface currents near the Curonian Spit (Kaliningrad
Region), [in:] Problems of the sea coastal zone management and sustainable
development, L.A. Zhindarev, R.D. Kos’yan & B.V. Divinsky (eds.),
International Conference materials, Krasnodar, 65–67, (in Russian).
Gordon H.R., Wang M., 1994, Retrieval of water-leaving radiance and aerosol
optical thickness over the oceans with SeaWiFS: A preliminary algorithm, Appl. Optics, 33 (3), 443–452,
http://dx.doi.org/10.1364/AO.33.000443
Gurova E., 2009, Methodological aspects of the use of MODIS satellite images for
assessment of suspended matter distribution in coastal waters of South-Eastern
Baltic, artificial beaches, artificial islands and other structures in the coastal
and offshore areas, Proc. Int. Conf. ‘Construction of the artificial lands in the
coastal and offshore areas’, Novosibirsk, 2009, A. Sh. Khabidov (ed.), 130–140, (in Russian).
Gurova E., Chubarenko B., Sivkov V., 2008, Transboundary coastal waters of the
Kaliningrad oblast, [in:] Transboundary waters and basins in the South-East
Baltic, B. Chubarenko (ed.), Terra Baltica, Kaliningrad, 37–57.
Gurova E., Ivanov A.Y., 2011, Appearance of sea surface signatures and current
features in the south-east Baltic Sea on the MODIS and SAR images, Issled.
Zemli Kosm., 4, 41–54, (in Russian).
Harlan J.A., Swearer S.E., Leben R.R., Fox C.A., 2002, Surface circulation in
a Caribbean island wake, Cont. Shelf Res., 22 (3), 417–434,
http://dx.doi.org/10.1016/S0278-4343(01)00073-5
IOCCG, 2000, Remote sensing of ocean colour in coastal, and other optically-
complex, waters, S. Sathyendranath (ed.), Rep. Int. Ocean-Colour Coord.
Group, No. 3, IOCCG, Dartmouth, 140 pp.
Ivanov A.Y., 2010, On extraction of marine environmental parameters from
spaceborne SAR data, Issled. Zemli Kosm., 3, 77–92.
Ivanov A.Y., Ginzburg A. I., 2002, Oceanic eddies in synthetic aperture radar
images, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111 (3), 281–295.
Johannessen J.A., Espedal H., Johannessen O.M., 1994, SAR Ocean Feature
Catalogue, ESA Publ. Divis. ESTEC, ESA SP-1174, Noordwijk, 106 pp.
Karabashev G. S., Evdoshenko M.A., Sheberstov S.V., 2005, Analysis of the
manifestation of mesoscale water exchange in satellite images of the sea
surface, Oceanology, 45 (2), 195–205.
Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the
surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30 047–30 058,
http://dx.doi.org/10.1029/1999JC900198
Kowalczuk P., Darecki M., Zabłocka M., Górecka I., 2010, Validation of empirical
and semi-analytical remote sensing algorithms for estimating absorption by
Coloured Dissolved Organic Matter in the Baltic Sea from SeaWiFS and
MODIS imagery, Oceanologia, 52 (2), 171–196,
http://dx.doi.org/10.5697/oc.52-2.171
Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical
relationships between coloured dissolved organic matter (CDOM) absorption
and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345–370,
http://dx.doi.org/10.1080/01431160410001720270
Lee Z.P., Darecki M., Carder K. L., Curtiss O.D., Stramski D., Rhea W. J.,
2005, Diffuse attenuation coefficient of downwelling irradiance: an evaluation
of remote sensing methods, J. Geophys. Res., 110, C02017, 148–227,
http://dx.doi.org/10.1029/2004JC002573
Pruszak Z., van Ninh P., Szmytkiewicz M., Manh Hung N., Ostrowski R., 2005,
Hydrology and morphology of two river mouth regions (temperate Vistula Delta
and subtropical Red River Delta), Oceanologia, 47 (3), 365–385.
Ruddick K.G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS
imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897–912,
http://dx.doi.org/10.1364/AO.39.000897
Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric
forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333–360.
Ryabkova O. I., 1987, Coastal dynamics of the Sambian Peninsula and Curonian
Spit owing to coastal defense problems, Ph.D. thesis, Moscow State Univ., 306 pp., (in Russian).
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, Dordrecht, 456 pp.
Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008,
Algorithm for theremote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451–508.
Zajączkowski M., Darecki M., Szczuciński W., 2010, Report on the development of
the Vistula river plume in the coastal waters of the Gulf of Gdańsk during the
May 2010 flood, Oceanologia, 52 (2), 311–317,
http://dx.doi.org/10.5697/oc.52-2.311
Zatsepin A.G., Baranov V. I., Kondrashov A.A., Korzh A.O., Kremenetskiy V.V.,
Ostrovskii A.G., Soloviev D.M., 2011, Submesoscale eddies over the Caucasus
Black Sea shelf and the mechanisms of their generation, Oceanology, 51 (4), 554–567,
http://dx.doi.org/10.1134/S0001437011040205
Zhindarev L.A., Khabidov A. Sh., Trizno A.K., 1998, Coastal dynamics of seas
and inland waterbodies, Nauka, Siberian Enterprise RAS, Novosibirsk, 271 pp.,
(in Russian).
Influence of the wind field on the radiance of a marine shallow: evidence from the Caspian Sea
Oceanologia 2012, 54(4), 655-673
http://dx.doi.org/10.5697/oc.54-4.655
Genrik S. Karabashev*, Marina A. Evdoshenko
P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
36, Nahimovski prospect,Moscow, Russia, 117997;
e-mail: genkar@mail.ru
*corresponding author
keywords:
Caspian Sea, SeaWiFS, radiance, sediments, resuspension
Received 25 June 2012, revised 3 September 2012, accepted 1 October 2012.
This work was supported by the Russian Foundation for Basic Research, grants 08-05-00298a, 12-05-00441a. The paper was presented at the VI
International conference "Current Problems in Optics of Natural Waters", St. Petersburg, Russia, September 6-10, 2011.
Abstract
The influence of the near-water wind field on the radiance of a marine shallow
was studied on the basis of daily SeaWiFS ocean colour scanner data and
QuickScat scatterometer wind data collected from 1999 to 2004 in the southern
Caspian Sea, where the deep basin borders a vast shallow west of the shore of
meridional extent.It was found that radiance distributions, clustered by
wind rhumbs, exhibited different long-term mean patterns for winds of opposing
directions: within the shallow's boundaries, the radiances were about twice as
high for winds having an offshore component with reference to the onshore wind
conditions. The zonal profile of radiance across the shallow resembled
a closed loop whose upper and lower branches corresponded to the offshore and onshore winds respectively. The
loop was the most pronounced at sites with 10-15 m of water for any wavelength
of light, including the red region. On the basis of specific features of the study
area, we attributed this pattern to sunlight backscattered from bottom sediments
resuspended by bottom compensation currents induced by the offshore
winds.
References
Arfi R., Guiral D., BouvyM., 1993,Wind induced resuspension in a shallow tropical
lagoon, Estuar. Coast. Shelf Sci., 36 (6), 587–604,
http://dx.doi.org/10.1006/ecss.1993.1036
Booth J.G., Miller R. L., McKee B.A., Leathers R.A., 2000, Wind-induced bottom
sediment resuspension in a microtidal coastal environment, Cont. Shelf Res., 20 (7), 785–806,
http://dx.doi.org/10.1016/S0278-4343(00)00002-9
Boss E., Zaneveld J.R., 2003, The effect of bottom substrate on inherent optical
properties: evidence of biogeochemical processes, Limnol. Oceanogr., 48 (1, pt. 2), 346–354,
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0346
Cannizzaro J.P., Carder K. L., 2006, Estimating chlorophyll a concentrations from
remote-sensing reflectance in optically shallow waters, Remote Sens. Environ., 101 (1), 13–24,
http://dx.doi.org/10.1016/j.rse.2005.12.002
Demers S., Terriault J.-C., Bourget E., Bah A., 1987, Resuspension in the
shallow sublittoral zone of a microtidal environment: wind influence, Limnol. Oceanogr., 32 (2), 327–339,
http://dx.doi.org/10.4319/lo.1987.32.2.0327
Gordon H.R., 2005, Normalized water-leaving radiance: revisiting the influence of
surface roughness, Appl. Optics, 44 (2), 241–245,
http://dx.doi.org/10.1364/AO.44.000241
Gordon H.R., McCluney W.R., 1975, Estimation of the depth of sunlight
penetration in the sea for remote sensing, Appl. Optics, 14 (2), 413–416,
http://dx.doi.org/10.1364/AO.14.000413
Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K. S.,
Clark D.K., 1988, A semianalytic radiance model of ocean color, J. Geophys. Res., 93 (D9), 10909–10924,
http://dx.doi.org/10.1029/JD093iD09p10909
Jerlov N.G., 1976, Marine optics, Elsevier, Amsterdam, 231 pp.
Karabashev G. S., Evdoshenko M.A., Sheberstov S.V., 2009, Indication of
bottom transport in shallow marine regions based on the data of satellite
ocean colour scanners, Oceanology, 49 (1), 22–30,
http://dx.doi.org/10.1134/S0001437009010032
Kopelevich O.V., Burenkov V. I., Sheberstov S.V., Shibalkova A.P., Terechova A.A., Vazyulya S.V., 2007, Influence of the bottom reflection on balance of
solar photosynthetically active radiation, [in:] Current problems in Optics of Natural Waters (ONW’2007), 4th Int. Conf. 11–15 Sept. 1993, IAP RAS, Nizhny Novgorod, 94–98.
Kirincich A.R., Barth J.A., Grantham B.A., Menge B.A., Lubchenko J., 2005, Wind-driven inner-shelf circulation off central Oregon during
summer, J. Geophys. Res., 110, C10S03, 17 pp.,
http://dx.doi.org/10.1029/2004JC002611
Lentz S. J., 2001, The influence of stratification on the wind-driven cross-shelf circulation over the North Carolina shelf, J. Physical Oceanogra-phy, 31 (9), 2749–2760,
http://dx.doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2
Lentz S. J., Chapman D.C., 2004, The importance of nonlinear cross-shelf
momentum flux during wind-driven coastal upwelling, J. Phys. Oceanogr., 34 (11), 2444–2457,
http://dx.doi.org/10.1175/JPO2644.1
Mobley C.D., Sundman L.K., 2003, Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms, Limnol. Oceanogr.,
48 (1, pt. 2), 329–336,
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0329
Pautov Y.V. (ed.), 1959, Sailing directions in the Caspian Sea, Hydrography Service, Leningrad, 274 pp., (in Russian).
Scheffer M., Portielje R., Zambrano L., 2003, Fish facilitates wave resuspension of sediments, Limnol. Oceanogr., 48 (5), 1920–1926,
http://dx.doi.org/10.4319/lo.2003.48.5.1920
Simonov A. I., Altman E.N., 1992, Turbidity, transparency, and colour of the water, [in:] The seas of Russia. Hydrometeorology and hydrochemistry of the Seas.
VI: The Caspian Sea. Issue 1: Hydrometeorological conditions, Terziev F. S., Kosareva A.N. & A.A. Kerimova (eds.), Gidrometeoizdat, St. Petersburg, 178–186, (in Russian).
Water column conditions in a coastal lagoon near Jeddah, Red Sea
Oceanologia 2012, 54(4), 675-685
http://dx.doi.org/10.5697/oc.54-4.675
Alaa M. A. Albarakati*, Fazal Ahmad
Faculty of Marine Sciences, King Abdulaziz University,
Jeddah, Saudi Arabia;
e-mail: aalbarakati@kau.edu.sa
*corresponding author
keywords:
Red Sea, lagoon, water column
Received 25 October 2011, revised 14 April 2012, accepted 16 July 2012.
Abstract
Water column conditions in a lagoon near Jeddah are investigated on the basis
of changes in potential energy. Three major factors including balance of
surface heat at the air-sea interface, wind and tidal mixing are considered.
A negative potential energy change dv/dt will develop
stratification, whereas positive dv/dt will tend to mix the water
column. The tidal effect is greater in summer with wind mixing showing no
great variations. The buoyancy effect of the heat balance at the surface is
negative from April to October. This negative buoyancy effect will tend to develop
stratification but the positive contributions of wind and tide counteract this and
the water column remains mixed except in September and October, when a weak
stratification may develop. Generally, the water column remains practically mixed
throughout the year. The change in heat content of the water column from mid-April
to mid-September is about 3.3 × 108 J. During this period the net
heat input at the air interface is about 2.0 × 108 J, which is
about 40% less than the heat content of the water column, showing that the heat
is advected towards the central area from the shallower periphery of the lagoon.
References
Ahmad F., Sultan S.A.R., 1987, On the heat balance terms in the central region
of the Red Sea, Deep-Sea Res., 34 (10), 1757–1760,
http://dx.doi.org/10.1016/0198-0149(87)90023-9
Ahmad F., Sultan S.A.R., 1989, Surface heat fluxes and their comparison with the oceanic heat flow in the Red Sea, Oceanol. Acta, 12 (1), 33–36.
Ahmad F., Sultan S.A.R., 1992, The effect of meteorological forcing on the flushing of Shuaiba Lagoon on the eastern coast of the Red Sea, J.K.A.U.: Marine Sci., 3 (1), 3–9,
http://dx.doi.org/10.4197/mar.3-1.1
Ahmad F., Sultan S.A.R., 1993, Tidal and sea level changes at Jeddah, Red Sea, Pakistan J. Marine Sci., 2 (2), 77–84.
Ahmad F., Sultan S.A.R., Abdelrahman S.M., 1997, Flushing time scale, effect of meteorological forcing and hydrographic variation in two coastal lagoons of the
central Red Sea, Report project, 065/1415, Scientific Council, KAAU, Jeddah, Saudi Arabia.
Ahmad F., Sultan S.A.R., Moammar M.O., 1989, Monthly variations of net heat flux of the air-sea interface in the coastal waters near Jeddah,
Red Sea, Atmosphere-Ocean, 27 (2), 406–413,
http://dx.doi.org/10.1080/07055900.1989.9649343
Bowden K. F., 1983, Physical oceanography of coastal waters, E. Horwood Ltd., Chichester, 302 pp.
Bowers D.G., Simpson J.H., 1987, Mean position of tidal fronts in European shelf
seas, Cont. Shelf Res., 7 (1), 35–44,
http://dx.doi.org/10.1016/0278-4343(87)90062-8
Bunker A. F., 1976, Computation of surface energy flux and annual air-
sea interaction cycles of North Atlantic Ocean, Mon. Weather Rev., 104 (9), 1122–1140,
http://dx.doi.org/10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2
Bunker A. F., Goldsmith R.A., 1979, Archived time series of Atlantic Ocean
meteorological variables and surface fluxes, WHOI Tech. Rept. WHOI-79-3, 54 pp.
Butanapratheprat A., Yanagi T., Matsumura S., 2008, Seasonal variation in water
column conditions in the upper Gulf of Thailand, Cont. Shelf Res., 28 (17), 2509–2522,
http://dx.doi.org/10.1016/j.csr.2008.07.006
Edwards A. J., Head S.M., 1987, Red Sea, Pergamon Press, 441 pp.
Hastenrath S., Lamb P. J., 1979, Heat budget atlas of the tropical Atlantic and
eastern Pacific Oceans, Univ. Wisconsin Press, Madison, 104 pp.
Holloway P.E., 1980, A criterion for thermal stratification in a wind mixed system,
J. Phys. Oceanogr., 10 (6), 861–869.
Liu H., 2007, Annual cycle of stratification and tidal fronts in the Bohai Sea: A model study, J. Oceanogr., 63 (1), 67–75,
http://dx.doi.org/10.1007/s10872-007-0006-9
Morcos S.A., 1970, Physical and chemical oceanography of the Red Sea, Oceanogr. Mar. Biol., 8, 73–202.
Morley N. J. F., 1975, The coastal waters of the Red Sea, Bull. Mar. Res. Centre, 5, 1–19.
Simpson J.H., 1997, Physical processes in the ROFI regime, J. Marine Syst., 12 (1–4), 3–15,
http://dx.doi.org/10.1016/S0924-7963(96)00085-1
Simpson J.H., Allen C.M., Morris N.C.G., 1978, Fronts on the continental shelf, J. Geophys. Res.-Oceans, 83 (C9), 4607–4614,
http://dx.doi.org/10.1029/JC083iC09p04607
Simpson J.H., Bowers D.G., 1981, Models of stratification and frontal movements in shelf seas, Deep-Sea Res., 28 (7), 727–738,
http://dx.doi.org/10.1016/0198-0149(81)90132-1
Simpson J.H., Brown J., Matthews J., Allen G., 1990, Tidal straining, density currents and mixing in the control of estuarine stratification, Estuar. Coast., 13 (2), 125–132,
http://dx.doi.org/10.2307/1351581
Simpson J.H., Hunter J.R., 1974, Fronts in the Irish Sea, Nature, 250, 404–406,
http://dx.doi.org/10.1038/250404a0
Smeed D.A., 2004, Exchange through the Bab-el-Mandab, Deep-Sea Res., 1 (49), 1551–1569.
Sultan S.A.R., Ahmad F., 1990, Flushing of a costal lagoon in the Red Sea, Estuar. Coast. Shelf Sci., 31 (3), 345–349,
http://dx.doi.org/10.1016/0272-7714(90)90108-4
Tragou E., Garrett C., Outerbridge R., Gilman C., 1998, The heat and fresh water budgets of the Red Sea, J. Phys. Oceanogr., 29 (10), 2504–2522,
http://dx.doi.org/10.1175/1520-0485(1999)029<2504:THAFBO>2.0.CO;2
Weare B.C., Strub P.T., Samuel M.D., 1981, Annual mean surface heat fluxes in the tropical Pacific Ocean, J. Phys. Oceanogr., 11 (5), 705–717,
http://dx.doi.org/10.1175/1520-0485(1981)011<0705:AMSHFI>2.0.CO;2
Yanagi T., Takahashi S., 1988, A tidal front influenced by river discharge, Dynam. Atmos. Oceans, 12 (2), 191–206,
http://dx.doi.org/10.1016/0377-0265(88)90025-5
Yanagi T., Tamaru H., 1990, Temporal and spatial variables in a tidal front, Cont. Shelf Res., 10 (7), 615–627,
http://dx.doi.org/10.1016/0278-4343(90)90041-J
Yanagi T., Sachoemar S. I., Takao T., Fujiwara S., 2001, Seasonal variation of stratification in the Gulf of Thailand, J. Oceanogr., 57 (4), 461–470.
Yelland M., Taylor P.K., 1996, Wind stress measurements from the open ocean, J. Phys. Oceanogr., 26 (4), 541–558.
Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt
Oceanologia 2012, 54(4), 687-700
http://dx.doi.org/10.5697/oc.54-4.687
Fedekar Fadel Madkour1,*, Mona Mohamed Gaballah2
1Marine Science Department, Faculty of Science,
Port Said University, Egypt;
e-mail: fedekarmadkour@ymail.com
*corresponding author
2
Botany Department, Faculty of Science, Suez Canal University, 41522,
Ismailia, Egypt
keywords:
solar salterns, Port Fouad, phytoplankton, salinity gradient, halotolerant, biological system
Received 24 July 2012, revised 17 September 2012, accepted 27 September 2012.
Abstract
The present study is the first investigation of the phytoplankton community in
one of Egypt's saltworks. The phytoplankton composition and distribution in
fiveponds of increasing salinity were investigated in the solar saltern of Port Fouad.
The phytoplankton community consisted of 42 species belonging to cyanobacteria
(16), diatoms (12), dinoflagellates (11), Euglenophyceae (2) and Chlorophyceae (1).
The number of species decreased significantly and rapidly with increasing salinity,
varying between 33 species in the first pond (P1) and one species in the crystallizer
pond (P5). Conversely, the total phytoplankton density, except that recorded
in P1, increased significantly with rising salinity, fluctuating between 8.7 and
56 × 105 individuals l-1 in P2 and P5 respectively. In spite
of the local variations in climate and nutrient availability, the phytoplankton composition, density and spatial
variations along the salinity gradient were, in many respects, very similar to
what has been observed in other solar saltworks. The pond with the lowest salinity
(P1 - < 52 g l-1) was characterized by a significant diversity and
blooming of diatoms and dinoflagellates. Intermediate salinity ponds (P2 and
P3) with salinity ∼ 112-180 g l-1 exhibited a decline in both
species richness and density, but the stenohaline blue green algae (
Synechocystis salina) did flourish. The highly saline concentrating ponds and
crystallizers (P4 and P5) with salinity ∼ 223-340 g l-1 were
characterized by few species, the disappearance of blue green algae and the
thriving of the halotolerant green alga Dunaliella salina.
References
Abid O., Sellami-Kammoun A., Ayadi H., Drira Z., Bouain A., Aleya L., 2008,
Biochemical adaptation of phytoplankton to salinity and nutrient gradients in
a coastal solar saltern, Tunisia, Estuar. Coastal Shelf Sci., 80 (3), 391–400,
http://dx.doi.org/10.1016/j.ecss.2008.09.007
Andersson A., Haecky P., Hagström A., 1994, Effect of temperature and light on the
growth of micro- nano- and pico-plankton: impact on algal succession, Mar.
Biol., 120 (4), 511–520,
http://dx.doi.org/10.1007/BF00350071
APHA, 1995, Standard methods for the examination of water and wastewater, 16th edn., APHA, Washington.
Ayadi H., Abid O., Elloumi J., Bouain A., Sime-Ngando T., 2004, Sructure of
the phytoplankton communities in two lagoons of different salinity in the Sfax
saltern (Tunisia), J. Plankton Res., 26 (6), 669–679,
http://dx.doi.org/10.1093/plankt/fbh047
Chatchawan A., Peerapornpisal Y., Kom´arek J., 2011, Diversity of cyanobacteria in
man-made solar satern, Petchaburi Province, Thailand – a pilot study, Fottea, 11 (1), 203–214.
Costa L.T., Farinha J.C., Hecker N., Tomàs-Vives P., 1996, Mediterranean
wetland inventory: a reference manual, Vol. I, MedWet, Instit. Conserv. Natur./Wetlands Int. Publ., Lisboa.
Davis J. S., 1993, Biological management for problem solving and biological concepts
for a new generation of solar saltworks, Seventh Symposium on Salt, 1, 611–616.
Davis J. S., 2000, Structure, function and management of the biological system for seasonal solar saltworks, Global Nest J., 2 (3), 217–226.
Davis J. S., Giordano M., 1996, Biological and physical events involved in the origin,
effects, and control of organic matter in solar saltworks, Int. J. Salt Lake Res., 4 (4), 335–347,
http://dx.doi.org/10.1007/BF01999117
Dodge J.D., 1982, Marine dinoflagellates of the British Isles, Her Majesty’s Stat. Office, London, 303 pp.
Dolapsakis N. P., Tafas T., Abatzopoulos Th. J., Ziller S., Economou-Amilli A.,
2005, Abundance and growth response of microalgae at Megalon Embolon solar
saltworks in northern Greece: an aquaculture prospect, J. Appl. Phycol., 17 (1), 39–49,
http://dx.doi.org/10.1007/s10811-005-5553-0
Evagelopoulos A., Koutsoubas D., 2008, Seasonal community structure of the
molluscan macrofauna at the marine – lagoonal environmental gradient at
Kalloni solar saltworks (Lesvos island, NE Aegean Sea, Greece), J. Nat. Hist., 42 (5–8), 597–618,
http://dx.doi.org/10.1080/00222930701835563
Gaballah M.M., Touliabah H., 2000, Diatom communities associated with some aquatic plants in polluted water courses, Nile Delta, Egypt, J. Phycol., 1, 211–224.
Gilabert J., 2001, Seasonal plankton dynamics in a Mediterranean hypersaline
coastal lagoon: the Mar Menor, J. Plankton Res., 23 (2), 207–218,
http://dx.doi.org/10.1093/plankt/23.2.207
Gongora G.Y., Poot J.C., Milan S.M., Diaz E.R., Davis J. S., 2005, Recovery
of a commercial solar saltworks damaged by a hurricane: role of biological
management, Proc. 9th Int. Conf. Environ. Sci. Technol., September 1–3, Rhodes, Greece.
Gómez F., 2003, Checklist of Mediterranean free-living dinoflagellates, Bot. Mar., 46 (3), 215–242.
Hendey N. I., 1964, An introductory account of the smaller algae of British coastal
waters, Part V: Bacillariophyceae (diatoms), Her Majesty’s Stat. Office, London, 317 pp.
Komárek J., Anagnostidis K., 2005, Cyanoprokaryota 2. Teil: Oscillatoriales, [in:]
Büdel B., Krienitz L., Gärtner G. & Schagerl M. (eds.), Süsswasserflora von
Mitteleuropa, 19 (2), Elsevier/Spektrum, Heidelberg, 759 pp.
Korovessis N.A., Lekkas T.D., 2000, Solar saltworks production process evolution
– wetland function, [in:] Saltworks: Preserving saline coastal ecosystems,
N.A. Korovessis & T.D. Lekkas (eds.), 6th Conf. Environ. Sci. Technol.,
Pythagorion, Samos, 1 September 1999, Global NEST, Athens.
Madkour F. F., 2000, Ecological studies on the phytoplankton of the Suez Canal, Ph.D. thesis, Suez Canal Univ., Egypt.
Madkour F. F., 2007, The potential impact of Lake Manzala on the phytoplankton
and hydrographic characters of the Suez Canal, Egypt, Egypt. J. Aquat. Biol.
Fish., 11 (2), 185–204.
Mohebbi F., 2010, The brine shrimp Artemia and hypersaline environments
microalgal composition: a mutual interaction, Int. J. Aquat. Sci., 1 (1), 19–27.
Mohebbi F., Ahmadi R., Azari A.M., Esmaili L., Asadpour Y., 2011, On the red
coloration of Urmia Lake (Northwest Iran), Int. J. Aquat. Sci., 2 (1), 88–92.
Mohebbi F., Esmaili L., Negarestan H., Ahmadi R., 2009, Dynamics of
Phytoplankton population in Urmia Lake: consequences on Artemia density, Proc. Int. Symp./Workshop Biol. Distr. Artemia, Urmia, Iran.
Oren A., 2000, Salts and brines, [in:] The ecology of cyanobacteria: their diversity
in time and space, B.A. Whitton & M. Potts (eds.), Kluwer Acad. Publ., Dordrecht, 281–306.
Parsons T.R., Maita Y., Lalli C.M., 1984, A manual of chemical and biological
methods for seawater analysis, Pergamon Press, Oxford, 173 pp.
Prescott G.W., 1951, Algae of the western Great Lakes area, Cranbrook Inst. Sci., Bloomfield Hills, 946 pp.
Rodriguez-Valera F., 1988, Characteristics and microbial ecology of hypersaline
environments, [in:] Halophilic bacteria, F. Rodriguez-Valera & F. L. Boca Raton (eds.), CRC Press, 3–30.
Taher A.G., Abdel Wahab S., Philip G., Krumbein W.E., Wali A.M., 1995,
Evaporitic sedimentation and microbial mats in a salina system (Port Fouad, Egypt), Int. J. Salt Lake Res., 4 (2), 95–116,
http://dx.doi.org/10.1093/plankt/23.2.207
Toumi N., Ayadi H., Abid O., Carrias J.F., Sime-Ngando T., Boukhris M.,
Bouain A., 2005, Zooplankton in four ponds of different salinity: a seasonal
study in the solar salterns of Sfax (Tunisia), Hydrobiologia, 534 (1–3), 1–9,
http://dx.doi.org/10.1007/s10750-004-9356-0
Utermöhl H., 1958, Zur vervollkommnung der quantitativen phytoplanktonmethodik, Mitt., Int. Verein. Theor. Amg. Limnologie, 9, 1–38.
Wetzel R.G., Likens G.E., 2000, Limnological analysis, Springer-Verlag, New York, 429 pp.
Zhang Q., Gradinger R., Spindler M., 1999, Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea, Boreal
Environ. Res., 4 (1), 1–8.
First report of endosymbionts in Dreissenapolymorpha from the brackish Curonian Lagoon, SE Baltic Sea
Oceanologia 2012, 54(4), 701-713
http://dx.doi.org/10.5697/oc.54-4.701
Romualda Chuševė1,2,*, Sergey E. Mastitsky3, Anastazja Zaiko1
1Coastal Research and Planning Institute, Klaipeda University,
H. Manto 84, LT 92294 Klaipeda, Lithuania
2ithuania Environment Protection Agency, Marine Research Department,
Taikos av. 26, LT-91149, Klaipeda, Lithuania;
e-mail: romualda.chuseve@corpi.ku.lt
*corresponding author
3
RNT Consulting Inc.,
823 County Road 35, Picton, Ontario K0K 2T0, Canada
keywords:
Dreissena polymorpha, Conchophthirus acuminatus, Ophryoglena sp.,seasonal dynamics, brackish water
Received 7 May 2012, revised 4 September 2012, accepted 27 September 2012.
This study was supported by the European Regional Development Fund
through the Baltic Sea Region Programme project `Sustainable Uses of
Baltic Marine Resources' (SUBMARINER No. 055).
Abstract
We report the first results of a parasitological study of
Dreissena polymorpha (zebra mussels) from the brackish
Curonian Lagoon, SE Baltic Sea. Zebra mussels were collected monthly
from May to October 2011 from a site near the mouth of the River Nemunas.
Three types ofendosymbionts were found in the mantle cavity and
visceral mass of the molluscs during dissections, i.e. the
commensal ciliate Conchophthirus acuminatus and parasitic ciliate
Ophryoglena sp., and rarely encountered, unidentified nematodes.
The abundances of C. cuminatus and Ophryoglena sp.
were positively associated with host shell length and water
temperature, but no effect of water salinity was detected.
As the endosymbionts are either highly host-specific to zebra mussels
(C. acuminatus and Ophryoglena sp.) or are probably
free-living organisms that inadvertently infect the molluscs (nematodes),
we conclude that the presence of D. polymorpha in the
Curonian Lagoon does not pose any serious parasitological
risk to native biota. We emphasize, however, that this conclusion
should be treated with caution as it is based on a study conducted
only at a single location. Our work extends the currently
scarce records of D. polymorpha parasites and commensals from
brackish waters, and adds to a better understanding of the ecological
impact this highly invasive mollusc causes in the areas it has invaded.
References
Breslow N.E., 1984, Extra-Poisson variation in log-linear models, Appl. Stat., 33 (1), 38–44.
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W., 1997, Parasitology meets ecology on its own terms, Margolis et al. revisited, J. Parasitol, 83 (4), 575–583.
Cullen A.C., Frey H.C., 1999, Probabilistic techniques in exposure assessment. A handbook for dealing with variability and uncertainty in models and inputs,
Plenum Press, New York, London, 335 pp.
Chubarenko B., Margonski P., 2008, The Vistula Lagoon, [in:] Ecology of Baltic coastal waters, Schiewer U. (ed.), Ecological Studies 197, Springer-Verlag,
Berlin, Heidelberg, 167–195 pp.
Dzialowski A.R., Jessie W., 2009, Zebra mussels negate or mask the increasing effect of nutrient enrichment on algal biomass: a preliminary mesocosm study,
J. Plankton Res., 31 (11), 1437–1440,
http://dx.doi.org/10.1093/plankt/fbp071
Elliott P., Aldridge D.C., Moggridge G.D., 2008, Zebra mussel filtration and its potential uses in industrial water treatment, Water Res., 42 (6–7), 1664–1674,
http://dx.doi.org/10.1016/j.watres.2007.10.020
Gasi—unaitė Z.R., Daunys D., Olenin S., Razinkovas A., 2008, The Curonian Lagoon, [in]: Ecology of Baltic coastal waters, Schiewer U. (ed.), Ecological Studies 197,
Springer-Verlag, Berlin, Heidelberg, 197–215 pp.
Goedkoop W., Naddafi R., Grandin U., 2011, Retention of N and P by the zebra mussel (Dreissena polymorpha Pallas) and its quantitative role in the nutrient
budget of eutrophic Lake Ekoln, Sweden, Biol. Invasions, 13 (5), 1077–1086,
http://dx.doi.org/10.1007/s10530-011-9950-9
Hilbe J.M., 2011, Negative binomial regression, 2nd edn., Cambridge Univ. Press, Cambridge, 572 pp.
Jankowski A.W., 2001, Ciliates – Rhynchodida, [in:] European register of marine species: a check-list of the marine species in Europe and a bibliography of
guides to their identification, CostelloM. J. et al. (eds.), Collection Patrimoines Naturels 50, 44–47.
Karatayev A.Y., Burlakova L.E., Molloy D.P., Mastitsky S.E., 2007, Dreissena polymorpha and Conchophthirus acuminatus: what can we learn
from host-commensal relationships, J. Shellfish Res., 26 (4), 1153–1160,
http://dx.doi.org/10.2983/0730-8000(2007)26[1153:DPACAW]2.0.CO;2
Karatayev A.Y., Burlakova L.E., Molloy D.P., Volkova L.K., 2000b, Endosymbionts of Dreissena polymorpha (Pallas) in Belarus, Int. Rev.
Hydrobiol., 85 (5–6), 539–555.
Karatayev A.Y., Burlakova L.E., Molloy D. P., Volkova L.K., Volosyuk V.V., 2002, Field and laboratory studies of Ophryoglena sp. (Ciliata:
Ophryoglenidae) infection in zebra mussels, Dreissena polymorpha (Bivalvia: Dreissenidae), J. Invertebr. Pathology, 79, 80–85.
Karatayev A.Y., Burlakova L.E., Padilla D.K., 1998, Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.), J. Shellfish
Res., 17 (4), 1219–1235.
Karatayev A.Y., Mastitsky S.E., Burlakova L.E., Molloy D.P., Vezhnovets G.G., 2003, Seasonal dynamics of endosymbiotic ciliates and nema-todes in Dreissena polymorpha, J. Invertebr. Pathology, 83 (1), 73–82,
http://dx.doi.org/10.1016/S0022-2011(03)00043-0
Karatayev A.Y., Mastitsky S.E., Burlakova L.E., Olenin S., 2008, Past, current, and future of the central European corridor for aquatic invasions in Belarus,
Biol. Invasions, 10, 215–232,
http://dx.doi.org/10.1007/s10530-007-9124-y
Karatayev A.Y., Molloy D.P., Burlakova L.E., 2000a, Seasonal dynamics of Conchophthirus acuminatus (Ciliophora, Conchophthiridae) infection in
Dreissena polymorpha and D. bugensis (Divalvia, Dreissenidae), Europ. J. Protistol., 36, 397–404.
Leppäkoski E., Olenin S., 2000, Xenodiversity of the European brackish water seas: the North American contribution, [in:] Marine bioinvasions, Pederson J. (ed.),
Proc. 1st Natl. Conf., Mass. Inst. Technol., Cambridge, 107 pp.
Mackie G. L., Wright C.A., 1994, Ability of the zebra mussel, Dreissena polymor-pha, to biodeposit and remove phosphorus and BOD from diluted activated
sewage sludge,Water Res., 28 (5), 1123–1130,
http://dx.doi.org/10.1016/0043-1354(94)90199-6
Mastitsky S.E., 2004, Endosymbionts of bivalve mollusc Dreissena polymorpha in waterbodies of Belarus, Ph.D. thesis, Inst. Zool. Natl. Acad. Sci. Rep. Bel.,
Minsk, 208 pp., (in Russian).
Mastitsky S.E., 2005, Role of the mollusc Dreissena polymorpha Pallas (Bivalvia: Dreissenidae) in transmission of trematode infections to vertebrate animals,
Vestnik Tyumenskogo Gosudarstvennogo Universiteta 5, 130–134, (in Russian with English summary).
Mastitsky S.E., Gagarin V.G., 2004, Nematodes which infect the mollusc Dreissena polymorpha (Bivalvia: Dreissenidae) in the Narochanskie Lakes, Vestnik
Belorusskogo Gosudarstvennogo Universiteta. Ser. 2, 3, 22–25, (in Russian with English summary).
Mastitsky S.E., Lucy F., Gagarin V.G., 2008, First report of endosymbionts in Dreissena polymorpha from Sweden, Aquat. Invasions, 3 (1), 83–86.
Mastitsky S.E., Samoilenko V.M., 2005, Larvae of chironomids (Insecta, Diptera) encountered in the mantle cavity of zebra mussel, Dreissena polymorpha
(Bivalvia, Dreissenidae), Int. Rev. Hydrobiol., 90, 42–50.
Mastitsky S.E., Veres J.K., 2010, Field evidence for a parasite spillback caused by exotic mollusc Dreissena polymorpha in an invaded lake, Parasitol. Res., 106, 667–675.
Minguez L., Giambirini L., 2012, Seasonal dynamics of zebra mussel parasite populations, Aquat. Biol., 15, 145–151.
Molloy D.P., Karatayev A.Y., Burlakova L.E., Kurandina D.P., Laruelle F., 1997, Natural enemies of zebra mussels: predators
parasites and ecological competitors, Rev. Fish. Sci., 5 (1), 27.97,
http://dx.doi.org/10.1080/10641269709388593
Olenin S., Orlova M., Minchin D., 1999, Dreissena polymorpha (Pallas, 1771), [in:] Case histories on introduced species: their general biology, distribution,
range expansion and impact, Gollasch S., Minchin D., Rosenthal H. & Voigt M. (eds.), Logos-Verlag, Berlin, 37.42 pp.
Orlova M., Golubkov S., Kalinina L., Ignatieva N., 2004, Dreissena polymorpha (Bivalvia: Dreissenidae) in the Neva estuary (eastern Gulf of Finland, Baltic
Sea): is it a biofilter or source for pollution?, Mar. Pollut. Bull., 49 (3), 196-205.
Petkevičiūtė R., Stanevičiūė G., Molloy D.P., 2003, Chromosome analysis of Phyllodistomum folium (Trematoda, Gorgoderidae) infecting three European
populations of zebra mussels, Parasit. Res., 90, 377-382.
Raabe Z., 1956, Investigations on the parasitofauna of freshwater molluscs in the brackish waters, Acta Parasitol. Polonica, 4, 375-406.
R Development Core Team, 2011, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, [ISBN3-900051-07-0],
http://www.R-project.org.
Reeders H.H., Bij de Vaate A., 1990, Zebra mussels (Dreissena polymorpha): a new perspective for water quality management, Hydrobiologia, 200/201, 437-450.
Reid N. J., Holovachov O., Anderson M.A., 2012, Nematodes associated with the invasive quagga mussel (Dreissena rostriformis bugensis) in the Colorado
River Aqueduct reservoirs, southern California, USA, Nematology, 14 (7), 827-837,
http://dx.doi.org/10.1163/156854112X627345
Rolbiecki L., Rokicki J., 2008, Helminths of the lumpsucker (Cyclopterus lumpus) from the Gulf of Gda.sk and Vistula Lagoon (Poland), Oceanol. Hydrobiol. Stud., 37 (4), 53-59.
Scrucca L., 2012, dispmod: Dispersion models. R package version 1.1, http://CRAN.R-project.org/package=dispmod.
Stybel N., Fenske C., Schernewski G., 2009, Mussel cultivation to improve water quality in the Szczecin Lagoon, J. Coastal Res., Spec. iss. 56, 1458-1463.
Stunžėnas V., Cryan J.R., Molloy D. P., 2004, Comparison of rDNA sequences from colchicine treated and untreated sporocysts of Phyllodistomum folium
and Bucephalus polymorphus (Digenea), Parasitology Int., 53 (3), 223-228,
http://dx.doi.org/10.1016/j.parint.2003.12.003
Zaiko A., Paškauskas R., Krevš A., 2010, Biogeochemical alteration of the benthic environment by the zebra mussel Dreissena polymorpha (Pallas), Oceanologia,
52 (4), 649-667.
Zemlys P., Daunys D., Olenin S., 2001, Modelling of the zebra mussel impact on the Curonian Lagoon ecosystem, Report, Klaipeda Univ., (in Lithuanian).