Oceanologia No. 55 (1) / 13


Contents


Obituary


Acknowledgements


Papers


Communications


Papers



Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem
Oceanologia 2013, 55(1), 11-26
http://dx.doi.org/10.5697/oc.55-1.011

Iosif Levin2, Mirosław Darecki1, Sławomir Sagan1, Tamara Radomyslskaya2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: darecki@iopan.gda.pl
2St. Petersburg Branch of the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
1 Linia 30, 199053, St. Petersburg, Russia;
e-mail: ocopt@yandex.ru

keywords: Baltic Sea, underwater visibility, light attenuation, optical properties

Received 2 August 2012, revised 18 September 2012, accepted 19 November 2012.

This work was supported by the Russian Foundation for Basic Research project No. 10-05-00311. Partial support for this study was also provided by the Satellite Monitoring of the Baltic Sea Environment - SatBaltyk project, funded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09 and statutory research funds from the Institute of Oceanology PAS, Sopot.

Abstract

Statistical relationships between coefficients of light attenuation, scattering and backscattering at wavelength 550 nm derived from series of optical measurements performed in Baltic Sea waters are presented. The relationships were derived primarily to support data analysis from underwater imaging systems. Comparison of these relations with analogous empirical data from the Atlantic and Pacific Oceans shows that the two sets of relationships are similar, despite the different water types and the various experimental procedures and instrumentation applied. The apparently universal character of the relationships enables an approximate calculation of other optical properties and subsequently of the contrast, signal/noise ratio, visibility range and spatial resolution of underwater imaging systems based on attenuation coefficients at wavelength 550 nm only.

  References ref

Aas E., Hokedal J., Sorensen K., 2005, Spectral backscattering coeffcientin coastal waters,Int. J.Remote Sens.,26 (2), 331-343, http://dx.doi.org/10.1080/01431160410001720324

Barnard A. H.,PegauW. S.,ZaneveldJ. R. V.,1998, Globalrelationshipsofthe inherent optical properties of the oceans, J. Geophys.Res., 103 (C11),24955-24968, http://dx.doi.org/10.1029/98JC01851

Dera J., 1992, Marinephysics, Elsevier-PWN, Amsterdam, 516 pp.

Dolin L., GilbertG., Levin I., LuchininA., 2006, Theoryof imaging through wavy sea surface, Inst.Appl. Phys.(RAS),Nizhniy Novgorod, 171 pp.

DolinL. S.,LevinI. M.,1991, Reference book ontheunderwater visiontheory, Gidrometeoizdat Press,Leningrad,230 pp., (in Russian).

DolinL. S.,LevinI. M.,2004,Underwateroptics, The Optics Encyclopedia, Vol. 5, Wiley-VCHPubl.,Weinheim,3237-3271, http://dx.doi.org/10.1002/3527600434.eap300.pub2

EilolaK., 1997,Development ofaspringthermocline attemperaturesbelow thetemperatureofmaximumdensity withapplicationtotheBaltic Sea, J. Geophys. Res., 102 (C4), 8657-8662, http://dx.doi.org/10.1029/97JC00295

FournierG. R., Bonnier D., ForandJ. L., Pace P. W., 1993, Range-gated underwater laserimagingsystem,Opt. Eng.,32 (9),2185-2190, http://dx.doi.org/10.1117/12.143954

GordonH. R., 1989, Dependenceof the diffuse reflectance of natural waters on the sunangle, Limnol.Oceanogr.,34 (8),1484-1489, http://dx.doi.org/10.4319/lo.1989.34.8.1484

JohnsonK. S.,BerelsonW. M., BossE. S.,Chase Z.,ClaustreH., Emerson S. R.,GruberN.,KörtzingerA.,PerryM. J.,RiserS. C.,2009, Observing biogeochemical cycles at global scales with profiling floats and gliders:prospects for a global array, Oceanography, 22 (3), 216-225, http://dx.doi.org/10.5670/oceanog.2009.81

KirkJ. T. O.,1984,Dependence ofrelationshipbetween inherentandapparent optical properties of water on solar altitude, Limnol.Oceanogr.,29 (2),350-356, http://dx.doi.org/10.4319/lo.1984.29.2.0350

KirkJ. T. O.,1992,MonteCarlomodelingoftheperformanceofthereflective tube absorption meter,Appl.Optics,31 (30),6463-6468, http://dx.doi.org/10.1364/AO.31.006463

KopelevichO. V.,1983, Experimentaldata onthe optical propertiesofseawater, Ocean Opt., 1, Nauka,Moskva, 166-207, (in Russian).

KopelevichO. V.,MashtakovY. L.,RusanovS. Y.,1974, Apparaturaimetodika issledovaniya opticheskikh svoistv morskoi vody, gidrozicheskie i gidrooptich- eskie issledovaniya v Atlanticheskomi Tikhomokeanakh, Nauka,Moskva, 97–107.

KowalczukP.,1999,Seasonalvariabilityofyellowsubstanceabsorptioninthe surfacelayeroftheBaltic Sea, J. Geophys.Res.,104 (C12), 30047-30058, http://dx.doi.org/10.1029/1999JC900198

KowalczukP.,ZabłockaM., SaganS., KulińskiK.,2010, Fluorescencemeasured in situ as a proxy of CDOM absorption and DOC concentrationin the Baltic Sea, Oceanologia, 52 (3), 431-471, http://dx.doi.org/10.5697/oc.52-3.431

Lee Z., CarderK. L., Mobley C. D., Steward R. G., Patch J. S., 1999, Hyperspectral remote sensing for shallow waters:2. Derivingbottom depths and water propertiesby optimization,Appl. Opt.,38 (18),3831-3843, http://dx.doi.org/10.1117/12.740464

LevinI.,DesaEh., DesaEl., SureshT., RadomyslskayaT., 2001, Can the Secchi depth measurements be used for determination of water inherent optical properties?, Proc.1stInt. Conf.CurrentProblems inOpticsofNatural Waters(ONW-2001),360-366,I. M.Levin&G. D.Gilbert (eds.), D. S. Rozhdestvensky Opt.Soc., St. Petersburg.

LevinI.,FrantsuzovO.,OsadchyV.,Radomyslskaya T.,SavtchenkoV.,2003, The instrument for in situ measurement of attenuation coefficient in coastal waters, Proc.2nd Int. Conf. ’Current Problemsin Optics of Natural Waters (ONW-2003),I. M. Levin & G. D. Gilbert(eds.),D. S. Rozhdestvensky Opt. Soc., St. Petersburg, 284-288.

Levin I. M., Kopelevich O. V., 2007, Correlationsbetween the inherent hydrooptical characteristicsinthe spectralrange closeto 550 nm,Okeanologiya,47, (3), 374-379, (in Russian).

Levin I. M., Radomyslskaya T M., 2007, Secchidisk theory:a reexamination, Proc. SPIE,6615, Currentresearch on remote sensing,laser probing, and imagery in natural waters, 66150O, 11 pp., http://dx.doi.org/10.1117/12.740464

LundgrenB., 1976, Spectraltransmittance measurements in the Baltic,Rep. Inst. Phys.Oceanogr.,30, Univ. Copenhagen, 38 pp.

MayerL.,Li Y.,Melvin G.,2002, 3D visualizationforpelagic fisheriesresearch andassessment, ICESJ. Mar.Sci.,59 (1), http://dx.doi.org/10.1006/jmsc.2001.1125

McKee D., Chami M., Brown I., SanjuanCalzado V., Doxaran D., Cunningham A., 2009, Role of measurement uncertainties in observed variabilityin the spectral backscatteringratio:a case study in mineral-richcoastal waters, Appl. Opt., 48 (24), 4663-4675, http://dx.doi.org/10.1364/AO.48.004663

MobleyC. D.,Gentili B.,Gordon H. R., Jin Z.,KattawarG. W., MorelA., Reinersman P.,StamnesK.,StavnR. H.,1993, Comparison ofnumerical models for computingunderwaterlight fields, Appl. Opt., 32 (36), 7884-7504, http://dx.doi.org/10.1364/AO.32.007484

Morel A.,1988, Opticalmodelingof the upperoceaninrelationto itsbiogenous mattercontent (Case1water), J. Geophys. Res., 93 (C9), 10749-10768, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A., PrieurL., 1977, Analysisof variationsin ocean color, Limnol. Oceanogr., 22 (4), 709-722, http://dx.doi.org/10.4319/lo.1977.22.4.0709

Petzold T. J., 1972, Volumescatteringfunctionfor selectedocean waters,Scripps Inst.Oceanogr.,San Diego, 79 pp.

PopeR. M.,FryE. S.,1997, Absorption spectrum(380-700nm)ofpurewater. II.Integratingcavitymeasurements, Appl.Opt.,36 (33),8710-8723, http://dx.doi.org/10.1364/AO.36.008710

ProkudinaT. M.,PelevinV. N.,1972,Determinationofthevalueofthelife parameterofa lightquantumfromthecharacteristicsoflightfieldsinthe sea, Optics Ocean Atmos., Nauka,Leningrad,157-167, (in Russian).

SaganS., 2008, Theinherentwateropticalpropertiesof Balticwaters,Diss. and monogr.,21, Inst.Oceanol. PAS, Sopot,244 pp., (in Polish).

SathyendranathS., Platt T.,1997, Analyticmodelof oceancolor,Appl.Opt., 36 (12), 2620-2629, http://dx.doi.org/10.1364/AO.36.002620

ShoonmakerJ. S., HammondR. R., HeathA. L., ClevelandJ. S., 1994, Numerical modelfor predictionof sublittoralopticalvisibility,Proc.SPIE2258, Ocean Optics XII, 695,685-702, http://dx.doi.org/10.1117/12.190116

SmithR. C.,BakerK. S.,1981, Opticalpropertiesoftheclearestnaturalwaters (200-800nm),Appl.Opt., 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177

StemmannL., Picheral M., Gorsky G., 2000, Dielvariation intheverticaldistributionof particulatematter(> 0.15 mm)in the NWMediterranean Sea investigatedwith the UnderwaterVideoProfiler, Deep-Sea Res., Pt.I,. 47 (3), 505-531, http://dx.doi.org/10.1016/S0967-0637(99)00100-4

TangX. O.,StewartW. K.,HuangH.,GallagerS. M.,DavisC. S.,VincentL., MarraM.,1998, Automatic planktonimagerecognition, Artif.Intell.Rev., 12 (1-3), 177-199, http://dx.doi.org/10.1023/A:1006517211724

Voipio A. (ed.),1981, TheBalticSea, Elsevier, Amsterdam, 418 pp.

Voss K. J.,1992, Aspectral model of the beam attenuation coefficientinthe ocean and coastal areas, Limnol.Oceanogr.,37 (3),501-509, http://dx.doi.org/10.4319/lo.1992.37.3.0501

WhitmireA. L., Boss E.,Cowles T. J.,PegauW. S., 2007, Spectralvariabilityof the particulate backscattering ratio,Opt. Exp.,15 (11),7019-7031, http://dx.doi.org/10.1364/OE.15.007019

ZaneveldJ. R. V.,KitchenJ. C.,Moore C.,1994, Thescattering errorcorrection of reflecting-tube absorption meters, Proc.SPIE2258, OceanOptics XII, 44, 44-55, http://dx.doi.org/10.1117/12.190095

ZaneveldJ. R. V.,PegauW.,2003, Robustunderwater visibilityparameter, Opt.Exp.,11 (23), 2997-3009, http://dx.doi.org/10.1364/OE.11.002997

Zege E. P.,IvanovA. P.,KatsevI. L.,1991, Imagetransferthrough a scattering medium, Springer,New York.

full, complete article (PDF - compatibile with Acrobat 4.0), 804 KB


Validation of SeaWiFS and MODIS Aqua/Terra aerosol products in coastal regions of European marginal seas
Oceanologia 2013, 55(1), 27-51
http://dx.doi.org/10.5697/oc.55-1.027

Frédéric Mélin1, Giuseppe Zibordi1, Thomas Carlund2, Brent N. Holben3, Sabina Stefan4
1European Commission - Joint Research Centre, Institute for Environment and Sustainability
TP272, Ispra, 21027, Italy
2Swedish Meteorological and Hydrological Institute,
SE-601 76, Norrköping, Sweden
3Goddard Space Flight Center, National Aeronautics and Space Administration,
Greenbelt, Maryland 20771, USA
4University of Bucharest, Faculty of Physics,
077125 Magurele, P.O. BOX MG-11, Bucharest, Romania

keywords: aerosols, ocean colour, AERONET, validation, European seas

Received 5 September 2012, revised 26 November 2012, accepted 18 December 2012.

Abstract

The aerosol products associated with the ocean colour missions SeaWiFS and MODIS (both Aqua and Terra) are assessed with AERONET field measurements collected in four European marginal seas for which fairly large uncertainties in ocean colour in-water products have been documented: the northern Adriatic, the Baltic, Black and North Seas. On average, more than 500 match-ups are found for each basin and satellite mission, showing an overall consistency of validation statistics across the three missions. The median absolute relative difference between satellite and field values of aerosol optical thickness τa at 443 nm varies from 12% to 15% for the three missions at the northern Adriatic and Black Sea sites, and from 13% to 26% for the Baltic and North Sea sites. It is in the interval 16-31% for the near-infrared band. The spectral shape of τais well reproduced with a median bias of the Ängström exponent varying between -15% and +14%, which represents a clear improvement with respect to previous versions of the atmospheric correction scheme. These results show that the uncertainty associated with τa in the considered coastal waters of the European marginal seas is comparable to global validation statistics.

  References ref

Ahmad Z., Franz B.A., McClain C.R., Kwiatkowska E. J., Werdell P. J., Shettle E.P., Holben B.N., 2010, New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans, Appl. Opt., 49 (9), 5545–5560, http://dx.doi.org/10.1364/AO.49.005545

Ansmann A., Bösenberg J., Chaikovsky A., Comerón A., Eckhardt S., Eixmann R., Freudenthaler V., Ginoux P., Komguem L., Linné H., López Márquez M. A., Matthias V., Mattis I., Mitev V., Müller D., Music S., Nickovic S., Pelon J., Sauvage L., Sobolewsky P., Srivastava M. K., Stohl A., Torres O., Vaughan G., Wandinger U., Wiegner M., 2003, Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARLINET, J. Geophys. Res., 108 (D24), 4783, http://dx.doi.org/10.1029/2003JD003757

Bailey S.W., Franz B.A., Werdell P. J., 2010, Estimation of near-infrared waterleaving reflectance for satellite ocean color data processing, Opt. Exp., 18 (7), 7521-7527, http://dx.doi.org/10.1364/OE.18.007521

Bailey S.W., Werdell P. J., 2006, A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102 (1-2), 12-23, http://dx.doi.org/10.1016/j.rse.2006.01.015

Blondeau-Patissier D., Tilstone G.H., Martinez-Vicente V., Moore G. F., 2004, Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters, J. Opt. A.Pure Appl. Op., 6 (9), 875-889, http://dx.doi.org/10.1088/1464-4258/6/9/010

Bréon F.-M., Vermeulen A., Descloitres J., 2011, An evaluation of satellite aerosol products against sunphotometer measurements, Remote Sens. Environ., 115 (12), 3102-3111, http://dx.doi.org/10.1016/j.rse.2011.06.017

Bulgarelli B., Mélin F., Zibordi G., 2003, SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm, Oceanologia, 45 (4), 655-677.

Carlund T., Håkansson B., Land P., 2005, Aerosol optical depth over the Baltic Sea derived from AERONET and SeaWiFS measurements, Int. J. Remote Sens., 26 (2), 233-245, http://dx.doi.org/10.1080/01431160410001720306

Clerici M., Mélin F., 2008, Aerosol direct radiative effect in the Po Valley region derived from AERONET measurements, Atmos. Chem. Phys., 8 (16), 4925-4946, http://dx.doi.org/10.5194/acp-8-4925-2008

Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS biooptical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1029/2011JD016815

Derimian Y., Dubovik O., Tanré D., Goloub P., Lapyonok T., Mortier A., 2012, Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117 (D9), D00U25, http://dx.doi.org/10.1029/2011JD016815

Ebert M., Weinbruch S., Hoffmann P., Ortner H.M., 2000, Chemical characterization of North Sea aerosol particles, J. Aerosol Sci., 31 (5), 613-632, http://dx.doi.org/10.1016/S0021-8502(99)00549-2

Eck T. F., Holben B. N., Reid J. S., Dubovik O., Smirnov A., O'Neill N. T., Slutsker I., Kinne S., 1999, The wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols, J. Geophys. Res., 104 (D24), 31333-31350, http://dx.doi.org/10.1029/1999JD900923

Esaias W. E., Abbott M.R., Barton I., Brown O. B., Campbell J.W., Carder K.L., Clark D.K., Evans R.H., Hoge F.E., Gordon H.R., Balch W.M., Letelier R., Minnett P. J., 1998, An overview of MODIS capabilities for ocean science observations, IEEE Trans. Geosci. Remote Sens., 36 (4), 1250–1265, http://dx.doi.org/10.1109/36.701076

Franz B.A., Bailey S.W., Werdell P. J., McClain C.R., 2007, Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry, Appl. Opt., 46 (22), 5068–5082, http://dx.doi.org/10.1364/AO.46.005068

Fu G., Baith K. S., McClain C.R., 1998, SeaDAS: The SeaWiFS data analysis system, Proc. 4th Pacific Ocean Remote Sens. Conf., Qingdao, China, July 28–31, 1998, 73–79.

Gordon H.R., Wang M., 1994, Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Appl. Opt., 33 (3), 443–452, http://dx.doi.org/10.1364/AO.33.000443

Holben B. N., Eck T. F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y. J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A., 1998, AERONET – a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66 (1), 1–16, http://dx.doi.org/10.1016/S0034-4257(98)00031-5

Kahn R.A., Gaitley B. J., Garay M. J., Diner D. J., Eck T. F., Smirnov A., Holben B.N., 2010, Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, J. Geophys. Res., 115, D23209, http://dx.doi.org/10.1029/2010JD014601

Koelemeijer R.B.A., Homan C.D., Matthijsen J., 2006, Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ., 40 (27), 5304–5315, http://dx.doi.org/10.1016/j.atmosenv.2006.04.044

Kuśmierczyk-Michulec J., de Leeuw G., Moerman M.M., 2007, Physical and optical aerosol at the Dutch North Sea coast based on AERONET observations, Atmos. Chem. Phys., 7 (13), 3481–3495, http://dx.doi.org/10.5194/acp-7-3481-2007

Lavender S. J., Pinkerton M.H., Froidefond J.-M., Morales J., Aiken J., Moore G. F., 2004, SeaWiFS validation in European coastal waters using optical and bio-geochemical measurements, Int. J. Remote Sens., 25 (7–8), 1481–1488, http://dx.doi.org/10.1080/01431160310001592481

Marmer E., Langmann B., Fagerli H., Vestreng V., 2007, Direct shortwave radiative forcing of sulfate aerosol over Europe from 1900 to 2000, J. Geophys. Res., 112, D23S17, http://dx.doi.org/10.1029/2006JD008037

Mattis I., Ansmann A., Wandinger U., Müller D., 2003, Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003, Geophys. Res. Lett., 30 (22), 2178, http://dx.doi.org/10.1029/2003GL018442

McArthur L. J. B., Halliwell D.H., Niebergall O. J., O’Neill N. T., Slusser J.R., Wehrli C., 2003, Field comparison of network Sun photometers, J. Geophys. Res., 108 (D19), 4596, http://dx.doi.org/10.1029/2002JD002964

McClain C.R., Cleave M. L., Feldman G. C., Gregg W. W., Hooker S.B., Kuring N., 1998, Science quality SeaWiFS data for global biosphere research, Sea Tech., 39, 10–16.

Mélin F., Clerici M., Zibordi G., Bulgarelli B., 2006, Aerosol variability in the Adriatic Sea from automated optical field measurements and SeaWiFS, J. Geophys. Res., 111, D22201, http://dx.doi.org/10.1029/2006JD007226

Mélin F., Clerici M., Zibordi G., Holben B.N., Smirnov A., 2010, Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data, Remote Sens. Environ., 114 (2), 230-250, http://dx.doi.org/10.1016/j.rse.2009.09.003

Mélin F., Zibordi G., 2005, Aerosol variability in the Po Valley analyzed from automated optical measurements, Geophys. Res. Lett., 32 (3), L03810, http://dx.doi.org/10.1029/2004GL021787

Mélin F., Zibordi G., Berthon J.-F., 2007a, Assessment of satellite ocean color products at a coastal site, Remote Sens. Environ., 110 (2), 192-215, http://dx.doi.org/10.1016/j.rse.2007.02.026

Mélin F., Zibordi G., Berthon J.-F., 2012, Uncertainties in remote sensing reflectance from MODIS-Terra, IEEE Geosci. Remote Sens. Lett., 9 (3), 432-436, http://dx.doi.org/10.1109/LGRS.2011.2170659

Mélin F., Zibordi G., Berthon J.-F., Bailey S.W., Franz B.A., Voss K. J., Flora S., Grant M., 2011, Assessment of MERIS reflectance data as processed with SeaDAS over the European seas, Opt. Exp., 19 (25), 25657-25671, http://dx.doi.org/10.1364/OE.19.025657

Mélin F., Zibordi G., Djavidnia S., 2007b, Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS, Remote Sens. Environ., 108 (4), 436-450, http://dx.doi.org/10.1016/j.rse.2006.11.026

Mélin F., Zibordi G., Holben B.N., 2013, Assessment of the aerosol products from the SeaWiFS and MODIS ocean color missions, IEEE Geosci. Remote Sens. Lett., (in press).

O'Neill N.T., Eck T. F., Holben B.N., Smirnov A., Dubovik O., Royer A., 2001, Bimodal size distribution influences on the variation of Ångströ m derivatives in spectral and optical depth space, J. Geophys. Res., 106 (D9), 9787-9806, http://dx.doi.org/10.1029/2000JD900245

Remer L.A., Kleidman R. G., Levy R.C., Kaufman Y. J., Tanré D., Mattoo S., Martins J.V., Ichoku C., Koren I., Yu H., Holben B.N., 2008, Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, http://dx.doi.org/10.1029/2007JD009661

Sancak S., Besiktepe S.T., Yilmaz A., Lee M., Frouin R., 2005, Evaluation of SeaWiFS chlorophyll-a in the Black and Mediterranean Seas, Int. J. Remote Sens., 26 (10), 2045-2060, http://dx.doi.org/10.1080/01431160512331337853

Schmid B., Michalsky J., Halthore R., Beauharnois M., Harrison L., Livingston J., Russell P., Holben B.N., Eck T. F., Smirnov A., 1999, Comparison of aerosol optical depth from four solar radiometers during the Fall 1997 ARM intensive observation period, Geophys. Res. Lett., 26 (17), 2725-2728, http://dx.doi.org/10.1029/1999GL900513

Sciare J., Oikonomou K., Favez O., Liakakou E., Markaki Z., Cachier H., Mihalopoulos N., 2008, Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning, Atmos. Chem. Phys., 8 (14), 5551-5563, http://dx.doi.org/10.5194/acp-8-5551-2008

Shettle E.P., Fenn R.W., 1979, Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, Environ. Res. Paper, 676, AFGL-TR-79-0214 (U.S. Air Force Geophys. Lab., Hanscom A.F.B., MA), 1-94.

Smirnov A., Holben B.N., Eck T. F., Dubovik O., Slutsker I., 2000, Cloud-screening and quality control algorithms for the AERONET database, Remote Sens. Environ., 73 (3), 337-349, http://dx.doi.org/10.1016/S0034-4257(00)00109-7

Smirnov A., Holben B.N., Lyapustin A., Slutsker I., Eck T. F., 2004, AERONET processing algorithm refinement, AERONET Workshop, El Arenosillo, Spain, May 10-14, 2004.

Toledano C., Cachorro V. E., Gausa M., Stebel K., Aaltonen V., Berjon A., Ortiz de Galisteo J.P., de Frutos A. M., Bennouna Y., Blindheim S., Myhre C. L., Zibordi G., Wehrli C., Kratzer S., Håkansson B., Carlund T., de Leeuw G., Herber A., Torres B., 2012, Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard, Atmos. Environ., 52, 18-28, http://dx.doi.org/10.1016/j.atmosenv.2011.10.022

Zdun A., Rozwadowska A., Kratzer S., 2011, Seasonal variability in the optical properties of Baltic aerosols, Oceanologia, 53 (1), 7-34, http://dx.doi.org/10.5697/oc.53-1.007

Zibordi G., Berthon J.-F., Mélin F., D'limonte D., 2011, Cross-site consistent in situ measurements for satellite ocean color applications: the BiOMaP radiometric dataset, Remote Sens. Environ., 115 (8), 2104-2115, http://dx.doi.org/10.1016/j.rse.2011.04.013

Zibordi G., Berthon J.-F., Mélin F., D'limonte D., Kaitala S., 2009, Validation of satellite ocean color primary products at optically complex coastal sites: northern Adriatic Sea, northern Baltic Proper and Gulf of Finland, Remote Sens. Environ., 113 (12), 2574-2591, http://dx.doi.org/10.1016/j.rse.2009.07.013

Zibordi G., Mélin F., Berthon J.-F., 2012, Trends in the bias of primary satellite ocean color products at a coastal site, IEEE Geosci. Remote Sens. Lett., 9 (6), 1056-1060, http://dx.doi.org/10.1109/LGRS.2012.2189753

-->
full, complete article (PDF - compatibile with Acrobat 4.0), 2.93 MB


Influence of the parametrization of water optical properties on the modelled sea surface temperature in the Baltic Sea
Oceanologia 2013, 55(1), 53-76
http://dx.doi.org/10.5697/oc.55-1.053

Małgorzata Stramska1,2,*, Agata Zuzewicz1,2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: mstramska@iopan.gda.pl
*corresponding author
2Department ofEarth Sciences, Szczecin University,
Mickiewicza 16, Szczecin 70-383, Poland

keywords: Baltic Sea, sea surface temperature, biological-physical interactions, ocean models

Received 18 July 2012, revised 6 November 2012, accepted 26 November 2012.

This work was supported by the SatBałtyk project funded by the European Union through the European Regional Development Fund (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").

Abstract

Treatment of light propagation in the water column requires further improvements in the biogeochemical models of the Baltic Sea. Regional models of the Baltic Sea usually assume a simple exponential vertical distribution of the total downward irradiance in the visible spectral range (PAR, photosynthetically available radiation). This is in spite of the fact that modelling studies for open ocean regions have stressed the importance of more detailed optical parameterization for the quality prediction of sea surface temperature and thermal structure of surface waters. In recent years extensive regional in situ bio-optical data sets have become available for the Baltic Sea, which can be used to develop a better understanding of the feedbacks between optics and other processes simulated by the models. In this paper we compare four optical parameterizations used in numerical ocean models and their effects on modelled SSTs. This has been achieved using a one-dimensional ocean model coupled with the bio-optical models. Our results indicate that the differences between the various modelled SSTs using three optical parameterization schemes designed specifically for the Baltic Sea can give differences of up to 4°Cin the modelled SSTs. This result warrants further research into the subject.

  References ref
BakerK. S.,SmithR. C.,1982,Bio-optical classiffication andmodelofnatural waters, Limnol. Oceanogr.,27 (3), 500-509.

BirdR. E.,1984,A simple, solarspectralmodelfordirect-normalanddiffuse horizontalirradiance,SolarEnergy, 32 (4),461-471, http://dx.doi.org/10.1016/0038-092X(84)90260-3

BirdR. E., Hulstrom R. L.,LewisL. J.,1983,Terrestrial solarspectraldata sets, Sol. Energy,30 (6),563-573, http://dx.doi.org/10.1016/0038-092X(83)90068-3

Belkin I., 2009, Rapidwarming of large marineecosystems,Prog.Oceanogr.,81, 207-213.

Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical circulation studiesof the SouthCaliforniaBight,J. Geophys.Res.,88 (8),4579-4592, http://dx.doi.org/10.1029/JC088iC08p04579

Bradtke K., HermanA., UrbańskiJ. A., 2010, Spatial and interannual variations ofseasonalseasurfacetemperature patterns inthe BalticSea,Oceanologia, 52 (3), 345-362, http://dx.doi.org/10.5697/oc.52-3.345

Darecki M., Ficek D., KrężelA., OstrowskaM., MajchrowskiR.,Woźniak S. B., BradtkeK., DeraJ., WoźniakB.,2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.

FashamM. J. R., Ducklow H. W., McKelvie S. M., 1990, Anitrogen-based model of plankton dynamicsin the oceanic mixed layer, J. Mar. Res., 48 (3), 591-639.

FeldmanG. C.,McClainC. R.,2012, OceanColor Web.SeaWiFS and MODISA Reprocessing2010, N. Kuring& S. W.Bailey(eds.),NASA Goddard Space Flight Center, http://oceancolor.gsfc.nasa.gov/, (access dateJanuary 2012).

HELCOM2009, Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ.Proc.No. 115B, 148 pp.

KahruM., Leppänen J. M., RudO., 1993, Cyanobacterialblooms cause heating of the sea surface, Mar. Ecol.-Prog.Ser., 101, 1-7.

KirkJ. T. O.,2011, Lightand photosynthesisinaquatic ecosystems,Cambridge Univ. Press,3rd edn., Cambridge, 662 pp.

KishinoM.,OkamiN.,TakahashiM.,Ichimura S. E.,1986,Lightutilization effciency and quantum yield of phytoplankton in a thermally stratified sea, Limnol. Oceanogr.,31 (3),557-566.

Lee Z.-P.,DareckiM., CarderK. L., Davis C. O., Stramski D., RheaW. J., 2005, Diffuse attenuationcoeffcientofdownwelling irradiance: Anevaluationof remote sensing methods, J. Geophys. Res., 110, C02017, http://dx.doi.org/10.1029/2004JC002573

LeppärantaM., Myrberg K., 2009,Physical oceanographyoftheBaltic Sea, Springer, Berlin, [ISBN: 978-3-540-79702-9], 378 pp.

Lewis M. R., Carr M. E., FeldmanG. C., Esaias W., McClain C., 1990, Inffluenceof penetrating solar radiation on the heat budget of the equatorial PacificOcean, Nature, 347 (6293), 543-545, http://dx.doi.org/10.1038/347543a0

Lewis M. R., CullenJ. J., Platt T.,1983, Phytoplanktonandthermalstructure in the upper ocean: consequences of nonuniformity in the chlorophyll profile, J. Geophys. Res., 88 (C4), 2565-2570, http://dx.doi.org/10.1029/JC088iC04p02565

LöptienU.,Meier H. E. M., 2011, The influence of increasing water turbidity on thesea surfacetemperature intheBalticSea:Amodelsensitivity study,J. Marine Syst.,88 (2), 323-331.

McClainC. R.,FeldmanG. C.,Hooker S. B., 2004, Anoverviewof the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep Sea Res. Pt. II, 51 (1-3), 5-42, http://dx.doi.org/10.1016/j.dsr2.2003.11.001

Mellor G. L., 2004, Users guide for a three-dimensional, primitive equationnumerical oceanmodel,availableonthe Princeton OceanModel (POM) website, rev.2004, http://www.aos.princetion.edu/WWPUBLIC/htdocs.pom/

Mellor G. L., DurbinP. A., 1975, Thestructureand dynamicsof the ocean surface mixedlayer, J. Phys.Oceanogr.,5 (4),718-728, http://dx.doi.org/10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2

MellorG. L.,Yamada T., 1974, A hierarchyof turbulenceclosuremodelsfor planetary boundarylayers,J. Atmos.Sci., 31 (7),1791-1806, http://dx.doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

MellorG. L., YamadaT.,1982, Development ofa turbulenceclosuremodelfor geophysical fluidproblems, Rev. Geophys.Space Phys.,20 (4), 851-857, http://dx.doi.org/10.1029/RG020i004p00851

Mobley C. D., 1994, Lightand water:Radiativetransferin naturalwaters, Acad. Press,New York, 592 pp.

Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patternsin surfacewatersof the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6

MooreJ. K.,DoneyS. C.,KleypasJ. C.,GloverD. M.,FungI. Y.,2002b, An intermediate complexitymarineecosystemmodel for the global domain,Deep Sea Res. Part II, 49 (1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4

Moore J. K., Doney S. C., LindsayK., 2004, Upper ocean ecosystemdynamicsand ironcyclingin a global three-dimensionalmodel,GlobalBiogeochem.Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A.,1988, Opticalmodelingof theupperoceaninrelationto itsbiogenous matter content(case 1 waters),J. Geophys.Res., 93 (C9),10749-10768.

NeumannT.,2000, Towards a 3D-ecosystem modelof theBalticSea,J. Marine Syst.,25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0

Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy.,16, 1033, http://dx.doi.org/10.1029/2001GB001450

NeumannT., Schernewski G., 2005, An ecological model evaluationof two nutrient abatement strategiesfortheBalticSea, J. MarineSyst.,56 (1-2),195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Neumann T., Schernewski G., 2008, Eutrophication intheBalticSeaandshifts innitrogen fixationanalyzedwitha3Decosystem model, J. MarineSyst.,74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

Ołdakowski B., Kowalewski M., JędrasikJ., Szymelfenig M., 2005, Ecohydrodynamicmodelof the Baltic Sea. Part 1. Descriptionof the ProDeMomodel, Oceanologia, 47 (4), 477-516.

Palmer K. F., Williams D., 1974, Optical propertiesof water in the near infrared, J. Opt. Soc. Am., 64 (8), 1107-l110, http://dx.doi.org/10.1364/JOSA.64.001107

PayneR. E.,1972, Albedooftheseasurface, J. Atmos. Sci.,29 (5), 959-970, http://dx.doi.org/10.1175/1520-0469(1972)029<0959:AOTSS<2.0.CO;2

Pierson D., KratzerS.,StrömbeckN., Hakånsson B., 2008, Relationshipbetween the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea, Remote Sens.Environ., 112 (3), 668-680, http://dx.doi.org/10.1016/j.rse.2007.06.009

Savchuk P. O., Wulff F., 1999, Modeling regional and large-scale response of Baltic Sea ecosystemsto nutrient load reductions,Hydrobiologia, 393 (1), 35-43.

Savchuk P. O., Wulff F.,2007,ModelingtheBaltic Sea eutrophication in a decision support system, AMBIO 36 (2), 141-148, http://dx.doi.org/10.1579/0044-7447(2007)36[141:MTBSEI]2.0.CO;2

Sathyendranath S., Gouveia A. D., Shetye S. R., Ravindran P., Platt T., 1991, Biologicalcontrolofsurfacetemperature intheArabianSea,Nature, 349 (6304), 54-56, http://dx.doi.org/10.1038/349054a0

Sathyendranath S., PlattT., 1988, Thespectral irradiancefield at the surfaceand inthe interiorof theocean:Amodelforapplicationsinoceanographyand remotesensing, J. Geophys. Res., 93 (C8), 9270-9280, http://dx.doi.org/10.1029/JC093iC08p09270

Siegel H., Gerth M., Tschersich G., 2006, Sea surfacetemperature developmentof the BalticSea in the period 1990-2004,Oceanologia, 48 (S), 119-131.

Simonot J.-Y.,Dollinger E., Le TreutH., 1988, Thermodynamic-biological-optical couplingin theoceanicmixedlayer,J. Geophys. Res.,93 (C7),8193-8202, http://dx.doi.org/10.1029/JC093iC07p08193

SmithR. C., BakerK. S., 1981, Opticalpropertiesoftheclearestnaturalwaters (200-800 nm),Appl. Opt.,20 (2),177-184, http://dx.doi.org/10.1364/AO.20.000177

Smith R. C., Baker K. S., 1986, Analysisof ocean optical data, II. Proc. Sot. Photo-Opt. Eng., 637, 95-107.

StramskaM.,DickeyT.,1993, Phytoplanktonbloomandtheverticalthermal structureof the upper ocean,J. Mar.Res., 51 (4),819-842.

WoodsJ. D., BarkmannW.,1986, The responseoftheupperoceantosolar heating.I. Themixedlayer,Q. J. Roy. Meteor.Soc., 112 (471),1-27, http://dx.doi.org/10.1002/qj.49711247102

WoźniakB., Krężel A., DareckiM., WoźniakS. B., Majchrowski R.,Ostrowska M., Kozłowski Ł., FicekD., Olszewski J., Dera J., 2008, Algorithmsfor the remotesensing of the Baltic ecosystem(DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.

Zaneveld J. R., Kitchen J. C., Pak H., 1981, Theinfluenceof optical water type on the heating rateof a constantdepthmixedlayer,J. Geophys.Res.,86 (C7), 6426-6428, http://dx.doi.org/10.1029/JC086iC07p06426


full, complete article (PDF - compatibile with Acrobat 4.0), 392 KB


Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms
Oceanologia 2013, 55(1), 77-100
http://dx.doi.org/10.5697/oc.55-1.077

Małgorzata Stramska1,2,*, Agata Zuzewicz1,2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: mstramska@iopan.gda.pl
*corresponding author
2Department ofEarth Sciences, Szczecin University,
Mickiewicza 16, Szczecin 70-383, Poland

keywords: ocean colour, satellite remote sensing, primary productivity, Baltic Sea

Received 12 July 2012, revised 26 October 2012, accepted 4 January 2013.

This work was supported through the SatBałtyk project funded by the European Union through the European Regional Development Fund, (contract No. POIG.01.01.02-22-011/09 entitled "The Satellite Monitoring of the Baltic Sea Environment").

Abstract

The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2) in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.

  References ref
AntoineD.,André J. M.,Morel A.,1996, Oceanic primaryproduction: 2.Estimationatglobal scalefromsatellite(CoastalZoneColorScanner) chlorophyll, Global Biogeochem. Cy., 10 (1), 56-69.

BalchW. M.,EvansR.,BrownJ., Feldman G.,McClainC.,EsaiasW.,1992, The remote sensing ofoceanprimary productivity: Useofanewdata compilationto test satellite algorithms,J. Geophys.Res., 97 (C2),2279-2293, http://dx.doi.org/10.1029/91JC02843

Behrenfeld M. J., Falkowski P. G., 1997, Photosynthetic rates derived from satellite- based chlorophyll concentration, Limnol. Oceanogr.,42 (1), 1-20.

Behrenfeld M. J., O’Malley R. T., Siegel A. D., McClain C.-R.,Jorge L., Sarmiento J., FeldmanG. C., Milligan A. J., Falkowski P. G., Letelier R., Boss E. S., 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444 (7120), 752-755, http://dx.doi.org/10.1038/nature05317

BianchiA., BianucciL., PiolaA., Ruiz-PinoD., Schloss I., Poisson A., Balestrini C., 2005, Verticalstratification and air-sea CO2 fluxes in the Patagonianshelf, J. Geophys.Res., 110, C07003, http://dx.doi.org/10.1029/2004JC002488

BoydP. W.,TrullT. W.,2007, Understandingthe exportof biogenic particlesin oceanic waters:Is there consensus?,Prog.Oceanogr.,72 (4),276-312, [ISSN 0079-6611], http://dx.doi.org/10.1016/j.pocean.2006.10.007

BroekhuizenN.,HeathM. R.,HayS. J.,GurneyW. S. C.,1995,Modellingthe dynamicsof theNorthSea’smesozooplankton,Neth.J.SeaRes.,33 (3/4), 381-406, http://dx.doi.org/10.1016/0077-7579(95)90054-3

Brush M. J., Brawley J. W.,Nixon S. W.,Kremer J. N., 2002, Modeling phytoplankton production:problems with the Eppley curve and an empirical alternative,Mar. Ecol.-Prog.Ser., 238, 31-45.

Campbell J., Antoine D., ArmstrongR., ArrigoK., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., HoepnerN.,Iverson R.,KeiferD.,LohrenzS.,MarraJ., MorelA.,Ryan J.,VedemikovV.,Waters K., YentschC.,YoderJ., 2002,Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature,andirradiance, GlobalBiogeochem.Cy.,16 (3), 74-75, http://dx.doi.org/10.1029/2001GB001444

CarrM.-E.,FriedrichsM. A., SchmeltzM., AitaM. N., Antoine D., Arrigo K. R., AsanumaI., Aumont O., BarberR.,BehrenfeldM., BidigareR., Buitenhuis E. T.,CampbellJ., CiottiA., DierssenH., Dowell M., DunneJ., EsaiasW., GentiliB.,GreggW.,GroomS.,HoepnerN., IshizakaJ., KamedaT.,Le Quere C., Lohrenz S., MarraJ.,Melin F.,Moore K., Morel A., ReddyT. E., RyanJ.,Scardi M., SmythT., TurpieK., TilstoneG., Waters K., Yamanaka Y., 2006, A comparisonof global estimatesof marineprimaryproductionfrom ocean color, Deep-Sea Res. Pt. II, 53 (5-7), 741-770.

Darecki M., FicekD., KrężelA., Ostrowska M., MajchrowskiR., Woźniak S. B., BradtkeK.,DeraJ., WoźniakB.,2008,Algorithms fortheremote sensing of the Baltic ecosystem(DESAMBEM). Part 2: Empiricalvalidation, Oceanologia,50 (4), 509-538.

DareckiM.,StramskiD.,2004,An evaluation ofMODIS andSeaWiFSbio-optical algorithmsin the BalticSea, RemoteSens. Environ.,89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012

Doney S. C., FabryV. J., Feely R. A., Kleypas J. A., 2009, Ocean acidification:the otherCO2 problem,Ann.Rev.Mar.Sci., 1, 169-192, http://dx.doi.org/10.1146/annurev.marine.010908.163834

EbenhöhW.,KohlmeierC.,RadfordP. J.,1995, Thebenthicbiological submodel in the EuropeanRegionalSeas EcosystemModel, Neth.J.Sea Res., 33(3/4), 423-452, http://dx.doi.org/10.1016/0077-7579(95)90056-X

EppleyR. W., 1972, Temperature and phytoplanktongrowth in the sea, Fish. Bull. Nat. Ocean. Atmos. Adm.,70 (37), 1063-1085.

FitzwaterS. E., KnauerG. A., MartinJ. H., 1982, Metalcontaminationandits effecton primaryproductionmeasurements,Limnol.Oceanogr.,27 (3),544-551.

Friedrichs M. A. M.,Carr M.-E.,Barber R. T., Scardi M.,Antoine D.,Armstrong R. A., AsanumaI., Behrenfeld M. J., BuitenhuisE. T.,Chai F.,Christian J. R.,Ciotti A. M., Doney S. C., Dowell M., Dunne J., Gentili B.,Gregg W., Hoepffner N., Ishizaka J., KamedaT., LimaI., MarraJ., MélinF., Moore J. K., Morel A., O’MalleyR. T., O’ReillyJ., SabaV. S., SchmeltM., Smyth T. J., TjiputraJ., Waters K., Westberry T. K., WinguthA., 2009, Assessing theuncertaintiesofmodelestimatesofprimaryproductivityinthetropical PacificOcean, J. Marine Syst., 76 (1-2), 113-133, http://dx.doi.org/10.1016/j.jmarsys.2008.05.010

Gregg W. W., 2008, Assimilation of SeaWiFS ocean chlorophyll data into a three- dimensionalglobal oceanmodel, J. Marine.Syst.,69 (3-4), 205-225, http://dx.doi.org/10.1016/j.jmarsys.2006.02.015

HofmannE. E., LascaraC. M., 1998, Overviewofinterdisciplinary modelingfor marine ecosystems,[in:] Thesea,Vol. 10:Theglobal coastal ocean:processes and methods,K. H. Brink & A. R. Robinson (eds.), JohnWiley & Sons, New York, 507-540.

JGOFS 1996, Protocols for the joint global ocean flux study (JGOFS) core measurements,Rep.No.36, Intergov.Oceanogr. Commiss.,Bergen,Norway, 170 pp., (available at ijgofs.whoi.edu/Publications/Report_Series/reports.html).

JGOFS, 2002, Photosynthesis and PrimaryProductivityin MarineEcosystems: Practical Aspects and Application of Techniques, Rep. No. 19, Intergov. Oceanogr.Commiss.,Bergen,Norway,89 pp., (available at ijgofs.whoi.edu/Publications/Report_eries/reports.html).

Kameda T., Ishizaka J., 2005, Size-fractionatedprimary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanogr., 61 (4), 663-672.

Kiefer D. A.,RenselJ. E., O’Brien F. J.,FredrikssonD. W.,IrishJ.,2011, An Ecosystemdesignformarineaquaculture siteselectionandoperation, NOAA Marine Aquaculture Initiative Program Final Report. Award Number: NA08OAR4170859, by System Science Applications, Irvine CA in association with the United States Naval Academy and Woods Hole Oceanographic Institution.,181 pp.

Larsen S. H., 2005, Solar variability,dimethyl sulphide,clouds,and climate,Glob. Biogeochem. Cy., 19, GB1014, http://dx.doi.org/10.1029/2004GB002333

LonghurstA., SathyendranathS., Platt T.,Caverhill C., 1995, itAnestimate of global primary production in the ocean from satellite radiometer data,J. Plankton Res., 17, 1245-1271.

McClain C. R., 2009, A decade of satellite ocean color observations, Ann. Rev. Mar. Sci., 1, 19-42, http://dx.doi.org/10.1146/annurev.marine.010908.163650

Moisander P., Steppe T. F., Hall N. S., Kuparinen J., Paerl H. W., 2003, Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms, Mar. Ecol.-Prog.Ser., 262, 81-95, http://dx.doi.org/http://dx.doi.org/10.3354/meps262081

Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patterns insurface waters of the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6

MooreJ. K.,DoneyS. C.,KleypasJ. C.,GloverD. M.,FungI. Y.,2002b, An intermediate complexity marine ecosystemmodel for the global domain, Deep Sea Res. Part II, 49(1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4

Moore J. K., Doney S. C., LindsayK., 2004, Upperocean ecosystemdynamicsand ironcycling in a global three-dimensionalmodel,GlobalBiogeochem.Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749

Morel A.,1988, Opticalmodeling ofthe upper oceaninrelationto itsbiogenous matter content (case 1 waters), J. Geophys.Res., 93 (C9),10749-10768.

NeumannT.,2000, Towardsa 3D-ecosystemmodel ofthe BalticSea,J. Marine Syst.,25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0

Neumann T., Fennel W.,KrempC., 2002,Experimental simulations withan ecosystemmodeloftheBalticSea: Anutrient load reduction experiment, Global Biogeochem. Cy., 16, 1033, http://dx.doi.org/10.1029/2001GB001450

NeumannT., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategiesforthe BalticSea,J. MarineSyst.,56 (1-2),195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

NeumannT.,SchernewskiG.,2008, Eutrophicationinthe BalticSeaand shifts innitrogen fixationanalyzedwith a3Decosystemmodel,J. MarineSyst., 74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

OłdakowskiB.,Kowalewski M.,Jędrasik J.,SzymelfenigM.,2005, Ecohydrodynamicmodel ofthe BalticSea.Part1.Description ofthe ProDeMo model, Oceanologia,47 (4), 477-516.

O’ReillyJ. E,Maritorena S.,MitchellB. G.,Siegel D. A.,CarderK. L.,Garver S. A., KahruM., McClainC. R., 1998, Oceancolor chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103 (C11), 24937-24953.

O’Reilly J. E., Maritorena S., Siegel D. A., O’Brien M. C., Toole D., Mitchell B. G., KahruM., Chavez F. P., Strutton P., CotaG. F., Hooker S. B., McClain C. R., CarderK. L., Müller-Karger F., Harding L., Magnuson A., PhinneyD., Moore G. F.,AikenJ., ArrigoK.-R., LetelierR., CulverM.,2000,Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4, Ver. 4, NASA Tech. Memo., 2000-206892, Vol. 11, 9-27.

PetersonB. J., 1980,Aquaticprimaryproductivityandthe14CO2method: A history of the productivity problem, Ann. Rev. Ecol. Syst., 11, 369-385, http://dx.doi.org/10.1029/98JC02160

Richardson K., 1991, Comparisonof 14 C primary production determinations made by different laboratories, Mar. Ecol.-Prog.Ser., 72, 189-201.

Saba V. S.,Friedrichs M. A. M., Antoine D., Armstrong R. A., Asanuma I., Aumont O., Behrenfeld M. J., CiottiA. M.,Dowell M., Hoepffner N.,Hyde K. J. W., Ishizaka J., KamedaT., Marra J., MélinF., Moore J. K., Morel A.,O’Reilly J.,ScardiM.,Smith Jr. W. O.,Smyth T. J., Tang S., Uitz J., Waters K., Westberry T. K., 2011, Anevaluationof oceancolor model estimates of marine primary productivityin coastal and pelagic regions across the globe, Biogeosciences, 8,489-503, http://dx.doi.org/http://dx.doi.org/10.5194/bg-8-489-2011

SteeleJ.,1962,Environmentalcontrolofphotosynthesis in the sea, Limnol. Oceanogr., 7 (2), 137-150.

Stigebrandt A., Wulff F., 1987, A model for the dynamicsof nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45 (3), 729-759, http://dx.doi.org/10.1357/002224087788326812

WoźniakB., FicekD., Ostrowska M., Ma jchrowski R., DeraJ., 2007, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4),527-542.

WoźniakB., Krężel A., Darecki M., WoźniakS. B., Ma jchrowski R., Ostrowska, M., Kozłowski Ł., FicekD., Olszewski J., Dera J., 2008, Algorithmsfor the remotesensing of the Baltic ecosystem(DESAMBEM). Part 1: Mathematical apparatus,Oceanologia, 50 (4),451-508.

YeagerS. G., Shields C. A., Large W. G., Hack J. J., 2006, Thelow-resolutionCC SM3, J. Climate, 19 (11),2545-2566, http://dx.doi.org/10.1175/JCLI3744.1

full, complete article (PDF - compatibile with Acrobat 4.0), 563 KB


Surface wave generation due to glacier calving
Oceanologia 2013, 55(1), 101-127
http://dx.doi.org/10.5697/oc.55-1.101

Stanisław R. Massel, Anna Przyborska
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: smas@iopan.gda.pl
*corresponding author

keywords: glacier calving, surface waves, pressure impulse, integral transforms

Received 09 September 2012, revised 21 October 2012, accepted 26 November 2012.

The authors are grateful for support from the Arctic and Environment of the Nordic Seas and the Svalbard-Greenland Area (AWAKE) Grant.

Abstract

Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks fallinginto water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.

  References ref
Abramowitz M., Stegun I.A., 1975, Handbook of mathematical functions, Dover Publ., New York, 1045 pp.

Amundson J. M., Truffer M., Lutki M.P., Fahnestock M., West M., Motyka R. J., 2008, Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland, Geophys. Res. Lett., 35 (22), http://dx.doi.org/10.1029/2008GL035281

Amundson J. M., Fahnestock M., Truffer M., Brown J., Lutki M.P., Motyka R. J., 2010, Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland, J. Geophys. Res., 115 (F1), 12 pp., http://dx.doi.org/10.1029/2009JF001405

Błaszczyk M., Jania J.A., Hagen J.O., 2009, Tidewater glacier of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.

Brown C. S., Meier M. F., Post A., 1982, Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier, U.S. Geol. Surv. Prof. Pap., 1258-C.

Cointe R., Armand J.L., 1987, Hydrodynamic impact analysis of a cylinder, J. Offshore Mech. Arctic Eng., 109 (3), 237-243, http://dx.doi.org/10.1115/1.3257015

Cooker M. J., 1996, Sudden changes in a potential flow with a free surface due to impact, Q. J. Mech. Appl. Math., 49, 581-591, http://dx.doi.org/10.1093/qjmam/49.4.581

De Backer G., Vantorre M., Beels C., De Pre J., De Rouck J., Blommaert C., Van Paepegem W., 2009, Experimental investigation of water impact of axisymmetric bodies, Appl. Ocean Res., 31 (3), 143-156, http://dx.doi.org/10.1016/j.apor.2009.07.003

De Risio H., Sammarco P., 2008, Analytical modeling of landslide-generated waves, J. Waterw. Port C. Div., 134 (1), 53-60, http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53)

Glosh N.K., 1991, A cylindrical wave-maker problem in a liquid of finite depth with an inertial surface in the presence of surface tension, J. Austral. Math. Soc., Ser. B, 111-121.

Hanson B., Hooke R. L., 2000, Glacier calving: a numerical model of forces in the calving-speed/water-depth relation, J. Glaciol., 46 (153), 188-196, http://dx.doi.org/10.3189/172756500781832792

Hughes T., 1992, Theoretical calving rates from glaciers along ice walls grounded in water of variable depths, J. Glaciol., 38 (129), 282-294.

Lamb H., 1932, Hydrodynamics, Dover Publ., London, 738 pp.

Lavrentiev M.A., Shabat B.V., 1958, Methods of theory functions of complex variables, Gos. Izd. Fiz-Math. Moscow, 678 pp., (in Russian).

Levermann A., 2011, When glacial giants roll over, Nature, 472 (7341), 43-44, http://dx.doi.org/10.1038/472043a

MacAyeal D.R., Abbot D. S., Siergienko O.V., 2011, Iceberg-capsize tsunami genesis, Ann. Glaciol., 52 (58), 51-56, http://dx.doi.org/10.3189/172756411797252103

Massel S.R., 1967, Distribution of pressure-impulse on a cylindrical vessel body during side launching, Rozpr. Hydr., 20, 37-52, (in Polish).

Massel S.R., 2012, Tsunami in coastal zone due to meteorite impact, Coast. Eng., 66, 40-49, http://dx.doi.org/10.1016/j.coastaleng.2012.03.013

Nelson R.C., 1996, Hydraulic roughness of coral reef platforms, Appl. Ocean Res., 18, 265-274, http://dx.doi.org/10.1016/S0141-1187(97)00006-0

Newman J.N., 1977, Marine hydrodynamics, The MIT Press, Cambridge, 367 pp.

Noda E., 1970, Water waves generated by landslides, J. Waterw. Port. C Div., 96 (4), 835-855.

Oerlemans J., Jania J., Kolendra L., 2011, Application of a minimal glacier model to Hansbreen, Svalbard, The Cryosphere, 5, 1-11, http://dx.doi.org/10.5194/tc-5-1-2011

Peng W., Peregrine D.H., 2000, Pressure-impulse theory for plate impact on water surface, Proc. 15 Int. Workshop on Water Waves and Floating Bodies, Caesarea, 146-149.

Piessens R., 1996, The Hankel transform, [in:] The transforms and applications handbook, A.D. Poularikas (ed.), 2nd edn., CRC Press, Boca Raton, 1336 pp.

Schlichting H., 1960, Boundary layer theory, McGraw Hill Book Co., New York, 647 pp.

Stanley S. J., Jenkins A., Guilivi C. F., Dutrieux P., 2011, Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4 (8), 519-523, http://dx.doi.org/10.1038/ngeo1188

Stoker J., 1957, Water waves, Intersci. Publ., New York, 567 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 243 KB


Modellingflow in the porous bottom of the Barents Sea shelf
Oceanologia 2013, 55(1), 129-146
http://dx.doi.org/10.5697/oc.55-1.129

Stanisław R. Massel
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: smas@iopan.gda.pl

keywords: porous media, surface waves, tides, Ekman layer

Received 18 October 2012, revised 21 November 2012, accepted 26 November 2012.

Abstract

In their recent paper, Węsławski et al. (2012)showed that the Svalbardbankenarea of the Barents Sea is characterized by a high organic carbon settlement to the permeable sea bed, whichconsists of gravel and shell fragments of glacial origin. In the present paper, which can be considered as a supplement to the Węsławski et al. paper, two potential hydrodynamic mechanisms ofdownward pore water transport into porous media are discussed indetail. In particular, estimated statistical characteristics of the pore water flow, induced by storm surface waves, indicate that the discharge of water flow can be substantial, even at large water depths. During stormy weather (wind velocity V=15 m s-1 and wind fetch X =200 km) as much as 117.2 and 26.1 m3 hour-1 of water filter through the upper 5 m of the shell pit at water depths of 30 and 50 m respectively. For a porous layer of greater thickness, the mean flow discharge is even bigger.
    The second possible mechanism of flow penetration in the porous layer is based on the concept of geostrophic flow andspiral formation within the Ekman layer. Assuming that the current velocity in the near-bottom water layer isū = 1 m, the resulting mean discharge through this layer becomes as large as 0.99 and 0.09 m3 s-1 for downstream and transverse flows respectively.


  References ref
BearJ., 1972, Dynamics offluids in porous media,Elsevier,Dover,New York, 764 pp.

Cushman-RoisinB.,1994, Introductiontogeophysicalfluiddynamics, Prentice Hall,Englewood Cliffs,320 pp.

Danielson S., Kowalik Z., 2005, Tidalcurrentsinthe St.LawrenceIslandregion, J. Geophys.Res., 110, C10004, http://dx.doi.org/10.1029/2004JC002463

Gjevik B.,NostE.,StraumeT.,1994, Modelsimulationsofthetidesinthe Barents Sea, J. Geophys. Res., 99 (C2), 3337-3350, http://dx.doi.org/10.1029/93JC02743

KluteA., Dirksen C., 1986, Hydraulicconductivityand diffusivity:laboratory methods, [in:] Methods of soil analysis. Part 1. Physical and mineralogical methods, Agronomy MonographNo. 9, 2ndedn., Am. Soc. Agronom., Madison, WI, 687-734.

Kowalik Z., Proshutinsky A. Yu.,1995, Topographicenhancementof tidal motion inthewestern BarentsSea, J. Geophys. Res.,100 (C2),2613-2637, http://dx.doi.org/10.1029/94JC02838

Massel S. R., 1999, Fluidmechanicsformarineecologists,Springer,Heidelberg, 566 pp., http://dx.doi.org/10.1007/978-3-642-60209-2

Massel S. R.,Przyborska A., Przyborski M., 2004, Attenuationofwave-induced groundwaterpressure in shallow water.Part1,Oceanologia, 46 (3),383-404.

Massel S. R.,Przyborska A., Przyborski M., 2005, Attenuationofwave-induced groundwaterpressureinshallow water.2.Theory,Oceanologia,47 (3),281-323.

Papoulis A., 1965, Probability,random variables and stochastic processes, McGraw- Hill Book Co.,New York, 583 pp.

Sanford W. E., Steenhuis T. S., Parlange J.-Y.,Surface J. M., Peverly J. H, 1995, Hydraulic conductivityofgravel andsandassubstrates inrock-reedfilters, Ecol. Eng., 4 (4), 321-336, http://dx.doi.org/10.1016/0925-8574(95)00004-3

Węsławski J. M., KędraM., Przytarski J., KotwickiL., Ellingsen I.,Skardhamar J., RenaudP.,GoszczkoI., 2012, Ahuge biocatalyticfilter inthe centreof BarentsSeashelf?, Oceanologia, 54 (2),325-335, http://dx.doi.org/10.5697/oc.54-2.325

full, complete article (PDF - compatibile with Acrobat 4.0), 254 KB


Influence of landfast ice on the hydrography and circulation of the Baltic Sea coastal zone
Oceanologia 2013, 55(1), 147-166
http://dx.doi.org/10.5697/oc.55-1.147

Ioanna Merkouriadi, Matti Leppäranta
Department of Physics, University of Helsinki,
P.O. Box 48 (Erik Palménin aukio 1), Fi-00014 Helsinki, Finland;
e-mail: ioanna.merkouriadi@helsinki.fi
e-mail: matti.lepparanta@helsinki.fi

keywords: Gulf of Finland, coastal sea ice, hydrography, currents

Received 24 October 2012, revised 4 February 2013, accepted 8 February 2013.

Abstract

The influence of landfast ice on hydrography and circulation is examined in Santala Bay, adjacent to the Hanko Peninsula, Gulf of Finland. Three-dimensional electromagnetic current meters and conductivity-temperature-depth (CTD) sensors were deployed in winters 1999-2000 and 2000-2001 during the Finnish-Japanese "Hanko 9012" experiment. In each winter, data collection started one month before the initial ice formation and lasted until one month after the ice had melted completely. Temperature and salinity are compared with long-term data from the Tvärminne Zoological Station, also located on the Hanko Peninsula. The water temperature was 2°C less than the long-term average. Ice formation and melting show up in the salinity evolution of the water body, which makes salinity a good indicator of ice formation and breakup in Santala Bay. The circulation under the ice became weaker by almost 1 cm s-1.

  References ref
Alenius P., Mälkki P., 1978, Some results from the current measurement projects of Pori-Rauma region, Fin. Mar. Res., 224, 52-63.

Alestalo J., Häikiö J., 1976, Ice features and ice-thrust shore forms at Luodonselkä, Gulf of Bothnia, in winter 1972/73, Fennia, 144, 1-24.

Emery W. J., Thomson R.E., 2001, Data analysis methods in physical oceanography, 2nd edn., Elsevier, Amsterdam, 371-461.

Feistel R., Nausch G., Wasmund N. (eds.), 2008, State and evolution of the Baltic Sea, 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, John Wiley & Sons Inc., Hoboken, NJ, 703 pp., http://dx.doi.org/10.1002/9780470283134

Fonselius S., Valderrama J., 2003, One hundred years of hydrographic measurements in the Baltic Sea, J. Sea Res., 49 (4), 229-241, http://dx.doi.org/10.1016/S1385-1101(03)00035-2

Girjatowicz J.P., 2004, Ice thrusts and piles on the shores of the Southern Baltic Sea coast (Poland) lagoons, Baltic Coast. Zone, 8, 5-22.

Granqvist G., 1938, Zur Kenntnis der Temperatur und des Saltzgehaltes der Baltischen Meeres an den Küsten Finnlands, Merentutkimuslaitoksen Julkaisu, 122, 166 pp.

Granskog M.A., Leppäranta M., Kawamura T., Ehn J., Shirasawa K., 2004, Seasonal development of the properties and the composition of landfast sea ice in the Gulf of Finland, the Baltic Sea, J. Geophys. Res. - Oceans, 109 (C2), http://dx.doi.org/10.1029/2003JC001874

Huttula T., Pulkkanen M., Arkhipov B., Leppäranta M., Solbakov V., Shirasawa K., Salonen K., 2010, Modelling circulation in an ice covered lake, Est. J. Earth Sci., 59 (4), 298-309, http://dx.doi.org/10.3176/earth.2010.4.06

Jevrejeva S., Drabkin V.V., Kostjukov J., Lebedev A.A., Leppäranta M., Mironov Ye.U., Schmelzer N., SztobrynM., 2004, Baltic Sea ice seasons in the twentieth century, Clim. Res., 25, 217-227, http://dx.doi.org/10.3354/cr025217

Kawamura T., Shirasawa K., Ishikawa N., Lindfors A., Rasmus K., Ehn J., LeppärantaM., Martma T., Vaikmäe R., 2001, Time-series observations of the structure and properties of brackish ice in the Gulf of Finland, Ann. Glaciol., 33 (1), 1-4, http://dx.doi.org/10.3189/172756401781818950

Leppäranta M., 2012, Ice season in the Baltic Sea and its climatic variability, [in:] From the Earth’s core to outer space, I. Haapala (ed.), Lect. Notes Earth Syst. Sci. 137, Springer-Verlag, Berlin-Heidelberg, 139-149.

Leppäranta M., 2013, Land-ice interaction in the Baltic Sea, Est. J. Earth Sci., 62, (in press).

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer-Praxis, Heidelberg, Germany, 219-225, http://dx.doi.org/10.1007/978-3-540-79703-6

Leppäranta M., Tikkanen M., Shemeikka P., 1998, Observations of ice and its sediments on the Baltic Sea coast, Nord. Hydrol., 29 (3), 199-220.

Lisitzin E., 1957, On the reducing influence of sea ice on the piling-up of water due to wind stress, Comment. Phys.-Math./Soc. Scient. Fennica, 20 (7), 1-12.

Lisitzin E., 1959, Uninodal seiches in the oscillation system Baltic proper - Gulf of Finland, Tellus A, 11 (4), 459-466, http://dx.doi.org/10.1111/j.2153-3490.1959.tb00056.x

Mälkki P., 1975, On the variability of currents in a coastal region of the Baltic Sea, Merentutkimuslaitoksen Julkaisu, 240, 3-56.

Merkouriadi I., Leppäranta M., Shirasawa K., 2013, Seasonal and annual heat budgets offshore Hanko Peninsula, Gulf of Finland, Boreal Environ. Res., 18, in press.

Ojaveer H., Jaanus A., Mackenzie B. R., Martin G., Olenin S., Radziejewska T., Telesh I., Zettler M. L., Zaiko A., 2010, Status of biodiversity in the Baltic Sea, PLoS ONE, 5 (9): e12467, http://dx.doi.org/10.1371/journal.pone.0012467

Palmen E., 1930, Untersuchungen über die Strömungen in den Finnland umgebenden Meeren, Soc. Sci. Fennica, 12, 1-94.

SMHI & FIMR, 1982, Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern (1963-1979), Sjöfartsverket, Nörrkoping, 220 pp.

Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008, Progress in physical oceanography of the Gulf of Finland, Baltic Sea, Oceanologia, 50 (3), 287-362.

full, complete article (PDF - compatibile with Acrobat 4.0), 5.05 MB


Habitat modelling limitations - Puck Bay, BalticSea - a case study
Oceanologia 2013, 55(1), 167-183
http://dx.doi.org/10.5697/oc.55-1.167

Jan Marcin Węsławski1,*, Lucyna Kryla-Straszewska2,3, Joanna Piwowarczyk1, Jacek Urbański3,4, Jan Warzocha5, Lech Kotwicki1, Maria Włodarska-Kowalczuk1, Józef Wiktor1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: weslaw@iopan.gda.pl
*corresponding author
2International Association of Oil and Gas Producers (OGP),
209-215 Blackfriars Road, SE1 8NL, London, United Kingdom
3Centrum GIS WOiG,
Bażyńskiego 4, 80-952 Gdańsk, Poland
4Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 36, 81-378 Gdynia, Poland
5National Marine Fisheries Research Institute,
Kołłątaja 1, 81-332 Gdynia, Poland

keywords: species distribution, seabed, habitat modelling, spatial and temporal boundaries,ecosystem-based management

Received 18 September 2012, revised 21 January 2013, accepted 24 January 2013.

This study represents a contribution to the project "Advanced Modelling Tool for Scenarios of the Baltic Sea Ecosystem to Support Decision Making (ECOSUPPORT)", which has received funding from the EC's Seventh Framework Programme (FP/2007-2013, Grant 217246) in conjunction with BONUS, the joint Baltic Sea research and development programme, supported by the Polish Ministry of Science and Higher Education (Grant 06/BONUS/2009). It also contributes to the Habitat Mapping project ("Ecosystemapproachto marinespatialplanning - Polish Marine Areas and the Natura2000 network", PL 0078),supported by a grant from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism.

Abstract

TheNatura 2000 sites and the Coastal Landscape Park in ashallow marine bay in thesouthern Baltic have been studied in detail for thedistribution of benthic macroorganisms, species assemblages and seabed habitats. The relatively small Inner Puck Bay (104.8 km2) isone of themost thoroughly investigated marine areas in the Baltic: research has been carried out there continuously for over 50 years. Six physical parameters regarded as critically important for the marine benthos (depth, minimal temperature, maximumsalinity, light, wave intensity and sediment type) were summarized on aGIS map showing unified patches of seabed and the near-bottom water conditions. The occurrence of uniform seabed forms is weakly correlatedwith the distributions of individual species or multi-species assemblages.This is partly explained by the characteristics of thelocal macrofauna, which is dominated by highly tolerant, eurytopic species with opportunistic strategies. The history and timing of the assemblage formationalso explains this weak correlation.The distribution of assemblages formed by long-living, structural species (Zostera marinaand other higher plants) shows the history of recovery following earlierdisturbances. In the study area, these communities are still in thestage of recovery and recolonization, and their present distribution does not as yet match the distribution of the physical environmental conditions favourable to them. Our results show up the limitationsof distribution modelling in coastal waters, where thehistory of anthropogenic disturbances can distort the picture of the present-day environmental control of biota distributions.

  References ref
Anderson J. A., Thompson A. A., 2004, Multivariatecontrolchartsforecological and environmental monitoring,Ecol.Appl., 14 (6),1921–1935, http://dx.doi.org/10.1890/03-5379

Bonsdorff E., 2006, Zoobenthicdiversity-gradients inthe BalticSea:Continuous post-glacial succession in a stressed ecosystem, J. Exp. Mar. Biol. Ecol., 330 (1), 283–391, http://dx.doi.org/10.1016/j.jembe.2005.12.041

Bonsdorff E., Pearson T. H., 1999, Variation in the sublittoral macrozoobenthosof theBalticSeaalong environmental gradients: a functionalgroup approach, Aust. J. Ecol.,24 (4),312–326, http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x

Borja A., Dauer D. M., Diaz R.,Llanso R. J., Muxika I.,Rodriguez J. G., Schaffner L., 2008, Assessingestuarinebenthic quality conditionsin Chesapeake Bay:a comparisonof three indices, Ecol. Indic., 8 (4), 395–403, http://dx.doi.org/10.1016/j.ecolind.2007.05.003

BorjaA., Dauer D. M., GrémareA., 2012, The importanceof settingtargetsand reference conditionsin assessing marineecosystemquality, Ecol. Indic., 12 (1), 1–7, http://dx.doi.org/10.1016/j.ecolind.2011.06.018

Cañadas A., Sagarminaga R., de Stephanis R., Urquiola E., Hammond P. S., 2005, Habitatpreferencemodellingasaconservation tool: proposalsformarine mammals protected areas for cetaceans in southern Spanish waters, Aquat. Conserv., 15 (5),495–521, http://dx.doi.org/10.1002/aqc.689

CiszewskiP., Demel K., Ringer Z., Szatybełko M., 1962, Zasoby widlika w Zatoce Puckiejoznaczonemetodąnurkowania, Prace MIR11/A, 9–36.

de Smith M. J.,Goodchild M. F., Longley P. A.,2007, Geospatial analysis. Acomprehensive guidetoprinciples, techniquesandsoftwaretools, www.spatialanalysisonline.com

Diedrich A., TintoréJ., NavinésF., 2010, Balancingscienceand societythrough establishing indicatorsfor integratedcoastal zone management in the Balearic Islands, Mar. Policy, 34 (4), 772–781, http://dx.doi.org/10.1016/j.marpol.2010.01.017

Dobrzycka-Krahel A., Rzemykowska H., 2010, Firstrecords of Ponto-Caspian gammaridsin the Gulf of Gdańsk(southernBalticSea), Oceanologia, 52 (4), 27–735, http://dx.doi.org/10.5697/oc.52-4.727

DouvereF.,EhlerC.,2011, Theimportance ofmonitoringandevaluation in adaptivemaritimespatialplanning, J. CoastalConserv., 15 (2), 305–311, http://dx.doi.org/10.1007/s11852-010-0100-9

FerreiraJ. G., HawkinsA. J. S., MonteiroP.,MooreH.,ServiceM.,Pascoe P. L., Ramos L., Sequeira A., 2008, Integratedassessmentof ecosystem-scale carryingcapacityin shellfish growing areas,Aquaculture,275 (1–4),138–151, http://dx.doi.org/10.1016/j.aquaculture.2007.12.018

ForstM. F., 2009, Theconvergenceof IntegratedCoastalZoneManagementand theecosystemapproach, OceanCoast.Manage.,52 (6),294–306, http://dx.doi.org/10.1016/j.ocecoaman.2009.03.007

Gic-GruszaG., Kryla-Straszewska L., UrbańskiJ.,WarzochaJ., WęsławskiJ. M., (eds.) 2009, Atlas of Polishmarine area bottom habitats:Environmental valorization of marine habitats, Broker-Innowacji, Gdynia,179 pp.

GrzelakK.,KuklinskiP.,2010, Benthicassemblages associatedwith rocksina brackish environmentofthe southernBalticSea, J. Mar.Biol.Assoc. UK, 90 (1), 115–124, http://dx.doi.org/10.1017/S0025315409991378

HalpernB. S.,KappelC. V.,Selkoe K. A.,MicheliF.,Ebert C. M.,KontgisC., Crain C. M., Martone R. G., Shearer C., Teck S. J., 2009, Mapping cumulative human impactsto California Currentmarineecosystems, Conserv.Lett., 2, 138–148, http://dx.doi.org/10.1111/j.1755-263X.2009.00058.x

HeipC.,HummelH.,vanAvesaathP.,Appeltans W.,Arvanitidis C.,Aspden R.,AustenM., Boero F.,BoumaT. J., BoxshallG., BuchholzF.,Crowe T., Delaney A., Deprez T., Emblow C., Feral J. P., Gasol J. M., Gooday A., Harder J., Ianora A., Kraberg A., Mackenzie B., Ojaveer H., Paterson D., RumohrH., Schiedek D., Sokolowski A., Somerfield P., Sousa Pinto I., Vincx M., Węsławski J. M.,NashR.,2009, Marinebiodiversityecosystemfunctioning, MarBEF, 91 pp.

HELCOM,2009a, Eutrophicationin the BalticSea. Anintegrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region, Baltic Sea Environ.Proc.,115B, Helsinki Comm.,Helsinki, 148 pp.

HELCOM, 2009b, Biodiversityin the Baltic Sea. An integrated thematic assessment on biodiversity and nature conservationin the BalticSea, Baltic Sea Environ. Proc.,116B, Helsinki Comm.,Helsinki, 188 pp.

HughesT. P., BellwoodD. R.,FolkeC.,SteneckR. S.,WilsonJ., 2005, New paradigmsforsupportingtheresilienceofmarineecosystems, TrendsEcol. Evol., 20 (7), 380–386, http://dx.doi.org/10.1016/j.tree.2005.03.022

HylandJ.,BalthisL., KarakassisI.,MagniP.,PetrovA.,Shine J.,Vestergaard O.,WarwickR.,2005, Organiccarbon contentofsedimentsas anindicator ofstressinthemarinebenthos, Mar.Ecol.Prog.Ser.,295,91–103, http://dx.doi.org/10.3354/meps295091

JażdżewskiK.,KonopackaA.,GrabowskiM.,2004, Recent drasticchangesin thegammaridfauna(Crustacea, Amphipoda) oftheVistulaRiver deltaic systeminPolandcaused by alien invaders, Divers.Distrib.,10, 81–87, http://dx.doi.org/10.1111/j.1366-9516.2004.00062.x

KaufmanL., RousseeuwP. J., 1990, Findinggroups indata:Anintroductionto cluster analysis, John Wiley & Sons, Inc., Hoboken, 368 pp, http://dx.doi.org/10.1002/9780470316801

MaechlerM., RousseeuwP.,StruyfA.,HubertM., 2005, Clusteranalysisbasics and extensions, R Statistics Package(CRAN).

McCoolS. F.,StankeyG. H.,2004, Indicatorsofsustainability: challengesand opportunities at the interface of scienceand policy, Environ.Manage.,33 (3), 294–305, http://dx.doi.org/10.1007/s00267-003-0084-4

NobreA. M.,FerreiraJ. G.,NunesJ. P.,YanX.,BrickerS.,CornerR.,Groom S., Gu H., HawkinsA. J. S., HutsonR.,Lan D., de Silva J. D. L., PascoeP., Telfer T., Zhang X., Zhu M., 2010, Assessmentof coastal management options by means of multilayered ecosystemmodels, Estuar. Coast.Shelf Sci., 87 (1), 43–62, http://dx.doi.org/10.1016/j.ecss.2009.12.013

Olenin S., Ducrotoy J. P., 2006, The concept of biotope in marine ecology and coastal management, Mar.Pollut.Bull.,53 (1–4), 20–29, http://dx.doi.org/10.1016/j.marpolbul.2006.01.003

Osowiecki A., 2000, Przyrodniczawaloryzacja ZatokiPuckiejwewnętrznej. 2.3.4. Makrofauna denna, [in:] Nadmorski Park Krajobrazowy, Przyrodnicza waloryzacja morskich części obszarów chronionychHELCOM BSPA województwa pomorskiego, L. Kruk-Dowgiałło (ed.),CBM PAN,Gdynia,50–52.

Parravicini V., Rovere A., Vassallo P., Micheli F., Montefalcone M., Morri C., Paoli C., Albertelli G., FabianoM., Bianchi C. N., 2012, Understanding relationships between conflictinghuman uses and coastal status: a geospatial modeling approach, Ecol. Indic.,19, 253–263, http://dx.doi.org/10.1016/j.ecolind.2011.07.027

PearsonT. H., RosenbergR., 1978, Macrobenthicsuccessionin relation to organic enrichment andpollutionofthe marineenvironment, Oceanogr.Mar.Biol. Ann. Rev., 16, 229–311.

Pliński M., Florczyk I., 1984, Changes in the phytobenthos resulting from the eutrophication of PuckBay, Limnologica, 15, 325–327.

PomeroyR., ParksJ., Watson L., 2004, How is your MPA doing? A guidebook of natural and social indicators for evaluating marine protected area management effectiveness, IUCN,Gland, 216pp, http://dx.doi.org/10.2305/IUCN.CH.2004.PAPS.1.en

Reiss H., CunzeS., König K., NeumannH., Kröncke I., 2011, Speciesdistribution modelling of marinebenthos: a North Sea case study, Mar.Ecol. ProgSer., 442, 71–86, http://dx.doi.org/10.3354/meps09391

Roberts D. A.,PooreA. G. B.,2005, Habitat configuration affectscolonizationof epifauna in a marine algal bed, Biol. Conserv.,127 (1), 18–26.

Stelzenmüller V., Breen P.,StamfordT.,ThomsenF., Badalamenti F.,BorjaA., Buhl-Mortensen L., Carlstöm J., D’AnnaG.,DankersN., DegraerS., Dujin M., Fiorentino F., Galparsoro I., Giakoumi S., Gristina M., Johnson K., Jones P. J. S., Katsanevakis S., Knittweism L., Kyriazi Z., Pipitone C., Piwowarczyk J.,Rabaut M., SorensenT. K.,vanDalfsenJ., VassilopoulouV.,Fernández T. V.,VincxM.,Vöge,WeberA.,WijkmarkN.,JakR.,Qiu W.,Hofstede R., 2012, Monitoring and evaluation of spatially managed areas:Ageneric framework forimplementationofecosystembased marinemanagement and its application, Mar. Policy, 37, 149–164, http://dx.doi.org/10.1016/j.marpol.2012.04.012

SzymelfenigM.,KotwickiL.,GracaB.,2006,Benthic re-colonizationinpost- dredging pitsinthePuckBay(SouthernBalticSea),Estuar. Coast.Shelf Sci., 68 (3–4), 489–498, http://dx.doi.org/10.1016/j.ecss.2006.02.018

WarzochaJ., 1995, Classificationand structure of macrofaunal communitiesin the southern Baltic, Arch. Fish. Mar. Res., 42 (3), 225–237.

WęsławskiJ. M.,Warzocha J., Wiktor J., UrbańskiJ.,Bradtke K.,KrylaL., Tatarek A., KotwickiL., PiwowarczykJ., 2009, Biologicalvalorisationof the southern Baltic Sea(PolishExclusiveEconomic Zone), Oceanologia,51 (3), 415–435, http://dx.doi.org/10.5697/oc.51-3.415

Włodarska-Kowalczuk M., WęsławskiJ. M., WarzorzaJ.,Janas U., 2010, Habitat lossand possible effectsonlocal speciesrichnessina species-poorsystem – a case study of southern Baltic Seamacrofauna, Biodivers.Conserv,19 (14), 3991–4002, http://dx.doi.org/10.1007/s10531-010-9942-6

Yen P. P. W.,HuettmannF.,Cooke F.,2004, Alarge-scale model forthe at-sea distribution of Marbled Murrelets (Brachyramphus marmoratus) during the breeding season in coastal British Columbia, Canada, Ecol. Model.,171 (4), 395–413, http://dx.doi.org/10.1016/j.ecolmodel.2003.07.006

Zschokke S.,DoltC.,Rusterholz H.,OggierC.,BraschlerB.,Thommen G. H., Ludin E., Erhardt A., Baur B., 2000, Short term responses of plants and invertebrates to experimental small-scale grassland fragmentation, Oecologia, 125 (4), 559–572, http://dx.doi.org/10.1007/s004420000483

full, complete article (PDF - compatibile with Acrobat 4.0), 680 KB


Spatio-temporal variation of microphytoplankton in the upwelling system of the south-eastern Arabian Sea during the summer monsoon of 2009
Oceanologia 2013, 55(1), 185-204
http://dx.doi.org/10.5697/oc.55-1.185

Lathika Cicily Thomas1,*, K. B. Padmakumar1, B. R. Smitha1, C. R. Asha Devi1, S. Bijoy Nandan2, V. N. Sanjeevan1
1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences,
Kochi-37, Kerala, India;
e-mail: lathikacicily@gmail.com;
*corresponding author
2Department of Marine Biology, Microbiology & Biochemistry,
School of Marine Sciences, Cochin University of Science and Technology,
Kochi-16, Kerala, India

keywords: South Eastern Arabian Sea, upwelling, coastal waters, phytoplankton, chlorophyll a, diatoms

Received 14 May 2012, revised 9 November 2012, accepted 15 November 2012.

This investigation was conducted under the Marine Living Resources Programme funded by the Ministry of Earth Sciences, Government of India, New Delhi.

Abstract

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009. During phase 1 intense upwelling was observed along the southern transects (8°N and 8.5°N). The maximum chlorophyll aconcentration (22.7 mg m-3) was observed in the coastal waters off Thiruvananthapuram (8.5°N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8°N transect. Along the 8.5°N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9°N transect (25 mg m-3) with Chaetoceros curvisetus as the dominant phytoplankton.Along the 8.5°N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi.Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll aconcentration of 11.2 mg m-3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9°N and 10°N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.

  References ref
AlkawriA. A. S.,Ramaiah N.,2010, Spatio-temporalvariabilityofdinoflagellate assemblages in different salinityregimes inthe west coast of India,Harmful Algae, 9 (2), 153–162, http://dx.doi.org/10.1016/j.hal.2009.08.012

Anderson D., GlibertP., Burkholder J. M., 2002, Harmful algalbloomsand eutrophication: nutrientsources, compositionandconsequences,Estuaries, 25 (4), 562–584, http://dx.doi.org/10.1007/BF02804901

Barber R. T., Dugdale R. C., MacIsaac J. J., Smith R. G., 1971, Variation in phytoplankton growth associatedwith sourceconditioningofupwelled water, Invest. Pesq., 35 (1), 171–173.

BaekS. H.,ShimodeS.,HanM.,KikuchiT.,2008,Growthofdinoflagellates, Ceratium furcaandCeratium fususin SagamiBay,Japan:theroleof nutrients,Harmful Algae,7,729–739, http://dx.doi.org/10.1016/j.hal.2008.02.007

Brown P. C., Field J. J., 1986, Factorslimiting phytoplankton production in a near shore upwelling area,J. PlanktonRes.,8 (1),55–68, http://dx.doi.org/10.1093/plankt/8.1.55

BhattathiriP. M. A., PantA., Sawant S., Gauns M., MatondkarS. G. P., Mohanra ju R.,1996, Phytoplanktonproductionandchlorophyll distribution in the eastern and central ArabianSea, Curr.Sci. India,71 (11), 857–862.

Blasco D., Estrada M., Jones B., 1980, Relationshipbetween the phytoplankton distribution and composition and the hydrography in the northwest African upwelling region near Cabo Corbeiro, Deep-Sea Res. Pt. A., 27 (10), 799–821, http://dx.doi.org/10.1016/0198-0149(80)90045-X

D’Croz L., Del RosarioJ. B., Gomez J. A., 1991, Upwelling and phytoplankton in the Bayof Panama, Rev. Biol. Trop.,39, 233–241.

De Sousa S. N., Sawkar K., Rao D. P., 1996, Environmentalchanges associated with monsoon induced upwelling off central west coast of India, Ind. J. Mar. Sci., 25, 115–119.

Estrada M., BerdaletE., 1997, Phytoplankton in a turbulent world, Sci. Mar.,61, 125–140.

Estrada M., Blasco D., 1985, Phytoplankton assemblages in coastal upwelling areas, [in:] International symposium of upwelling of W. Africa, C. Bas, R. Margalef & P. Rubias(eds.), Instituto de InvestigacionesPesqueras, Barcelona,379–402.

FalkowskiG.,Woodhead A. D.,1992,Primary productivityandbiogeochemical cyclesin the sea, Environ.Sci. Res. Ser., 43, PlenumPress,New York, 213–237.

GoldmanJ. C.,MannR.,1980, Temperatureinfluencedspeciationandchemical compositionof marinephytoplankton inoutdoor mass cultures, J. Exp.Mar. Bio. Eco., 46 (1), 29–39, http://dx.doi.org/10.1016/0022-0981(80)90088-X

Gopalan U. K., Doyil T. V., Udayavarma P., Krishnankutty M., 1983, The shrinking backwaters of Kerala, J. Mar. Bio. Ass. India,25, 131–141.

GrasshoffK., EhrhardtM., Kremling K., Almgren T., 1983, Methodsof seawater analysis,Verlag Chemie, Weinheim, 419 pp.

Habeebrehman H., 2009, Biologicalresponses to upwelling and stratification in the eastern Arabian Sea, Ph.D. thesis, Cochin Univ,Sci.Technol.,Kerala, India.

HabeebrehmanH., PrabhakaranM. P.,Jacob J., SabuP.,JayalakshmiK. J., Achuthankutty C. T., Revichandran C., 2008, Variability in biological responses influenced by upwelling events in the eastern ArabianSea, J. Marine Syst., 74 (1–2), 545–560, http://dx.doi.org/10.1016/j.jmarsys.2008.04.002

Hashimi N. H., Kidwai R. M., Nair R. R., 1981, Comparativestudy of the topography andsediments ofthewesternandeasterncontinentalshelfaroundCape Comorin, Ind.J. Mar.Sci., 10, 45–50.

HaugenV. E.,Johannessen O. M.,EvensenG.,2002,Mesoscale modellingof oceanographic conditions off southwest coast of India, Proc. Indian Acad. Sci., EarthPlanet. Sci., 111 (3), 321–337.

Lassiter A. M., Wilkerson F. P., Dugdale R. C., Hogue V. E., 2006, Phytoplankton assemblages in the CoOP-WEST coastal upwelling area, Deep-Sea Res. Pt.II, 53 (25–26), 3023–3048, http://dx.doi.org/10.1016/j.dsr2.2006.07.013

MadhuN. V.,JyothibabuR., BalachandranK. K., HoneyU. K., MartinG. D., VijayJ. G., Shiyas C. A., GuptaG. V. M., Achuthankutty C. T., 2007, Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (CochinBackwaters – India), Est. Coast. Shelf Sci., 73, 54–64, http://dx.doi.org/10.1016/j.ecss.2006.12.009

MargalefR.,1978, Life-forms ofphytoplanktonassurvivalalternativesinan unstable environment,Oceanologica Acta, 1,493–509.

MargalefR., EstradaM., BlascoD., 1979, Functionalmorphology oforganisms involvedinred tides,asadapted to decaying turbulence, [in:] Toxic dinoflagellate blooms,D. L. Taylor & H. H.Seliger (eds.), Elsevier, New York, 89–94.

MendonM. R.,Katti R. J.,Ra jeshK. M.,Gupta T. R. C.,2002, Diversity of dinoflagellates in the sea off Mangalore,Ind.J. Fish., 49, 45–50.

MenonN. N.,BalchandA. N.,MenonN. R.,2000, HydrobiologyoftheCochin backwater system – a review,Hydrobiologia, 430 (1–2-3),149–183, http://dx.doi.org/10.1023/A:1004033400255

Nair K. K. C., 2002, Breathing Cochin backwaters, Proc. 1st R & D Seminar Global Ballast Water Manag., 13–14 June2002, NIO, Goa.

Nakamura Y., WatanabeM., 1983, Growthcharacteristicsof Chattonellaantiqua (Raphidophyceae). PartI. Effectsof temperature,salinity,light intensityand pH on growth, J. Oceanogr. Soc. Japan, 39 (3), 110–114, http://dx.doi.org/10.1007/BF02070796

NielsenT. G.,1991,Contribution ofzooplanktongrazingtothedecline ofa Ceratiumbloom,Limnol.Oceanogr., 36 (6),1091–1106, http://dx.doi.org/10.4319/lo.1991.36.6.1091

Padmakumar K. B., LathikaC. T., Salini T. C., Elizabeth J., Sanjeevan V. N., 2011, Monospecific bloomofnoxiousraphidophyteChattonellamarinaincoastal waters of south west coast of India, Int. J. Biosci., 1 (1), 57–69.

Padmakumar K. B., SmithaB. R.,LathikaC. T.,FanimolC. L., SreeRenjimaG., Menon N. R., SanjeevanV. N., 2010a, Bloomsof Trichodesmium erythraeum in the South EasternArabian Sea during the onset of 2009 Summer Monsoon, Ocean Sci. J., 45 (3), 151–157, http://dx.doi.org/10.1007/s12601-010-0013-4

Padmakumar K. B., SreeRenjimaG., FanimolC. L., Menon N. R., SanjeevanV. N., 2010,Preponderance ofheterotrophicNoctilucascintillans duringamulti- species diatom bloom along the Southwest coast of India,Int. J. Oceans Oceanogr.,4 (1), 45–53.

ParsonsT. R.,MaitaY.,Lalli C. M.,1984, Amanual ofchemicaland biological methods for seawater analysis, Pergamon Press,New York, 173 pp.

Parulekar A. H., 1973, Quantitative distribution of benthic fauna on the inner shelf of central west coast of India, Ind. J. Mar. Sci., 2 (2), 113–115.

PitcherG. C.,WalkerD. R.,Mitchell-InnesB. A.,MoloneyC. L.,1991,Short- term variability during an anchor station study in the southern Benguela upwelling system: phytoplankton dynamics, Prog.Oceanogr.,28 (1–2), 39–64, http://dx.doi.org/10.1016/0079-6611(91)90020-M

Prasanna Kumar S., Roshin P. R., NarvekarJ., Dinesh Kumar P. K., Vivekanandan E.,2010, What drivestheincreasedphytoplankton biomassintheArabian Sea?,Current Sci., 99 (1), 101–106.

Qasim S. Z., 1982, Oceanography of the northern Arabian Sea, Deep-Sea Res. Pt.A, 29 (9), 1041–1068, http://dx.doi.org/10.1016/0198-0149(82)90027-9

QasimS. Z.,ReddyC. V. G.,1967, Theestimationofplant pigmentsofCochin Backwater during the monsoon months, Bull. Mar. Sci., 17 (1), 95–110. RadhakrishnaK., 1969, Primary productivity studies in the shelf waters off Alleppey, southwest coast of India, during the postmonsoon, 1967, Mar. Biol., 4 (3), 174–181, http://dx.doi.org/10.1007/BF00393890

RajagopalanM. S., ThomasP. A., Mathew K. J., Daniel S., Ranimary G., Mathew C. V.,NaomiT. S., Kaladhara V. K.,Balachandran V. K.,GeethaA.,1992, Productivityof the Arabian sea along the south west coast of India, Bull. Cent. Marine Fisher.Res. Inst., 45, 9-37.

RoyR.,Pratihary A.,MangeshG.,NaqviS. W. A.,2006,Spatialvariationof phytoplankton pigments along the southwest coast of India,Est.Coast.Shelf Sci., 69 (1–2), 189–195, http://dx.doi.org/10.1016/j.ecss.2006.04.006

RytherJ. A.,1956, Photosynthesis in the ocean as a function of light intensity, Limnol. Oceanogr., 1 (1), 61–70, http://dx.doi.org/10.4319/lo.1956.1.1.0061

RytherJ. H.,HallJ. R.,PeaseA. K.,BakunA.,JonesM. M.,1966,Primary production in relation to the chemistry and hydrography of the western Indian Ocean, Limnol. Oceanogr., 11, 371–380, http://dx.doi.org/10.4319/lo.1966.11.3.0371

SandersJ. G., Cibik S. J., D’Elia C. F., Boynton W. R., 1987, Nutrient enrichment studies in a coastalplainestuary: changesinphytoplankton species composition, Can.J. FishAquat. Sci.,44 (1),83–90, http://dx.doi.org/10.1139/f87-010

ShankarD.,ShetyeS. R.,1997, OnthedynamicsofLakshadweep high andlow inthe southeasternArabianSea,J. Geophys.Res.,102 (C6),12551–12562, http://dx.doi.org/10.1029/97JC00465

Silva A., PalmaS., Oliveira P. B., Moita M. T., 2009, Compositionand interannual variability of phytoplanktonin a coastal upwellingregion (Lisbon Bay, Portugal),J. SeaRes., 62 (4),238–249, http://dx.doi.org/10.1016/j.seares.2009.05.001

Smayda T. J., Reynolds C. S., 2001, Communityassembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms, J. Plankton Res., 23 (5), 447–461, http://dx.doi.org/10.1093/plankt/23.5.447

Smitha B. R., SanjeevanV. N., Vimalkumar K. G., Ravichandran C., 2008, Onthe upwelling off the southern tip and along the west coast of India, J. Coast. Res., 24 (4C),95–102, http://dx.doi.org/10.2112/06-0779.1

Spatharis S., TsirtsisG.,DanielidisD. B., Do ChiT.,MouillotD.,2007, Effects ofpulsed nutrientinputsonphytoplankton assemblage structureand blooms inanenclosedcoastal area, Est.Coast.Shelf Sci.,73 (3–4),807–815, http://dx.doi.org/10.1016/j.ecss.2007.03.016

Subrahmanyan R.,1958, Ecologicalstudiesonthe marinephytoplankton onthe west coast of India, Mem. IndianBot.Soc., 1, 145–151.

Subrahmanyan R.,Gopinathan C. P., PillaiC. T., 1975, Phytoplanktonofthe IndianOcean:some ecological problems, J. Mar. Bio. Ass. India,17, 608–612.

Tilstone G. H., Míguez B. M., Figueiras F. G.,Fermin E. G., 2000, Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes, Mar. Eco. Prog. Ser., 205, 23–41, http://dx.doi.org/10.3354/meps205023

TomasC. R.,1997,Identifyingmarinephytoplankton, Acad.Press,SanDiego, 858 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 364 KB


Summer mesozooplankton community of Moller Bay (Novaya Zemlya Archipelago, Barents Sea)
Oceanologia 2013, 55(1), 205-218
http://dx.doi.org/10.5697/oc.55-1.205

Vladimi G. Dvoretsky, Alexander G. Dvoretsky
Murmansk Marine Biological Institute (MMBI),
17 Vladimirskaya St., Murmansk 183010, Russia;
e-mail: vdvoretskiy@mmbi.info
*corresponding author

keywords: mesozooplankton, vertical distribution, Arctic shelf, Barents Sea

Received 5 September 2012, revised 26 November 2012, accepted 18 December 2012.

Abstract

Novaya Zemlya Archipelago is the eastern boundary of the Barents Sea. The plankton of this region have been less intensively studied than those of other Arctic areas. This study of the mesozooplankton assemblage of Moller Bay was conducted in August 2010. The total mesozooplankton abundance and biomass ranged from 962 to 2980 individuals m-3 (mean ± SD: 2263 ± 921 indiv. m-3) and from 12.3 to 456.6 mg dry mass m-3 (mean ± SD: 192 ± 170 DM m-3) respectively. Copepods and appendicularians were the most numerous groups with Oithona similis, Pseudocalanusspp., Acartiaspp., Calanus glacialis and Oikopleura vanhoeffenni being the most abundant and frequent. Mesozooplankton abundance tended to decrease with depth, whereas an inverse pattern was observed for the total biomass. Total mesozooplankton biomass was negatively correlated with water temperature and positively correlated with salinity and chlorophyll a concentration.Comparison with previous data showed significant interannual variations in the total zooplankton stock in this region that may be due to differences in sampling seasons, climatic conditions and the distribution of potential food sources (phytoplankton and seabird colonies).

  References ref
AuelH.,HagenW., 2002,Mesozooplankton communitystructure,abundance andbiomassinthecentralArctic Ocean,Mar.Biol.,140 (5),1013-1021, http://dx.doi.org/10.1007/s00227-001-0775-4

Błachowiak-Samołyk K.,KwaśniewskiS.,DmochK.,HopH.,Falk-PetersenS., 2007, Trophic structureof zooplankton in the Fram Strait in spring and autumn 2003, Deep-Sea Res. Pt. II, 54 (23-24), 2716-2728, http://dx.doi.org/10.1016/j.dsr2.2007.08.004

BrayJ. R.,CurtisJ. T.,1957,Anordination oftheuplandforestofsouthern Wisconsin, Ecol. Monogr., 27, 225-349, http://dx.doi.org/10.2307/1942268

ChislenkoL. L.,1968, Nomogrammes todetermineweightsof aquaticorganisms based on the size and form of their bodies (marinemesobenthosand plankton), NaukaPress,Leningrad,240 pp., (in Russian).

DalpadadoP., Ingvaldsen R., Hassel A., 2003, Zooplanktonbiomassvariationin relation to climatic conditions in the Barents Sea, Polar. Biol., 26 (4), 233–241, http://dx.doi.org/10.1007/s00300-002-0470-z

Dvoretsky V. G., 2011, Distribution of Calanusspecies off Franz Josef Land (Arctic BarentsSea),PolarSci.,5 (3), 361-373, http://dx.doi.org/10.1016/j.polar.2011.06.004

Dvoretsky V. G., Dvoretsky A. G., 2009a, Summermesozooplankton distribution nearNovayaZemlya(easternBarents Sea),PolarBiol.,32 (5), 719-731, http://dx.doi.org/10.1007/s00300-008-0576-z

Dvoretsky V. G., Dvoretsky A. G., 2009b,Summermesozooplankton structurein the PechoraSea (south-eastern BarentsSea), Estuar. Coast.Shelf Sci.,84 (1), 11-20, http://dx.doi.org/10.1016/j.ecss.2009.05.020

Dvoretsky V. G., Dvoretsky A. G., 2012, Crustaceansofthe BarentsSea: recent studies of MurmanskMarineBiologicalInstitute, Ber. Polarforsch., 640, 162–176.

Fetzer I., Hirche H. J., Kolosova E. G., 2002, Theinfluenceof freshwater discharge on the distribution of zooplankton in the southern Kara Sea, Polar Biol., 25 (6), 404–415, http://dx.doi.org/10.1007/s00300-001-0356-5

Gorsky G.,Fenaux R., 1998, Therole of Appendiculariain marine food webs,[in:] Thebiology of pelagic tunicates,Q. Bone (ed.),OxfordUniv. Press,Oxford, 161-169.

Loeng H., 1991, Featuresof the physicaloceanographic conditionsof the Barents Sea, Polar Res.,10 (1), 5-18, http://dx.doi.org/10.1111/j.1751-8369.1991.tb00630.x

MatishovG. G.(ed.), 1995,Environments andecosystems ofNovayaZemlya (Archipelago and shelf ), Kola Sci. Centre RAS, Apatity, 201 pp., (in Russian).

MatishovG. G. (ed.),1997, Planktonof the Seaof the WesternArctic, KolaSci. Centre RAS,Apatity, 352 pp.

Matishov G. G.(ed.),2009,Kola Bay: developmentand rational nature management, Nauka Press, Moscow, 381 pp.

MatishovG. G. (ed.),2011, Integrated investigationsof the Russianlarge marine ecosystems, KolaSci. Centre RAS,Apatity, 516 pp.

MatishovG. G., MatishovD. G.,Moiseev D. V.,2009, InflowofAtlantic-origin waters to the BarentsSea along glacial troughs,Oceanologia, 51 (3), 321-340, http://dx.doi.org/10.5697/oc.51-3.321

MatishovG.,ZuyevA., Golubev V., AdrovN.,TimofeevS.,KaramuskoO., PavlovaL., FadyakinO., BuzanA., Braunstein A., Moiseev D.,Smolyar I., Locarnini R., TatuskoR., Boyer T., LevitusS., 2004, Climatic atlas ofthe ArcticSeas2004:PartI. Database of the Barents,Kara, Laptev,and White Seas oceanography and marine biology,NOAA AtlasNESDIS 58, U.S. Gov. Print. Office, Washington D.C., 348 pp.

MummN., 1991, Onthe summerdistributionof mesozooplankton inthe Nansen Basin,ArcticOcean, Ber. Polarforsch., 92, 1-173.

Richter C., 1994, Regional and seasonal variability in the vertical distributionof mesozooplankton in the GreenlandSea, Ber. Polarforsch., 154, 1–90.

SakshaugE.,Johnsen G.,KovacsK. (eds.),2009, EcosystemBarentsSea,Tapir Acad. Press,Trondheim, 587 pp.

Stempniewicz L.,Błachowiak-SamołykK., Węsławski J. M., 2007,Impact of climate change on zooplankton communities, seabird populations and arctic terrestrialecosystema scenario,Deep-SeaRes.Pt. II,54 (23-26),2934-2945, http://dx.doi.org/10.1016/j.dsr2.2007.08.012

Timofeev S. F., 1992,Zooplankton, [in:] International(American-Norwegian- Russian) ecological expedition in the Pechora Sea, Novaya Zemlya,Kolguev, Vaigach, andtheDolgy Islands.July1992(r/v DalnieZelentsy), G. G. Matishov (ed.),Kola Sci. Centre RAS, Apatity, 14-21.

Timofeev S. F., 2000, Ecology of the marinezooplankton,MurmanskStatePedag. Inst.Press,Murmansk, 216 pp., (in Russian).

VinogradovM. E.,ShushkinaE. A.,1987, Function ofplanktoncommunities in epipelagic zone of the ocean, NaukaPress,Moscow, 240 pp., (in Russian).

Vodopyanova V. V., 2011, Spatial distributionof phytoplanktonchlorophyll a in the BarentsSea in August 2010, [in:] Studies of marine ecosystemsof the European Arctic,G. G.Matishov (ed.),MurmanskMar.Biol. Inst.Press,Murmansk, 38–42.

WalkuszW.,KwaśniewskiS., Falk-Petersen S., Hop H., TverbergV., Wieczorek P.,WęsławskiJ. M.,2009, Seasonalandspatialchangesinthezooplankton communityinKongsfjorden,Svalbard, Polar Res., 28 (2), 254–281, http://dx.doi.org/10.1111/j.1751-8369.2009.00107.x

Wassmann P., ReigstadM., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O.,2006, Foodwebs andcarbonfluxintheBarentsSea,Prog.Oceanogr., 71 (2-4), 232–287, http://dx.doi.org/10.1016/j.pocean.2006.10.003

Zelikman E. A., Golovkin A. N., 1972, Zooplanktondistributionand productivityin the nesting grounds of gregarious of seabirds near the northernNew Land, [in:] Peculiaritiesof biological productivityof waters near bird’s bazaars in the north of Novaya Zemlya,A. N. Golovkin (ed.),NaukaPress,Leningrad,92–114.

full, complete article (PDF - compatibile with Acrobat 4.0), 453 KB


Seasonal fluxes of phosphate across the sediment-water interface in Edku Lagoon, Egypt
Oceanologia 2013, 55(1), 219-233
http://dx.doi.org/10.5697/oc.55-1.219

Mona Kh. Khalil, Ahmed E. Rifaat
National Institute of Oceanography, and Fisheries (NIOF),
Al Anfushi 21556, Alexandria, Egypt;
e-mail: mona_kh_kh@hotmail.com;
e-mail: aerifaat@yahoo.co.uk

keywords: phosphorus, geochemical processes, modelling, coastal lagoon, Edku Lagoon

Received 29 March 2012, revised 13 December 2012, accepted 7 January 2013.

Abstract

Edku Lagoon is a shallow, brackish, coastal wetland located in the north-western part of the Nile Delta. It suffers from a high level of eutrophication, owing to the heavy load of nutrients, especially phosphorus. The purpose of this paper was to study the flux rates of organic and inorganic phosphorus across the sediment water interface in Edku Lagoon. Both the organic and inorganic phosphorus of surface sediments, pore water and their concentrations in the water just above the sediments were used to calculate the flux rates and to derive the geochemical models. These suggest that, at present, the flux of inorganic and organic phosphorus is from water to sediments via the sedimentation of inorganic particles and organic matter. The results show that phosphorus deposition to the sediments exceeds the rate of inorganic phosphorus release from the sediments to the water column. In a steady state, the rates of organic phosphorus release more or less match the rates of deposition. These reflect the imbalance (accumulation) of phosphorus in the geochemical cycle in the lagoon and its highly eutrophic status. Efforts to control the eutrophication of Edku Lagoon have focused on reducing the phosphorus input.

  References ref
Andrieux-Loyer F., Philippon X., Bally G., Kérouel R., Youenou A., Grand J., 2008, Phosphorus dynamics and bioavailability in sediments of the Penz Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium minutum, Biogeochem., 88 (3), 213-231, http://dx.doi.org/10.1007/s10533-008-9199-2

Arning E.T., Birgel D., Schulz-Vogt H.N., Holmkvist L., Jørgensen B. B., Peckmann J., 2008, Lipid biomarker patterns of phosphogenic sediments from upwelling regions, Geomicrobiol. J., 25 (2), 69-82, http://dx.doi.org/10.1080/01490450801934854

Asmus R.M., Sprung M., Asmus H., 2000, Nutrient fluxes in intertidal communities of a south European lagoon (Ria Formosa) similarities and differ with a northern Wadden Sea bay (Sylt-Rømø Bay), Hydrobiologia, 436 (1-3), 217-235, http://dx.doi.org/10.1023/A:1026542621512

Aspila K. I., Agemian H., Chau A. S.Y., 1976, A semi-automated method for the determination of nitrogen, organic and total phosphorus in sediments, Analyst, 101 (1200), 187-197, http://dx.doi.org/10.1039/AN9760100187

Badr N. B. E., Hussein M.M.A., 2010, An input/output flux model of total phosphorus in Lake Edku, a northern eutrophic Nile Delta Lake, Global J. Environ. Res., 4 (2), 64-75.

Bally G., Mesnage V., Deloffre J., Clarisse O., Lafite R., Dupont J.-P., 2004, Chemical characterization of porewaters in an intertidal mudflat of the Seine estuary: relationship to erosion-deposition cycles, Mar. Pollut. Bull., 49 (3), 163-173, http://dx.doi.org/http://dx.doi.org/10.1016/j.marpolbul.2004.02.005

Baturin G.N., Dubinchuk V.G., 2003, The composition of phosphatized bones in recent sediments, Lithol. Miner. Resour., 38 (3), 313-323, http://dx.doi.org/10.1023/A:1023987820590

Berner R.A., 1980, Early diagenesis a theoretical approach, Princeton Univ. Press, New Jersey, 241 pp.

Canfield D. E., Kristensen E., Thamdrup B., 2005, The Phosphorus cycle, [in:] Advances in marine biology, A.J. Southward, P.A. Tyler, C.M. Young & L.A. Fuiman (eds.), Elsevier Acad. Press, London, 419-440.

Chapelle A., 1995, A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon, Ecol. Model., 80 (2-3), 131-147, http://dx.doi.org/10.1016/0304-3800(94)00073-Q

Diaz J., Ingall E., Benitze-Nelson C., Paterson D., De Jonge M.D., McNulty I., Brandes J.A., 2008, Marine polyphosphate: a key player in geological phosphorus sequestration, Science, 320 (5876), 652-655, http://dx.doi.org/10.1126/science.1151751

Edlund G., Carman R., 2001, Distribution and diagenesis of organic and inorganic phosphorus in sediments of the Baltic proper, Chemosphere, 45 (6-7), 1053-1061, http://dx.doi.org/10.1016/S0045-6535(01)00155-2

Faul K. L., Paytan A., Delaney M. L., 2005, Phosphorus distribution in sinking oceanic particulate matter, Mar. Chem., 97 (3-4), 307-333, http://dx.doi.org/10.1016/j.marchem.2005.04.002

Folk R. L., 1974, Petrography of sedimentary rocks, Univ. Texas, Austin, 182 pp.

Gächter R., Müller B., 2003, Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface, Limnol. Oceanogr., 48 (2), 929-933, http://dx.doi.org/10.4319/lo.2003.48.2.0929

Haggard B.E., Moore P.A., DeLaune P. B., 2005, Phosphorus flux from reservoir bottom sediments in Lake Eucha, Oklahoma, J. Environ. Qual., 34 (2), 724-728, http://dx.doi.org/10.2134/jeq2005.0724

Hemeda H., 1988, The dynamics of nutrients between water and sediments in Lake Edku, M. Sc. thesis, Alex. Univ., Alexandria.

Ibrahim M.K.H., 1994, Geochemical cycle of phosphorus in Lake Edku, M. Sc. thesis, Alex. Univ., Alexandria, 143 pp.

Ingall E., Jahnke R., 1997, Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis, Mar. Geol., 139 (1-4), 219-229, http://dx.doi.org/10.1016/S0025-3227(96)00112-0

Jorcin A., Nigueira M.G., 2005, Temporal and spatial patterns based on sediment and sediment-water interface characteristics along a cascade of reservoirs (Paranapanema River, south-east Brazil), Lakes Reserv. Manage., 10 (1), 1-12, http://dx.doi.org/10.1111/j.1440-1770.2005.00254.x

Khalil M. Kh., 2007, The fractional composition of phosphorus in Edku lagoon and adjacent marine sediments, Egypt. JKAU: Mar. Sci., 19, 149-166.

Kim L.H., Choi E., Michael K. S., 2003, Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments, Chemosphere, 50 (1), 53-61, http://dx.doi.org/10.1016/S0045-6535(02)00310-7

Lerman A., 1979, Geochemical processes: water and sediment environments, John Wiley, New York, 481 pp.

Moufaddal W., El-Sayed E., Deghady E., 2008, Updating morphometric and edaphic information of lakes Edku and Burullus, Northern Egypt, with the aid of satellite remote sensing, Egypt. J. Aquat. Res., 34 (4), 291-310.

Moutin T., 1992, Létude du cycle du phosphate dans les écosystèmes lagunaires, Ph.D. thesis, Univ. Sci. Tech. Languedoc, Montpellier, 251 pp.

Okbah M.A., El-Gohary S.El., 2002, Physical and chemical characteristics of Lake Edku water, Egypt, Mediter. Mar. Sci., 3 (2), 27-39.

Paytan A., McLaughlin K., 2007, The oceanic phosphorus cycle, Chem. Rev., 107 (2), 563-576, http://dx.doi.org/10.1021/cr0503613

Prairie Y.T., de Montigny C., Del Giorgio P.A., 2001, Anaerobic phosphorus release from sediments: a paradigm revisited, Verh. Int. Ver. Limnol., 27, 4013-4020.

Rifaat A. E., Ahdy H.H.H., Saadawy M.M., 2012, Metal fluxes across sedimentwater interface in Lake Qarun, Egypt, JKAU:Earth. Sci., 23 (2), 87-100.

Rothman D.H., Forney D.C., 2007, Physical model for the decay and preservation of marine organic carbon, Science, 316 (5829), 1325-1328, http://dx.doi.org/10.1126/science.1138211

Ruttenberg K.C., 2009, Phosphorus cycle, [in:] Encyclopedia of ocean sciences, J.H. Steele, K.K. Turekian & S.A. Thorpe (eds.), 2nd edn., Acad. Press, London, 2149-2162.

Savchuk O.P., 2002, Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model, J. Marine Syst., 32 (4), 253-280, http://dx.doi.org/10.1016/S0924-7963(02)00039-8

Schulz H.D., Schulz H.N., 2005, Large sulfur bacteria and the formation of phosphorite, Science, 307 (5708), 416-418, http://dx.doi.org/10.1126/science.1103096

Shakweer L., 2006, Impacts of drainage water discharge on the water chemistry of Lake Edku, Egypt, J. Aquat. Res., 32 (1), 264-282.

Shata M.A., 2000, Lithifacies characteristics of subsurface sediments of Lake Edku, Bull. NIOF, 26, 27-42.

Sondergard M., Kristensen P., Jeppesen E., 1992, Phosphorus release from resuspended sediments in the shallow and wind-exposed Lake Arreso, Denmark, Hydrobiologia, 228 (1), 91-99, http://dx.doi.org/10.1007/BF00006480

Strickland J., Parsons T., 1972, A practical handbook of sea water analysis, Fish. Res. Board Can., 310 pp.

Van Cappellen P., Gaillard J. F., 1996, Biogeochemical dynamics in aquatic sediments, [in:] Reactive transport in porous media: general principles and application to geochemical processes, P.C. Lichtner, C. Steefel & E.H. Oelkers (eds.), Rev. Mineralogy 34, Mineral. Soc. Amer., Washington, 335-376.

Vidal M., Morguí J.A., 1995, Short-term pore water ammonium variability coupled to benthic boundary layer dynamics in Alfacs Bay, Spain (Ebro Delta, NW Mediterranean), Mar. Ecol.-Prog. Ser., 118, 229-236, http://dx.doi.org/10.3354/meps118229

Walkley A., Black T.A., 1934, An examination of the Degthareff method for determination of soil organic matter and a proposed modification of the chromic acid titration methods, Soil Sci., 37 (1), 29-38, http://dx.doi.org/10.1097/00010694-193401000-00003

Wang H., Appan A., Gulliver J. S., 2003, Modeling of phosphorus dynamics in aquatic sediments: I-model development, Water Res., 37 (16), 3928-3938, http://dx.doi.org/10.1016/S0043-1354(03)00304-X

Wang S., Jin X., Zhao H., Zhou X., Wu F., 2008, Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory, J. Environ. Manage., 88 (4), 845-852, http://dx.doi.org/10.1016/j.jenvman.2007.04.006

Wetzel R.G., 2001, The phosphorus cycle, [in:] Limnology: lake and river ecosystems, 3rd edn., Acad. Press, San Diego, 1006 pp.

Wilson J.G., Brennan M.T., 2004, Spatial and temporal variability in modelled nutrient fluxes from the unpolluted Shannon estuary, Ireland, and the implications for microphytobenthic productivity, Estuar. Coast. Shelf Sci., 60 (2), 193-201, http://dx.doi.org/10.1016/j.ecss.2003.12.007

Zaghloul F.A., Hussein N.R., 2000, Impact of pollution on phytoplankton community structure in Lake Edku, Egypt, Bull. NIOF, 26, 297-318.

Zhang L., Fan C.X., Qin B.Q., 2001, Phosphorus release and absorption of surface sediments in Taihu Lake under simulative disturbing conditions, J. Lake Sci., 13 (1), 35-42

full, complete article (PDF - compatibile with Acrobat 4.0), 287 KB


First records of polychaetes new to Egyptian Mediterranean waters
Oceanologia 2013, 55(1), 235-267
http://dx.doi.org/10.5697/oc.55-1.235

Mohamed Moussa Dorgham*, Rasha Hamdy, Hoda Hassan El-Rashidy, Manal Mohamed Atta
Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author

keywords: alien polychaetes, new migrant polychaetes, Alexandria polychaetes, Egyptian polychaetes

Received 4 September 2012, revised 5 November 2012, accepted 19 November 2012.

Abstract

Nineteen benthic polychaete species were recorded for the first time in the intertidal zone of the Alexandria coast, south-eastern Mediterranean Sea. They belong to Syllidae (7 species), Hesionidae (3 species), Serpulidae (2 species) and 7 other families (one species each). Of these species Eunice miurai Carrera-Parra & Salazar-Vallejo 1998 appears to be new to the Mediterranean Sea, while four of the alien species earlier recorded in the Mediterranean were found for the first time in Egyptian waters: Opisthosyllis brunnea Langerhans 1879, Loimia medusa Savigny 1822, Syllis schulzi Hartmann-Schröder 1960, Phyllodoce longifrons Ben-Eliahu 1972.
    The newly recorded species demonstrated markedly different patterns of frequency of occurrence and numerical abundance. Spirobranchus triqueter Linnaeus 1758, S. schulzi, L. medusa and Salvatoria clavata Claparède 1863 were permanent and abundant species in fouling samples along the Alexandria coast. Saccocirrus papillocercus Bobretzky 1872 persisted in the sediments at two sites, with a much higher count at the stressed one, while Protodrilus sp. inhabited sediments at two other sites throughout the year, sometimes in very high numbers.In addition, the alien species found earlier, Brania arminii Langerhans 1881, Odontosyllis fulgurans Audouin & Milne-Edwards 1833 and O. brunnea Langerhans 1879, were frequently observed along the Alexandria coast.


  References ref
Abd-ElnabyF. A.,1999,Compositionand distributionofsome bottomfauna associationsalongthe Alexandria coast, MediterraneanSea,M. Sc.thesis, Alex. Univ., 272 pp.

Abd-Elnaby F. A., 2005, Systematic and environmental studies on Polychaetes from Alexandria marine water, Ph. D. thesis,Suez CanalUniv., 330 pp.

Abd-Elnaby F. A., 2009a, New records of Polychaetes from the South Part of Suez Canal, Egypt, World J. Fish Mar. Sci., 1 (1), 7-19.

Abd-Elnaby F. A., 2009b, Polychaete study in Northeastern MediterraneanCoast of Egypt, World J. Fish Mar. Sci., 1 (2), 85-93.

Abd-ElnabyF. A., San MartínG.,2010, Eusyllinae, Anoplosyllinae,and Exogoninae (Polychaeta: Syllidae) for the Mediterranean Coasts of Egypt, together with the description of one new species, Life Sci. J., 7 (4), 131-139.

Abd-Elnaby F. A., San Martín G., 2011, Syllinae (Syllidae:Polychaeta) from the Mediterraneancoastof Egypt withthe descriptionof two new species, Med. Mar. Sci., 12 (1), 43-52.

Albertelli G., Fraschetti S., 1995, A quantitative study of a macrobenthic community in the Ligurian Sea (north-western Mediterranean), Oebalia,21, 103-113.

Alos C.,1990, Anélidos poliquetos delCabode Creus (NE de Espan~a). Facies de Corallina elongate Ellis & Solander y de Cystoseira mediterranea (J. Feldmann), Misc. Zool., 14, 17-28.

Amoureux L.,JosefG.,O’ConnorB.,1980,Annélidespolychètesde l’Eponge Fasciospongia cavernosa Schmidt, Cah.Biol. Mar.,21, 387-392.

AmoureuxL., RullierF.,FishelsonL., 1978, Systématique et écologie d’annélides polychètes de la presqu’il du Sinai, Israel J. Zool., 27 (1-2), 57-163.

Antoniadou C., Chintiroglou C., 2005, Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea), Estuar. Coast.Shelf Sci.,62 (4),637-653, http://dx.doi.org/10.1016/j.ecss.2004.09.032

Antoniadou C., Nicolaidou A., Chintiroglou C., 2004, Polychaetes associated with the sciaphilic alga community in the northern Aegean Sea: spatial and temporal variability,HelgolandMar. Res., 58 (3), 168-182, http://dx.doi.org/10.1007/s10152-004-0182-6

Appy D. T., Linkletter E. L., Dadswell J. M., 1980, A guide to the marine flora and fauna of the Bay of Fundy:Annelida,Polychaeta, Fish.Mar.Service Tech. Rep., 920, 124 pp.

ArvanitidisC.,2000,Polychaetefauna of the AegeanSea: inventory and new information, Bull. Mar. Sci., 60 (1), 73-96.

Aviz D., de Mello C. F., da Silva P. F., 2009, Macrofauna associated with galleries of Neoteredo reynei (Bartsch, 1920) (Mollusca:Bivalvia) in Rhizophora mangle Linnaeus trunksduringless rainyseasonin mangroveof SãoCaetano de Odivelas, Pará (north coast of Brazil), Bol. Mus. Para.Emílio Goeldi. Ciéncias Naturais, Belém, 4 (1), 47-55.

BellanG.,1980,Relationshipof pollutiontorocky substratumpolychaeteson theFrench Mediterraneancoast,Mar.Poll.Bull.,11 (11),318-321, http://dx.doi.org/10.1016/0025-326X(80)90048-X

BellanG.,2001, Polychaeta, [in:]Europeanregisterof marinespecies:a check- listof themarinespeciesinEuropeand a bibliography of guides to their identification, Costello M. J. et al. (eds.),Coll. Patrimoines Nat.,50, 214-231.

BellisarioB.,Novelli C.,CerfolliF.,AngelettiD.,Cimmaruta R.,Nascetti G., 2010, The ecological restoration of the Tarquinia Salterns drives the temporal changes in the benthic community structure, Trans.WatersBull., 4 (2), 3-62.

Ben-EliahuM. N., 1972, Polychaeta Erantia of the Suez Canal, Israel J. Zool., 24, 54-70.

Ben-EliahuM. N.,1975a, Polychaete cryptofauna from rimsof similarintertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Nereidae (Polychaeta Errantia), Israel J. Zool., 24, 177-191.

Ben-EliahuM. N.,1975b, Polychaete cryptofauna from rimsof similarintertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Sabellidae (Polychaeta Sedentaria), Israel J. Zool., 24, 54-70.

Ben-EliahuM. N., 1976a, Errant polychaete cryptofauna(excluding Syllidae &Nereidae)fromrimsof similar intertidalvermetidreefs on the Mediterranean coasts of Israel and Gulf of Elat, Israel J. Zool., 25 (4), 156-177.

Ben-EliahuM .N.,1976b, Polychaete cryptofauna from rimsof similarintertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Sedentaria, Israel J. Zool., 25, 121-155.

Ben-EliahuM. N.,1976c, Polychaete cryptofauna from rimsof similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Serpulidae (Polychaeta Sedentaria), Israel J. Zool., 25, 103-119.

Ben-EliahuM. N.,1977a, Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Exogoninae and Autolytinae (Polychaeta Errantia: Syllidae), IsraelJ. Zool., 21, 189-237.

Ben-EliahuM. N.,1977b, Polychaete cryptofauna from rimsof similarintertidal vermetid reefs on the Mediterranean coasts of Israel and Gulf of Elat: Syllinae and Eusyllinae (Polychaeta Errantia:Syllidae), Israel J. Zool., 26, 1-58.

Ben-Eliahu M. N.,1989,Lessepsian migration in Nereididae(Annelida: Polychaeta): Some case histories, [in:] Environmental quality and ecosystem stability, E. Spanier,Y. Steinberger& M. Luria(eds.),Vol. IV/B-Ecosystem Stability, Proc.4thInt.Conference Isr. Soc. Ecol. & Environmental Quality Sciences, June 4-8, Jerusalem, Israel, 125-134.

Ben-EliahuM. N., 1991a, Nereididae of Suez Canal - potential Lessepsian migrants, Third International Polychaete Conference held at California StateUniversity, 6-11 August 1989, Long Beach, CaliforniaBull. Mar. Sci., 48 (2), 318-329.

Ben-EliahuM. N.,1991b, Red Sea serpulids (Polychaeta)intheeastern Mediterranean,Pages515-528, [in:]Systematics,biology and morphology of world Polychaeta, M. E.Petersen & J. B. Kirkegard(eds.),Proc.2ndInter. Polychaete Conf. Copenhagen1986, OpheliaSuppl. 5.

Ben-EliahuM. N., Fiege D., 1996, Serpulid tube-worms (Annelida:Polychaeta) of the central and eastern Mediterranean with particular attention to the Levant Basin, Mar. Biodiversity, 28 (1-3), 1-51.

Ben-EliahuM. N.,Payiatas G.,1999, Searching for Lessepsian migrant serpulids (Annelida:Polychaeta) on Cyprus - some results of a recent expedition, Israel J. Zool., 45, 101-119.

Ben-EliahuM. N., Safriel U. N., 1982, A comparison between species diversities of Polychaetes from tropical and temperatestructurallysimilarrocky intertidal habitats, J. Biogeogr., 9 (5), 371-390, http://dx.doi.org/10.2307/2844570

Ben-EliahuM. N., ten Hove H. A., 1992, Serpulids(Annelida: Polychaeta)along the Mediterraneancoast of Israel - new populationbuild-upsof Lessepsian migrants, Israel J. Zool., 38, 35-53.

Bianchi C. N., 1981,Guideperilriconoscimentodellespecieanimalidelle acque lagunari e costiere italiane,AQ/1/96.5. Policheti Serpulidei,Consiglio Nazionale delle Ricerche,187 pp.

BisbyF. A.,RuggieroM. A.,WilsonK. L.,Cachuela-Palacio M.,KimaniS. W., Roskov Y. R., Soulier-Perkins A., van HertumJ., 2005, Species 2000 and ITIS catalogue of life, CD-ROM.

Boaventura D., Moura A., Leitõ F., Carvalho S., Cúrdia J.,Pereira P., da Fonseca L.,dosSantos M. N., Monteiro C. C.,2006, Macrobenthic colonisationof artificial reefson the southerncoastof Portugal (Ancõo, Algarve),Hydrobiologia,555 (1), 335-343, http://dx.doi.org/10.1007/s10750-005-1133-1

Borges P. A. V.,Costa A., CunhaR., GabrielR., Gonc¸alvesV., MartinsA. F., Melo I., Parente M., Raposeiro P., Rodrigues P., Santos R. S., Silva L., Vieira P., Vieira V. (eds.),2010, A list of the terrestrialand marine biota from the Azores, Princípia, Oeiras, 432 pp.

Campbell D. A.,KellyM. S.,1981, Settlement of Pomatoceros triqueter (L.) in two Scottish lochs, and factors determining its abundance on mussels grown in suspended culture, J. Shellfish Res., 21 (2),519-528.

Carrera-Parra L. F., Salazar-VallejoS. I., 1998, A new genus and 12 new species of Eunicidae (Polychaeta) from the Caribbean sea, J. Mar. Biol.Assoc. U.K., 78 (1), 145-182, http://dx.doi.org/10.1017/S0025315400040005

Casellato S.,MasieroL.,SichirolloE.,Soresi S.,2007, Hidden secrets of the Northern Adriatic:‘Tegnué’, peculiar reefs,Cent. Eur.J. Biol., 2 (1),122-136, http://dx.doi.org/10.2478/s11535-007-0004-3

Casellato S.,Sichirollo E., CristofoliA., Masiero L., Soresi S., 2005, Biodiversitàdelle ‘tegnuè’ di Chioggia,zona di tutela biologica del Nord Adriatico,Biol. Mar.Med.,12 (1),69-77.

Casellato S.,StefanonA., 2008, Coralligenoushabitats in the northernAdriatic Sea: an overview,Mar.Ecol-Evol. Persp., 29, 321-341.

CastelliA.,Bianchi C. N.,Cantone G.,Çinar M. E., Gambi M. C.,2008, Annelida Polychaeta,Biol.Mar.Med.,15 (Suppl.1),323-373.

Casu D.,CeccherelliG.,Curini-Galletti M.,Castelli A.,2006, Short-term effects of experimentaltrampling on polychaetesof a rocky intertidalsubstratum (Asinara Island MPA, NW Mediterranean), Sci.Mar.(Barc.),70 (Suppl.3), 179-186.

Cattrijsse A.,Vincx M.,2001, Biodiversityof the benthos and the avifaunaof theBelgian coastalwaters:summaryof data collectedbetween 1970 and 1998. Sustainable Management of the North Sea, Federal Office for Scientific, Technical and CulturalAffairs,Brussels, 48 pp.

Cigliano M.,Gambi M. C.,Rodolfo-MetalpaR., PattiF. P., Hall-Spencer J. M., 2010, Effects of ocean acidificationon invertebratesettlementat volcanic CO2vents,Mar. Biol., 157 (11), 2489-2502, http://dx.doi.org/10.1007/s00227-010-1513-6

ÇinarM. E., 2005, Polychaetesfrom thecoast of northernCyprus(eastern Mediterranean Sea), with two new recordsfor the Mediterranean Sea,Cah. Biol. Mar., 46, 143-159.

Çinar M. E., 2006, Serpulid species (Polychaeta:Serpulidae)from the Levantine coast of Turkey(eastern Mediterranean),with special emphasis on alien species, Aquat. Inv., 1 (4),223-240, http://dx.doi.org/10.3391/ai.2006.1.4.6

ÇinarM. E.,BilecenoğluM., ÖztürkB.,CanA.,2006,New recordsof alien species on the Levantine coast of Turkey, Aquat. Inv.,1 (2),84-90, http://dx.doi.org/10.3391/ai.2006.1.2.6

Çinar M. E., Bilecenoğlu M.,Öztürk B., Katagan T., Aysel V., 2005, Alien species on the coasts of Turkey, Med. Mar. Sci., 6 (2), 119-146.

Çinar M. E., Dağli E., 2012, New records of alien polychaete species for the coasts of Turkey, Med. Mar. Sci., 13 (1), 103-107.

ÇinarM. E.,ErgenZ.,2003,Eusyllinaeand Syllinae(Annelida: Polychaeta) from Northern Cyprus (Eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea, Bull. Mar. Sci., 72 (3), 769-793.

ÇinarM. E., ErgenZ., Benli H. A., 2003, Autolytinae and Exogoninae (Annelida: Polychaeta) from NorthernCyprus(Eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea,Bull.Mar.Sci.,72 (3), 741-767.

Çinar M. E., Gönlügür-Demirci G., 2005, Polychaetaassemblages on shallow-water benthic habitats along the SinopPeninsula (Black Sea, Turkey),Cah.Biol. Mar.,46, 253-263.

Coll M., Pirrodi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., BallesterosE., BianchiC. N., CorberaJ.,DailianisT.,DanovaroR., Estrada M.,FrogliaC.,GalilB. S.,GasolJ. M.,GertwagenR.,Gil J., Guilhaumon F.,Kesner-ReyesK., Kitsos M., KoukourasA., Lampadariou N., Laxamana E.,López-FédelaCuadra C. M.,LotzeH.,MartinD., MouillotD.,Oro D., RaicevichS., Rius-BarileJ.,Saiz-SalinasJ. I., San Vicente C., Somot S., TempladoJ.,TuronX., Vafidis D., VillanuevaR., Voultsiadou E., 2010, The biodiversity of the Mediterranean Sea, estimates, patterns and threats,PloS ONE, 5 (8), e11842, http://dx.doi.org/10.1371/journal.pone.0011842

Dağli E., BakirK., Doğan A.,Özcan T.,KirkimF., ÇnarM.E., Çztürk B.,Önen M., KatağanT.,2008, The effects of a fish farm on the benthic fauna near MarkizIsland (Çandarl Bay-Aegean Sea/Turkey),J. FisheriesSciences.com, 2 (3), 576-586, http://dx.doi.org/10.3153/jfscom.mug.200702

Dauvin J. C.,Dewarumez J. M.,GentilF.,2003, Listeactualisée des espèces d’AnnélidesPolychètesprésentes enManche, [An up to date list of polychaetous annelids from the English Channel], Cah. Biol. Mar., 44 (1), 67-95.

DayJ. H.,1967, Polychaetes of southern Africa, Part 1:Errantia, BritishMus. (Nat. Hist.),London, 878 pp.

Day J. H., Morgans J. F. C., 1956, The ecology of South African estuaries. Part 7. The Biology of Durban Bay, Ann. Natal Mus., 13, 259-312.

de Biasi A. M., Bianchi C. N., Morri C., 2003, Analysis of macrobenthic communities at differenttaxonomiclevels:an examplefrom an estuarine environment in the LigurianSea NW Mediterranean, Estuar. Coast. Shelf Sci., 58 (1), 99-106, http://dx.doi.org/10.1016/S0272-7714(03)00063-5

deLeón-Gonzàlez J. A., Díaz Castan~eda V.,2006, Eunicidae (Annelida: Polychaeta) associated with Phragmathopoma caudata Morch, 1863 and some coral reefs from Veracruz, Gulf of Mexico, Sci. Mar.,70 (S3), 91-99.

DixonR. D.,PascoeP. L.,DixonL. R. J.,1998, Karyotypic differences between twospecies of Pomatoceros,P. triqueterand P. lamarckii(Polychaeta: Serpulidae), J. Mar.Biol. Assoc. U.K.,78 (4), 1113-1126, http://dx.doi.org/10.1017/S0025315400044362

EnemanE.,1984,Uit het Natuurhistorischarchief, [Fromthe Natural History Archive], De Strandvlo, 4 (1), 4-17.

Fauchald K., 1977, The polychaete worms. Definition and key to the orders, families and genera, Sci. series, 282, 118 pp.

Faulwetter S., 2010, Check-listof marinePolychaetafrom Greece.Aristotle University of Thessaloniki,Assembledwithinthe frameworkof the EU FP7 PESIpro ject.

Faulwetter S., Chatzigeorgiou G., Galil B. S., Nicolaidou A., Arvanitidis C., 2011, Sphaerosyllis levantina sp. n. (Annelida) from the eastern Mediterranean, with notes on character variation in Sphaerosyllis hystrix Claparède, 1863, [in:] e-Infrastructures for datapublishingin biodiversityscience. ZooKeys, V. Smith &L. Penev(eds.),150, 327-345.

Fauvel P., 1923, Faune de France. Polychètes errantes, Le Chevalier,Paris,488 pp.

FauvelP.,1927a,Polychètes sédentairesaddenda aux errantes,archiannélides, myzostomaires, FauneFrance,Ed. le ChevalierParis,16, 1-412.

Fauvel P., 1927b, Rapport sur les annélides: Polychètes errantes. Zoological results of the CambridgeExpeditionto theSuezCanal, 1924, Trans. Zool. Soc. London, 22 (1), 411-437.

FauvelP.,1937, Les fonds de pèche pres d’Alexandria. XI, Annélides Polychètes, Notes Mém. Fish. Res. Dir., 19, 1-60.

FelderD. L., CampD. K. (eds.),2010, Gulf of Mexico-origins, waters, and biota. Biodiversity, TexasA&M Press,College Station, http://www.marinespecies.org/porifera/porifera.php?

FishelsonL.,RullierF.,1969, Quelquesannélidespolychètes de La Mer Rouge, Israel J. Zool., 18, 49-117.

GambiM. C., Conti G., Bremec C. S., 1998, Polychaete distribution, diversity and seasonality related to seagrass cover in shallow soft bottoms of the Tyrrhenian Sea, Italy, Sci. Mar.,62 (1-2),1-17, http://dx.doi.org/10.3989/scimar.1998.62n1-21

GibbsE. P.,Saiz SalinasJ. I.,1996, The occurrence of the estuarinepolychaete Lycastopsis littoralis (Namanereidinae:Nereididae)in the RíaDe Bilbao, Northern Spain, J. Mar.Biol. Assoc.U.K.,76 (3),617-623, http://dx.doi.org/10.1017/S0025315400031325

Glasby C. J., 1999,TheNamanereidinae(Polychaeta: Nereididae).Part1, taxonomy and phylogeny, Rec. Aust.Mus., Suppl.25, 129 pp.

Guerra-García J. M., 2001, Habitat use of the Caprellidea (Crustacea:Amphipoda) from Ceuta, North Africa,Ophelia,55 (1), 27-38, http://dx.doi.org/10.1080/00785236.2001.10409471

GuiryM. D.,GuiryG. M.,2011, AlgaeBASE, World-wide electronic publication, Nat.Univ.Ireland,Galway, http://www.algaebase.org/

HamdyR., 2008, Ecological studies on benthic polychaetes along Alexandria coast, M. Sc. thesis, Alex. Univ., 214 pp.

HanssonH. G.,1998,NEAT(NorthEast AtlanticTaxa): South Scandinavian marine Annelida check-list, 33 pp.

Hartman O.,1961, Polychaetous annelidsfrom California,AllanHancockPac. Exped.,25, 226 pp.

HaywardP. J., RylandJ. S. (eds.),1990, The marine fauna of the British Isles and North-West Europe:1. Introduction and protozoans to arthropods, Clarendon Press,Oxford, 627 pp.

HeabaF. N., 1987, Taxonomicaland ecological studies of hard bottom polychaetes in Port Said Harbour, M. Sc. thesis,Tanta Univ., Egypt.

HeipC. H. R.,Herman R. L.,BisschopG.,GovaereJ. C. R.,HolvoetM.,van Damme D., Vanosmael C., Willems K. R., DeConinck L.A.P., 1979, Benthic studies of the Southern Bight of the North Sea and its adjacent continental estuaries:Progress Report 1, [in:] Coordinated Research Actions InteruniversitaryActionsOceanology:symposiumreports,NederlandsInst. Ecol. (NIOO),133-163.

Kambouroglou V.,NicolaidouA.,2006, A new alien species in Hellenic waters, Pseudonereis anomala(Polychaeta,Nereididae) invadesharborsin the Eastern Mediterranean, Aquat. Inv.,1 (2), 97-98, http://dx.doi.org/10.3391/ai.2006.1.2.8

López E., San Martín G.,1997, Eusyllinae,ExogoninaeandAutolytinae (Syllidae, Annelida,Polychaeta) from the Chafarinas lslands (AlborànSea, W. Mediterranean), Misc. Zool., 20 (2), 101-111.

López E., San Martín G., Jiménez M., 1996, Syllinae (Syllidae, Annelida, Polychaeta) from Chafarinas lslands (Alboràn Sea; Western Mediterranean), Misc. Zool., 19 (1), 105-118.

MakraA., NicolaidouA., 2000, Benthic communities of the inner Argolikos Bay, Belgian J. Zool., 130 (Suppl.1), 61-67.

MartínD.,Gil J.,2010, Checklist of class Polychaeta (Phylum Annelida),199-236, [in:] The biodiversity of the Mediterranean Sea: estimates, patterns, and threats, M. Coll et al., PLoS ONE, 5 (8), 36 pp.

Marzano C. N.,Baldacconi R., Fianchini A.,Gravina F.,Corriero G., 2007, Settlement seasonality and temporal changes in hard substrate macrozoobenthic communities of Lesina Lagoon (Apulia, Southern Adriatic Sea), Chem. Ecol., 23 (6), 479-491, http://dx.doi.org/10.1080/02757540701702868

Marzialetti S., Nicoletti L., ArdiazzoneG. D., 2009, The polychaete community of the fregene artificial reef (Tyrrhenian Sea, Italy), a 20 year study (1981-2001), Zoosymposia, 2, 551-566.

MassinC.,NorroA., MallefetJ., 2002, Biodiversity of a wreck from the Belgian ContinentalShelf:monitoringusingscientificdiving. Preliminary results, Bull. Inst.Royal Sci. Naturel. Belgique, 72, 67-72.

Mikac B., Musco L., 2010, Faunal and biogeographicanalysisof Syllidae (Polychaeta) from Rovinj (Croatia, northern Adriatic Sea), Sci. Mar.,74 (2), 353-370, http://dx.doi.org/10.3989/scimar.2010.74n2353

Miloslavich P., Manuel J. D., Klein E., Jose J., AlvaradoC. D., Gobin J., Escobar- BrionesE., Cruz-Motta J. J.,WeilE.,CorteJ., BastidasA. C.,Robertson R., Zapata F., MartinA., CastilloJ., Kazandjian A., OrtizM., 2010, Marine biodiversityin the Caribbean:regionalestimates and distributionpatterns, PLoS ONE, 5 (8), e11916, http://dx.doi.org/10.1371/journal.pone.0011916

MoreiraJ., QuintasP.,TroncosoJ. S.,2006, Spatial distribution of soft-bottom polychaete annelids in the Ensenada de Baiona (Ría de Vigo, Galicia, north- west Spain), Sci. Mar., 70 (Suppl.3), 217-224.

MullerY.,2004, Faune et flore du littoral du Nord, du Pas-de-Calaiset de la Belgique: inventaire, [Coastal faunaand flora of the Nord, Pas-de-Calais and Belgium:inventory], Comm. Région. Biol. Région Nord Pas-de-Calais, 307 pp.

Munari C., Rossi R., Mistri M., 2005, Temporal trends in macrobenthos community structure and redundancy in a shallow coastal lagoon (Valli di Comacchio, northern Adriatic Sea), Hydrobiologia, 550 (1), 95-104, http://dx.doi.org/10.1007/s10750-005-4366-0

Musco L.,Giangrande A.,2005, Mediterranean Syllidae (Annelida:Polychaeta) revisited: biogeography, diversity and species fidelity to environmental features, Mar. Ecol. Progr.Ser., 304, 143-153, http://dx.doi.org/10.3354/meps304143

Musco L., Terlizzi A., Licciano M., Giangrande A., 2009, Taxonomic structure and the effectiveness of surrogates in environmental monitoring:a lesson from polychaetes,Mar.Ecol. Prog.Ser., 383, 199-210, http://dx.doi.org/10.3354/meps07989

Nicolaidou A., PetrouK., Kormas A. K., Reizopoulou S.,2006, Interannual variability of soft bottom macrofaunal communities in two Ionian Sea lagoons, Hydrobiologia,555 (1), 89-98, http://dx.doi.org/10.1007/s10750-005-1108-2

Occhipinti-Ambrogi A., Marchini A., Cantone G., Castelli A., Chimenz C., Cormaci M., Froglia C., Furnari G., Gambi M. C., Giaccone G., Giangrande A., Gravili C.,Mastrototaro F., MazziottiC.,Orsi-ReliniL.,Piraino S.,2011,Alien species along the Italiancoasts: an overview, Biol. Invasions,13 (1), 215-237, http://dx.doi.org/10.1007/s10530-010-9803-y

PettiboneM. H.,1963, Marine polychaete worms of the New England Region 1. Aphroditidaethrough Trochochaetidae, Bull.U.S.Nat. Mus.(Smithsonian Inst.),227, 1-356.

Pleijel F., 2007, Polychaetes of New Caledonia,[in:] Compendium of marine species of New Caledonia,C. E. Payri& B. Richerde Forges(eds.),Doc. Sci. Tech. 117, (2nd edn.),IRD Noumea,175-181.

Ramos M.(ed.), 2010,IBERFAUNA.TheIberianfauna databank, http://iberfauna.mncn.csic.es/.

Rullier F., 1972, Annélides polychètes de Nouvelle-Calédonia. Expédition Franc¸aise sur lesrécifs corallinesde la Nouvelle-Calédonia, 16.

Salazar-VallejoS. I., 1996, Lista de species y bibliografía de Poliquetos (Polychaeta) del Gran Caribe, Anales Inst. Biol. Univ. nac. Autón,México, Ser. Zool., 67 (1), 11-50.

Sánchez-Moyano J. E., García-Adiego E. M., Estacio F., García-Gómez J. C., 2002, Effectof environmentalfactorson thespatialvariationof theepifaunal polychaetesof thealga Halopteris scopariainAlgecirasBay (Strait of Gibraltar), Hydrobiologia,470 (1-3),133-148, http://dx.doi.org/10.1023/A:1015680106097

San Martín G., 1984,Estudio biogeografico,faunistico y sistematicodelos Poliquetosde la familia Silidos (Syllidae:Polychaeta)en Baleares,Ph. D. thesis no. 187, Publ.Univ. Complut. Madrid,529 p.

San Martín G., 1991, Syllis (Polychaeta: Syllidae: Syllinae) from Cuba, The Gulf of Mexico, Florida and North Carolina,with a revision of several species described by Verrill, Bull. Mar. Sci., 5, 167-196.

San Martín G., 2003, Annelida Polychaeta II. Syllidae, FaunaIber.,21, 21-554. San MartínG.,2005, Exogoninae (Polychaeta:Syllidae) from Australiawith the description of a new genus and twenty-two species,Rec. Aust.Mus.,57 (1), 39-152, http://dx.doi.org/10.3853/j.0067-1975.57.2005.1438

Sardà R., 1986, Contribuciónal concimiento delas poblacionesanelidianas infaunalesde la Costa Catalana, Univ. Barcelona,12, 27-36.

SelimS. A.,1978,Systematicand distributionalstudies of polychaetesin the Eastern Harbour, Alexandria,M. Sc. thesis,Alex. Univ., Egypt,402 pp.

Selim S. A.,1996a,New records of polychaete annelidsfrom Alexandria waters, Egypt, J. Egypt. Ger. Soc. Zool., 21 (D),75-86.

Selim S. A., 1996b, Notes on the distribution of polychaetes along Alexandria coast, Egypt, Bull. High Inst.PublicHealth, 26 (2), 341-350.

SelimS. A.,1996c,On some syllid polychaetes from Alexandriawaters, Egypt, J. Egypt. Ger. Soc. Zool., 21 (D),51-73.

SelimS. A.,1997a,Assessment of Polychaetefauna in the EasternHarbourof Alexandria, Egypt, Bull. High Inst.PublicHealth, 27 (1), 131-146.

Selim S. A., 1997b, Description and remarks on Suez Canal serpulids (Polychaeta), J. Egypt. Ger. Soc. Zool., 22 (D),87-110.

Selim S. A., 1997c, Newrecordsof twobenthicpolychaetesfrom Egyptian Mediterranean waters, J. Egypt. Ger. Soc. Zool., 22 (D),29-39.

Selim S. A., 2006, Newly recorded spionid species (Polychaeta) from the Egyptian waters, with special reference to polydorids habitats,Egypt.J. Aquat.Biol. Fish.,10 (1), 191-210.

Selim S. A., 2007, Family Paraonidae (Polychaeta), a new record to the Egyptian Mediterranean waters, Egypt. J. Aquat.Res., 33 (2), 171-184.

Selim S. A., 2008a, Eusyllinae and Exogoninae (Polychaeta: Syllidae) - new records from the Egyptian Mediterranean coastal waters, Egypt. J. Aquat.Res., 34 (3), 160-180.

Selim S. A., 2008b, New records of sabellid species (Polychaeta:Sabellinae) from the coastal Egyptian waters, Egypt. J. Aquat.Res., 34 (1), 108-128.

Selim S. A., 2009, Polychaete fauna of the northern part of the Suez Canal (Port- Said-Toussoum), Egypt. J. Aquat.Res., 35 (1), 69-88.

Selim S. A., Abd-Elnaby F. A., Gab-Alla A., GhobashyA. A., 2006a, New records of errant polychaetes from coastal waters of Alexandria, Egypt, Egypt. J. Aquac. Res., 32, 210-227.

Selim S. A., Abd-Elnaby F. A., Gab-AllaA., GhobashyA. A., 2006b, New records of sedentarypolychaetes from coastalwaters of Alexandria,Egypt,Egypt. J. Aquac. Res., 32, 228-241.

Serrano A., SanMartínG., LópezE., 2006, Ecologyof Syllidae (Annelida: Polychaeta) from shallow rocky environments in the CantabrianSea (South Bay of Biscay), Sci. Mar., 70 (S3), 225-235, http://dx.doi.org/10.3989/scimar.2006.70s3225

Shalla S. H., Holt T. J.,1999, The Lessepsianmigrant Pomatoeioskraussi (Annelids, Polychaeta) recent formation of dense aggregation in Lake Timsah and Bitter lakes (Suez Canal; Egypt), Egypt. J. Biol., 1, 133-137.

SimbouraN., NicolaidouA., Thessalou-Legaki M., 2000, Polychaete communities of Greece:an ecological overview,Mar.Ecol., 21 (2), 129-144, http://dx.doi.org/10.1046/j.1439-0485.2000.00684.x

Simboura N.,ZenetosA.,2002,Benthic indicatorsto use in ecological quality classification of mediterranean soft bottom marine ecosystems, includinga new biotic index, Med. Mar. Sci., 3 (2), 77-111.

SimbouraN., Zenetos.A., 2005, Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species, Med. Mar. Sci., 6 (1), 75-88.

Streftaris N., Zenetos A.,Papathanassiou E.,2005, Globalisation in marine ecosystems: the story of non-indigenous marine species across European Seas, Oceanogr.Mar. Biol., 43, 419-453.

Surugiu V., 2005, The use of polychaetes as indicators of eutrophication and organic enrichment of coastal waters: a study case - Romanian Black Sea coast, Al. I. Cuza Univ. Iasi, 51, 55-62.

Şahin G. K.,ÇinarM. E.,2012,A check-listof polychaetespecies(Annelida: Polychaeta) from the Black Sea, J. Black Sea/Med. Environ.,18 (1), 10-48.

Şahin G. K.,ÇinarM. E.,2009, Eunicidae(Polychaeta) speciesinand around IÿskenderunBay (LevantineSea,EasternMediterranean)with a new alien speciesfor theMediterraneanSeaand a re-descriptionof Lysidice collaris, Turk.J. Zool., 33 (3), 331-347, http://dx.doi.org/10.3906/zoo-0806-19

Teacă A., Begun T., Gomoiu M. T., 2006, Recent data on benthic populations from hard bottom mussel community in the Romanian Black Sea coastal zone, Geo- Eco-Marina, 12, 43-51.

Tena J., Capaccioni-Azzati R., Torres-Gavila F. J., García-Carrascosa A. M., 2000, Polychaetesassociated with facies of photophilic algal community in the Chafarinas Archipelago (SW Mediterranean), Bull. Mar. Sci., 67 (1), 55-72.

Tovar-Hernandez M. A., Salazar-VallejS. I., 2006, Sabellids (Polychaeta: Sabellidae) from the Grand Caribbean, Zool. Stud., 45 (1), 24-66.

TrottT. J.,2004,Cobscook Bayinventory:a historicalchecklist ofmarine invertebrates spanning 162 years, Northeast. Nat.,SI 2, 261-324.

UchidaH.,2004,Hesionidae(Annelida,Polychaeta) fromJapan,I.Kuroshio Biosph., 1, 27-92.

Vine P., 1986, Red Sea invertebrates,Immel Publ.,London, 224 pp.

Vine P. J., Bailey-Brock J. H., 1984, Taxonomy and ecology of coral reef tube worms (Serpulidae, Spirorbidae) in the Sudanese Red Sea, Zool. J. Linn. Soc.-Lond., 80 (2-3), 135-156, http://dx.doi.org/10.1111/j.1096-3642.1984.tb01969.x

VinogradovK. A.,1960, A note on the distributionof themarinebristle-worm Lycastopsis pontica in the Black and Azov Seas, Nauch. Ezhegod. Odess. Univ. Biol. Fakult., 160 (2), 143-144.

VorobyovaL. V., Bondarenko O. S., 2009, Meiobenthic bristle worms (Polychaeta) of the western Black Sea shelf, J. Black Sea/Mediterr. Environ.,15 (2),109-121.

Wehe T.,Fiege D., 2002, Annotated checklist of the polychaetespecies of the seas surrounding the Arabian Peninsula:Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman, Arabian Gulf, Fauna Arabia,19, 7-238.

ZanolJ.,Fauchald K.,PaivaP. C.,2007,Aphylogenetic analysis of thegenus Eunice (Eunicidae, polychaete, Annelida),Zool. J. Linn.Soc.-Lond.,150 (2), 413-434, http://dx.doi.org/10.1111/j.1096-3642.2007.00302.x

Zaâbi S., GilletP.,ChambersS., Afli A., BoumaizaM., 2012, Inventory and new records of Polychaetespecies from the Cap Bon peninsula, north-east coast of Tunisia, Western Mediterranean Sea, Med. Mar. Sci., 13 (1), 36-48.

ZenetosA.,ÇinarM. E.,Pancucci-Papadopoulou M. A.,HarmelinJ. G.,Furnari G.,AndaloroF.,Bellou F.,Streftaris N., Zibrowius H., 2005, Annotated list of marine alien species in the Mediterranean with records of the worst invasive species, Med. Mar. Sci., 6 (2), 63-118.

Zenetos A., Gofas S., VerlaqueM., ÇinarM. E., García Raso J. E., BianchiC. N., MorriC., AzzurroE.,BilecenoğluM.,FrogliaC.,SiokouI.,ViolantiD., Sfriso A., San Martín G., Giangrande A., Katagan T.,BallesterosE., Ramos EsplaA.,Mastrototaro F.,OcanaO.,ZingoneA.,GambiM. C.,Streftaris N., 2010, Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution, Med. Mar. Sci., 11 (2), 381-493.

Zenetos A., Katsanevakis S., Poursanidis D., Crocetta F., Damalas D., Apostolopoulos G., Gravili C., Vardala-Theodorou E., Malaquias M., 2011, Marine alien species in Greek Seas: additions and amendments by 2010, Med. Mar. Sci., 12 (1), 95-120.

Zibrowius H., 1968, Étude morphologique, systématique et écologique des Serpulidae (Annelida Polychaeta) de la région de Marseille, Rec. Trav. Stat. Mar. Endoume, 43 (59), 81-252.

Zibrowius H., 1992, Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species, Mésogée, 51, 83-107.

Zibrowius H., Bitar G., 1981, Serpulidae (Annelida, Polychaeta) indo-pacifiques établis dans la région de Beyrouth, Liban, Rap. Com. Int. Explor. Sci. Mer Médit., 27 (2), 159-160.

Zühlke R., Alsvag J., De Boois I., Cotter J., Ehrich S., Ford A., Hinz H., Jarre-Teichmann A., Jennings S., Kr¨oncke I., Lancaster J., Piet G., Prince P., 2001, Epibenthic diversity in the North Sea, Senck. Marit., 31 (2), 269-281, http://dx.doi.org/10.1007/BF03043036

full, complete article (PDF - compatibile with Acrobat 4.0), 396 KB

Communications



Compensatory growth of the bloom-forming dinoflagellate Prorocentrum donghaiense induced by nitrogen stress
Oceanologia 2013, 55(1), 269-276
http://dx.doi.org/10.5697/oc.55-1.269

Zhuoping Cai1,2, Shunshan Duan2, Honghui Zhu1,*
Guangdong Institute of Microbiology,
Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application,
Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology
(Ministry-Guangdong Province Jointly Breeding Base),
South China, Guangzhou 510070, China;
e-mail: zhuhonghui66@yahoo.com.cn;
*corresponding author
2Institute of Hydrobiology, Jinan University,
Guangzhou 510632, China;
e-mail: zhuopingcai@yahoo.com

keywords: compensatory growth, Prorocentrum donghaiense, nitrogen

Received 21 November 2012, revised 13 February 2013, accepted 18 February 2013.

This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003), Natural Science Foundation of China (41176104, 31070103), and Natural Science Foundation of Guangdong Province Key Project (10251007002000001).

Abstract

Although the phenomenon of compensatory growth has been documented in some animals and higher plants, little information is available on its manifestation in marine microalgae. We have conducted the first study on the compensatory growth of the red tide causative dinoflagellate Prorocentrum donghaiense after its recovery from different nitrogen concentrations. The results showed that NaNO3 concentrations of 0 and 7.5 mg l-1 significantly reduced the growth ofP. donghaiense, as compared to 37.5 and 75 mg l-1. When the microalgal cells were returned to 75 mg l-1, they exhibited subsequent compensatory growth. The most significant compensatory growth was found in those cells previously experiencing 0 mg dm3, followed by 7.5 mg dm3, indicating that compensatory growth depended on the extent of nitrogen stress they had been subjected to. Our results suggest that compensatory growth can be induced in the marine microalga P. donghaiense after its recovery from nitrogen fluctuation, and that this should be taken into consideration in the prevalence of P. donghaiense blooms in coastal waters.

  References ref
CaiZ. P., Duan S. S., WeiW., 2009,Darkness andUVradiation provoked compensatorygrowth inmarinephytoplankton Phaeodactylumtricornutum (Bacillariophyceae), Aquac.Res.,40 (13),1559–1562, http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x

CaiZ. P., Duan S. S., WeiW., 2009,Darkness andUVradiation provoked compensatorygrowth inmarinephytoplankton Phaeodactylumtricornutum (Bacillariophyceae), Aquac.Res.,40 (13),1559-1562, http://dx.doi.org/10.1111/j.1365-2109.2009.02218.x

GuoY. F.,DuanS. S.,Li A. F.,LiuZ. Q.,2005,Over-compensatory growth of Tetraselmistetrathele following salt stress, Mar. Sci., 29, 37-42.

HarrisonP. J., BergesJ. A.,2005, Marineculturemedium,[in:]Algalculturing techniques, R. A. Andersen(ed.),Acad. Press,San Diego, 21-33.

Hockin N. L., Mock T.,MulhollandF.,KoprivaS., Malin G., 2012, Theresponse ofdiatom central carbon metabolism to nitrogenstarvationisdifferentfrom thatofgreenalgaeand higherplants,Plant.Physiol., 158 (1), 299-312, http://dx.doi.org/10.1104/pp.111.184333

Hu Z. X., MulhollandM., DuanS. S., Xu N., 2012, Effectsof nitrogen supply and itscomposition onthe growth of Prorocentrumdonghaiense, HarmfulAlgae, 13, 72-82, http://dx.doi.org/10.1016/j.hal.2011.10.004

Lennartsson T.,NilssonP.,TuomiJ., 1998,Inductionofovercompensationin thefield gentian,Gentianellacampestris,Ecology,79 (3),1061-1072, http://dx.doi.org/10.1890/0012-9658(1998)079[1061:IOOITF]2.0.CO;2

LomasM. W.,GlibertP. M.,2000, Comparisons ofnitrateuptake,storage,and reduction inmarinediatomsandflagellates,J. Phycol., 36 (5), 903-913, http://dx.doi.org/10.1046/j.1529-8817.2000.99029.x

Marshall D. J., CookC. N.,EmletR. B.,2006,Offspring sizeeffectsmediate competitive interactions in a colonial marine invertebrate, Ecology, 87 (1), 214-225, http://dx.doi.org/10.1890/05-0350

MetcalfeN. B.,Monaghan P.,2001,Compensationforabad start: grow now, paylater, Trends Ecol.Evol.,16 (5),254-260, http://dx.doi.org/10.1016/S0169-5347(01)02124-3

Oba G., Mengistu Z., StensethN. C., 2000, Compensatory growthof the African dwarfshrub, Indigofera spinosa,followingsimulated herbivory, Ecol.Appl., 10 (4), 1133-1146, http://dx.doi.org/10.1890/1051-0761(2000)010[1133:CGOTAD]2.0.CO;2

PiedrasF. R.,OdebrechtC.,2012,Theresponseofsurf-zonephytoplankton to nutrient enrichment(Cassino Beach,Brazil),J. Exp.Mar.Biol. Ecol.,432-433, 156-161, http://dx.doi.org/10.1016/j.jembe.2012.07.020

Pirastru L.,DarwishM.,ChuF. L.,Perreault F.,SiroisL.,SlenoL.,Popovic R., 2012, Carotenoidproduction and change of photosynthetic functions in Scenedesmussp. exposed to nitrogen limitation and acetate treatment, J. Appl. Phycol.,24 (1), 117-124, http://dx.doi.org/10.1007/s10811-011-9657-4

Ruiz-RN.,WardD.,SaltzD.,2008,Leafcompensatorygrowth asatolerance strategy to resistherbivory inPancratiumsickenbergeri, Plant Ecol., 198 (1), 19-26, http://dx.doi.org/10.1007/s11258-007-9381-y

SevgiliH.,HoşsuB., Emre Y., Kanyilmaz M., 2012,Compensatory growth after variouslevelsofdietaryproteinrestrictioninrainbowtrout, Oncorhynchusmykiss, Aquaculture,344-349, 126-134, http://dx.doi.org/10.1016/j.aquaculture.2012.03.030

ShskaraB. G.,ShtvakumaraG. B.,Manjunath B.,Mallikarjuna N.,Sudrashan G. K.,Ravikumar B.,2011,Effectofdifferentlevelsandtimeofnitrogen application on growth, yield and nutrient uptake in aerobic rice (Oryza sativa), Environ.Ecol., 29, 892-895.

Sunda W. G., Graneli E., Gobler C. J., 2006, Positivefeedback and the development and persistence of ecosystem disruptive algal bloom, J. Phycol., 42 (5), 963-974, http://dx.doi.org/10.1111/j.1529-8817.2006.00261.x

WattM. S., Whitehead D., Kriticos D. J.,GousS. F. RichardsonB., 2007, Usinga process-basedmodel to analysecompensatorygrowth inresponseto defoliation:simulating herbivory by a biological control agent, Biol. Control, 43 (1), 119-129, http://dx.doi.org/10.1016/j.biocontrol.2007.06.011

Zhao W., ChenS. P.,Lin G. H., 2008, Compensatorygrowth responsesto clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deffciencyconditions,Plant Ecol., 196 (1), 85-99, http://dx.doi.org/10.1007/s11258-007-9336-3

full, complete article (PDF - compatibile with Acrobat 4.0), 127 KB