Oceanologia No. 66 (4) / 24
Original research article
-
Statistical Downscaling of Global Climate Projections along the Egyptian Mediterranean coast: Mohamed ElBessa, Mohamed Shaltout
-
Estimation of harbor and bay resonances by MMS-FEM model with application to the bay of Toulon France: Kostas Belibassakis, Vincent Rey
-
Variability and relationships between the size, composition and optical properties of suspended particulate matter in the coastal waters of western Spitsbergen assessed through measurements of size-fractionated seawater samples: Sławomir B. Woźniak, Dagmara Litwicka, Joanna Stoń-Egiert
-
Dynamics of phytoplankton functional communities in the South China Sea in response to multiple simultaneous stressors and ENSO-related climate anomalies: Anthony Banyouko Ndah , Julien Di Pane
-
A study of upper ocean characteristics in response to the three intense re-curving tropical cyclones from the Arabian Sea using satellite and in-situ measurements: Adarsh Dube , Ajeet Ku Maurya, Rajesh Singh, T. Dharmaraj
-
High levels of Polycyclic Aromatic Hydrocarbons in the Date Mussel (Lithophaga lithophaga) from Bizerte coast (northern Tunisia): Sources and human health risk implications: Ferdaous Jaafar Kefi, Yassine Elmegdiche, Jihène Maatoug Béjaoui, Youssef Lahbib, Imed
Chraief, Mohamed El Hammami, Najoua Trigui El Menif
Position Paper
Short Communications
-
Non-native shrimps in Polish coastal waters: first record of Palaemon longirostris H. Milne Edwards, 1837 and new sites for P. macrodactylus Rathbun, 1902: Katarzyna Spich, Bartosz Witalis, Sławomira Gromisz, Lena Szymanek, Adam Woźniczka
-
First record of brush-clawed shore crab Hemigrapsus takanoi (Asakura and Watanabe, 2005) in the Gulf of Gdańsk (southern Baltic Sea): Bartosz Witalis, Joanna Hegele-Drywa, Sławomira Gromisz, Agata Nowak
-
Decreasing otolith length-to-width ratio with fish length – Atlantic cod (Gadus morhua), southern Baltic Sea: Anna Dziubińska, Mariusz Sapota, Aleksandra Komur
Corrigendum
Original research article
Statistical Downscaling of Global Climate Projections along the Egyptian Mediterranean coast
Oceanologia, 66 (4)/2024, 66401, 25 pp.
https://doi.org/10.5697/OBOE5006
Mohamed ElBessa1,2, Mohamed Shaltout1,*
1Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
2College of Maritime Transport and Technology (CMTT), Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu-Qir, Alexandria, Egypt;
e-mail: mohamed.shaltot@alexu.edu.eg
*corresponding author
Keywords:
Statistical downscaling; ERA5; GFDL; Air temperature; Relative humidity; Surface wind
Received: 27 July 2023; revised: 23 June 2024; accepted: 22 August 2024.
Highlights
- Statistical Downscaling provides powerful scientific tools to study the climatic parameters (surface air temperature, surface relative humidity, surface wind regime, and mean sea level pressure) along the Egyptian Mediterranean coast
- This study described in detail the short and long-period atmospheric characteristics
- The study area showed marked monthly and spatial variabilities
- The current research opens a scientific vision to deal with the current climate data for any future mitigation and adaptation scenarios
Abstract
The climatic parameters (surface air temperature, surface relative humidity, surface wind regime, and mean sea level
pressure) are important in addressing adaptation/mitigation to climatic changes. In particular, the recent and future of these climatic parameters along the Egyptian Mediterranean Coast (EMC) were analyzed based on hourly real observed
data (2007–2020) and hourly reanalysis (ERA5) database (1979–2020) together with daily GFDL (global climate
model) mini-ensemble mean (2006–2100). Recent climatic studies in the study area have not given enough attention
to the downscaling approach, underscoring the need to set up a statistical downscaling technique to better understand
the forces that govern climatic change. Here, we analyze the current climatic and future scenarios for the parameters
studied in a three-step process. The first step is to study the current weather variabilities in the short term (14 years) using the real observed data. The second step is to describe the long-term (42 years) current weather variabilities over the studied stations using a reanalysis ERA5 database after bias removal by comparing with the observations. The third step is to statistically downscale the GFDL mini-ensemble, which means describing the future projection along the study area up to 2100. The statistical downscale technique is built on the developed bias correction statistical model by matching cumulative distribution functions (CDF) of the mini-ensemble mean and observations during the overlapped period (2007–2020).
The results show that ERA5 describes the efficiency of the weather characteristics of the five studied stations. This data, along with the EMC 2006–2020, displays a significant positive trend for surface air temperature and significant negative trends for surface wind speed, relative humidity, and sea level pressure. The GFDL mini-ensemble mean projection, up to 2100, has a significant bias with the studied weather parameters. This is partly due to the GFDL coarse resolution (2° × 2.5°). After removing the bias, the statistically downscaled simulations from the GFDL mini ensemble mean show that the study area’s climate will experience significant change, especially surface air temperature and relative humidity with a great range of uncertainties according to the scenario used and regional variations. Our
results are the initial step in enhancing the understanding and development of statistical downscaling techniques to project future climate scenarios over EMC.
References
Abdelwares, M., Lelieveld, J., Hadjinicolaou, P., Zittis, G., Wagdy, A.,
Haggag, M., 2019.
Evaluation of a regional climate model for the eastern
Nile basin: Terrestrial and atmospheric water balance. Atmosphere 10 (12).
https://doi.org/10.3390/ATMOS10120736
Agrawala, S., Moehner, A., Gagnon-Lebrun, F., Van Aalst, M., Smith, J.,
Hagenstad, M., El Raey, M., Conway, D., 2004.
Development and Climate
Change in Egypt. Focus on Coastal Resources and the Nile. International
Nuclear Information System (INIS), 36 (1).
Ahmad, I., Tang, D., Wang, T., Wang, M., Wagan, B., 2015.
Precipitation
trends over time using Mann-Kendall and Spearman's Rho tests in the Swat River
Basin, Pakistan. Adv. Meteorol. 431860, 15 pp.
https://doi.org/10.1155/2015/431860
Alcamo, J., Moreno, J.M., Novaky, B., Bindi, M., Corobov, R., Devoy, R.J.N,
Giannakopoulos, C., Martin, E., Olesen, J.E., Shvidenko, A., 2007. Europe.
[In:]
Climate Change 2007: Impacts, adaptation, and vulnerability.
Contribution by Working Group II to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, Parry, M.L., Canziani, O.F.,
Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Cambridge
University Press, Cambridge, UK, 541-580.
Alduchov, O.A., Eskridge, R.E., 1996.
Improved Magnus Form
Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. 35(4),
601-609.
https://doi.org/10.2172/548871
Alpert, P., Krichak, S.O., Shafir, H., Haim, D., Osetinsky, I., 2008.
Climatic trends in extremes employing regional modeling and statistical
interpretation over the E. Mediterranean. Global and Planetary Change
63(2-3), 163-170.
https://doi.org/10.1016/j.gloplacha.2008.03.003
Anagnostou, E.N., Negri, A.J., Adler, R.F., 1999.
Statistical Adjustment of
Satellite Microwave Monthly Rainfall Estimates over Amazonia. J. Appl.
Meteorol. 38, 1590-1598.
Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N., Shaltout, M., 2022.
Recent atmospheric changes and future projections along the Saudi Arabian
Red Sea Coast. Sci. Rep. 12(1).
https://doi.org/10.1038/s41598-021-04200-z
Bucchignani, E., Mercogliano, P., Panitz, H.J., Montesarchio, M., 2018.
Climate change projections for the Middle East-North Africa domain with
COSMO-CLM at different spatial resolutions. Adv. Clim. Change Res. 9(1),
66-80.
https://doi.org/10.1016/j.accre.2018.01.004
Copernicus Climate Change Service (C3S), 2017.
ERA5: Fifth generation of
ECMWF atmospheric reanalysis of the global climate. Copernicus Climate
Change Service Climate Data Store (CDS), 23 July 2020.
https://cds.climate.copernicus.eu/cdsapp#!/home
De Vries, A.J., Tyrlis, E., Edry, D., Krichak, S.O., Steil, B., Lelieveld, J.,
2013.
Extreme precipitation events in the Middle East: Dynamics of the
Active Red Sea Trough. J. Geophys. Res. 118(13), 7087-7108.
https://doi.org/10.1002/jgrd.50569
Domroes, M., El-Tantawi, A., 2005.
Recent temporal and spatial temperature
changes in Egypt. Int. J. Climatol. 25(1), 51-63.
https://doi.org/10.1002/joc.1114
Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W.,
Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J.,
Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T.,
Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012.
GFDL's ESM2 global coupled climate-carbon earth system models. Part I:
Physical formulation and baseline simulation characteristics. J. Climate
25(19), 6646-6665.
https://doi.org/10.1175/JCLI-D-11-00560.1
Dunne, J.P., John, J.G., Shevliakova, S., Stouffer, R.J., Krasting, J.P.,
Malyshev, S.L., Milly, P.C.D., Sentman, L.T., Adcroft, A.J., Cooke, W., Dunne,
K.A., Griffies, S.M., Hallberg, R.W., Harrison, M.J., Levy, H., Wittenberg,
A.T., Phillips, P.J., Zadeh, N., 2013.
GFDL's ESM2 global coupled
climatecarbon earth system models. Part II: Carbon system formulation and
baseline simulation characteristics. J. Climate 26(7), 2247-2267.
https://doi.org/10.1175/JCLI-D-12-00150.1
Egyptian Naval Forces, 1962.
Theoretical of meteorology, Egyptian Navy
Publication, Educational Authority, 125 pp.
Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2021.
Dynamical
downscaling of surface air temperature and wind field variabilities over the
southeastern levantine basin and Mediterranean Sea. Climate 9(1).
https://doi.org/10.3390/cli9100150
Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2022.
Modeling
the future scenarios for surface temperature and wind regime over the
South-Eastern Levantine Basin, Egypt. Egyptian J. Aquatic Biol. Fish.
26(3), 541-564.
https://doi.org/10.21608/ejabf.2022.244114
El-Geziry, T.M., Elbessa, M., Tonbol, K.M., 2021.
Climatology of Sea-Land
Breezes Along the Southern Coast of the Levantine Basin. Pure Appl.
Geophys. 178(5), 1927-1941.
https://doi.org/10.1007/s00024-021-02726-x
Elsharkawy, M.S., El-Geziry, T.M., El-Din, S.H.S., 2016.
General
Characteristics of Surface Waves off Port Said, Egypt. IOSR J. Environ.
Sci. Toxicol. Food Tech. 10(08).
Essa, K.S.M., Mubarak, F., 2006.
Survey and Assessment of Wind-Speed and
Wind-power in Egypt, Including Air Density Variation. Wind Engineering
30(2), 95-106.
https://doi.org/10.1260/030952406778055081109-115
Griffies, S.M., Winton, M., Donner, L.J., Horowitz, L.W., Downes, S.M.,
Farneti, R., Gnanadesikan, A., Hurlin, W.J., Lee, H.C., Liang, Z., Palter,
J.B., Samuels, B.L., Wittenberg, A.T., Wyman, B.L., Yin, J., Zadeh, N., 2011.
The GFDL CM3 coupled climate model: Characteristics of ocean and sea ice
simulations. J. Climate, 24(13), 3520-3544.
https://doi.org/10.1175/2011JCLI3964.1
Haggag, M., El-Badry, H., 2013.
Mesoscale Numerical Study of
Quasi-Stationary Convective System over Jeddah in November 2009. Atmos.
Climate Sci. 03(01), 73-86.
https://doi.org/10.4236/acs.2013.31010
Hamed, A.A., 1979.
Atmospheric Circulation Features Over the Southeastern
Part of the Mediterranean Sea in Relation with Weather Conditions and Wind
Waves at Alexandria. M.Sc. Thesis, Alexandria University, Egypt.
Hamed, A.A., 1983.
Atmospheric Circulation over the Southeastern Part of
the Mediterranean Sea in Relation with Weather Conditions and Wind Waves Along
the Egyptian Coast. Ph.D. Thesis, Alexandria University, Egypt.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D.,
Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2020.
ERA5 hourly data on
single levels from 1979 to the present. Copernicus Climate Change Service
(C3S) Climate Data Store (CDS) (accessed on 09-01-2021).
https://doi.org/10.24381/CDs.adbb2d47.
Hausfather, Z., Peters, G., 2020.
Emissions - the "business as usual" story
is misleading. Nature 577 (2020), 618-620.
https://doi.org/10.1038/d41586-020-00177-3
IPCC, 2014.
Climate change 2014: impacts, adaptation, and vulnerability.
Working Group II contribution to the fifth assessment report of the
Intergovernmental Panel on Climate Change, Pt. A, Cambridge University
Press, New York.
IPCC, 2019.
Special Report - Global Warming of 1.5°C. Report of the
Intergovernmental Panel on Global Warming.
https://www.ipcc.ch/sr15/
IPCC, 2022.
Strengthening and Implementing the Global Response. [In:]
Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of
1.5°C above Pre-Industrial Levels in Context of Strengthening Response to
Climate Change, Sustainable Development, and Efforts to Eradicate Poverty.
Cambridge University Press, 313-444.
https://doi.org/10.1017/9781009157940.006
IPCC, 2023.
Climate Change 2023: Synthesis Report. Contribution of
Working Groups I, II and III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change Geneva, Switzerland, 35-115.
https://doi.org/10.59327/IPCC/AR6-9789291691647
Kautz, L.A., Martius, O., Pfahl, S., Pinto, J.G., Ramos, A.M., Sousa, P.M.,
Woollings, T., 2022.
Atmospheric blocking and weather extremes over the
Euro-Atlantic sector - A review. Weather and Clim. Dynam. 3(1), 305-336.
https://doi.org/10.5194/wcd-3-305-2022
Kendall M.G., 1975.
Rank Correlation Methods. 4th edn., Charles
Griffin, London, UK.
Krichak, S.O., Alpert, P., Bassat, K., Kunin, P., 2007.
The surface
climatology of the eastern Mediterranean region obtained in a three-member
ensemble climate change simulation experiment. Adv. Geosci. 12, 67-80.
https://doi.org/10.5194/adgeo-12-67-2007
Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E.,
Zittis, G., 2016.
Strongly increasing heat extremes in the Middle East and
North Africa (MENA) in the 21st century. Climatic Change 137(1-2),
245-260.
https://doi.org/10.1007/s10584-016-1665-6
Liljegren, J.C., Carhart, R.A., Lawday, P., Tschopp, S., Sharp, R., 2008.
Modeling the wet bulb globe temperature using standard meteorological
measurements. J. Occup. Environ. Hyg. 5(10), 645-655.
https://doi.org/10.1080/15459620802310770
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P.M., Krichak, S.O., Jansà,
A, Maheras, P., Sanna, A., Trigo, I.F., Trigo, R., 2006.
Chapter 6 Cyclones
in the Mediterranean region: Climatology and effects on the environment.
[In:] Developments in Earth and Environmental Sciences, Vol. 4, 325-372.
https://doi.org/10.1016/S1571-9197(06)80009-1
Mahfouz, B.M.B., Osman, A.G.M., Saber, S.A., Kanhalaf-Allah, H.M.M., 2020.
Assessment of weather and climate variability over the western harbor of
Alexandria, Egypt. Egyptian J. Aquatic Biol. Fish. 24(5), 323-339.
https://doi.org/10.21608/EJABF.2020.105861
Mann H.B., 1945.
Non-parametric test against trend, Econometrica 13,
245-259.
https://doi.org/10.2307/1907187.
Meligy, M.M., 2000.
Wave and Surge Forecasting Along the Egyptian Coast of
the Mediterranean. M.Sc. Thesis, Arab Academy for Science and Technology
and Maritime Transport, Alexandria Governorate, Egypt.
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van
Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A.,
2010.
The next generation of scenarios for climate change research and
assessment. Nature, 463(7282), 747-756.
Nastos, P.T., Zerefos, C.S., 2009.
Spatial and temporal variability of
consecutive dry and wet days in Greece. Atmos. Res. 94(4), 616-628.
https://doi.org/10.1016/j.atmosres.2009.03.009
Osman, M., Zittis, G., Haggag, M., Abdeldayem, A.W., Lelieveld, J., 2021.
Optimizing Regional Climate Model Output for Hydro-Climate Applications in
the Eastern Nile Basin. Earth Sys. Environ. 5(2), 185-200.
https://doi.org/10.1007/s41748-021-00222-9
Reichle, R.H., Koster, R.D., 2004.
Bias reduction in short records of
satellite soil moisture. Geophys. Res. Lett. 31(19).
https://doi.org/10.1029/2004GL020938
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., Rafaj, P., 2011.
RCP 8.5—A scenario of comparatively
high greenhouse gas emissions. Climatic Change 109, 33-57.
Saaroni, H., Bitan, A., Alpert, P., Ziv, B., 1996.
Continental polar
outbreaks into the Levant and eastern Mediterranean. Int. J. Climatol. 16,
1175-1191.
https://doi.org/10.1002/(SICI)1097-0088(199610)16:10<1175:AID-JOC79>3.0.CO;2
Saaroni, H., Ziv, B., Bitan, A., Alpert, P., 1998.
Easterly wind storms
over Israel. Theor. Appl. Climatol. 59(1-2), 61-77.
https://doi.org/10.1007/s007040050013
Sabra, F.A., 1979.
Wind, current and sea level variations over the
continental shelf Alexandria coast. M.Sc. Thesis, Alexandria University,
Egypt, 52-60.
Sallam, G.A.H., Elsayed, E.A., 2015.
Estimating the impact of air
temperature and relative humidity change on the water quality of Lake Manzala,
Egypt. J. Nat. Resour. Dev. 5., 76-87.
https://doi.org/10.5027/jnrd.v5i0.11
Shaltout, M., El Gindy, A., Omstedt, A., 2013.
Recent climate trends and
future scenarios in the Egyptian Mediterranean coast based on six global
climate models. Geofizika J. 30(1), 19-41.
Statistical downscaling of global climate projections ... 25/25 Tuel, A.,
Eltahir, E.A.B., 2020.
Why Is the Mediterranean a Climate Change Hot
Spot? J. Climate, 33(14), 5829-5843.
https://doi.org/10.1175/JCLI-D-19-0910.1
Tonbol, K.M., El-Geziry, T.M. and Elbessa, M., 2018.
Evaluation of Changes
and Trends of Air Temperature within the Southern Levantine Basin.
Weather, 73(2), 60-66.
https://doi.org/10.1002/wea.3186
UNESCO, 1979.
Map of the world distribution of arid regions (Explanatory
note). MAB Tech. Notes 7, Unesco, Paris, 54 pp.
Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., Wang, G.,
2020.
Re-evaluation of the Power of the Mann-Kendall Test for Detecting
Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 8.
https://doi.org/10.3389/feart.2020.00014
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., 2011.
The
representative concentration pathways: an overview. Climatic Change, 109,
5-31.
Vigaud, N., Vrac, M., Caballero, Y., 2013,
Probabilistic downscaling of GCM
scenarios over southern India. Int. J. Climatol. 33, 1248-1263.
https://doi.org/10.1002/joc.3509
Vaittinada Ayar, P., Vrac, M., Mailhot, A., 2021.
Ensemble bias correction
of climate simulations: preserving internal variability. Sci. Rep. 11,
3098.
https://doi.org/10.1038/s41598-021-82715-1
Williamson, D.F., Parker, R.A., Kendrick, J.S., 1989.
The box plot: A
simple visual method to interpret data. Ann. Intern. Med. 110(11),
916-921.
https://doi.org/10.1059/0003-4819-110-11-916
Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002.
Long-range
experimental hydrologic forecasting for the eastern United States. J.
Geophys. Res. 107(20), ACL 6-1-ACL 6-15.
https://doi.org/10.1029/2001JD000659
Yadav, R.K., 2021.
Relationship between Azores High and Indian summer
monsoon. NPJ Clim. Atmos. Sci. 4(1).
https://doi.org/10.1038/s41612-021-00180-z
Zecchetto, S., De Biasio, F., 2007.
Sea surface winds over the
Mediterranean basin from satellite data (2000-04): Meso- and local-scale
features on annual and seasonal time scales. J. Appl. Meteorol. Clim.
46(6), 814-827.
https://doi.org/10.1175/JAM2498.1
Zerefos, C., Repapis, C., Giannakopoulos, C., Kapsomenakis, J., Papanikolaou,
D., Papanikolaou, M., Poulos, S., Vrekoussis, M., Philandras, C., Tselioudis,
G., Gerasopoulos, E., Douvis, K., Diakakis, M., Nastos, P., Hadjinicolaou, P.,
Xoplaki, E., Luterbacher, J., Zanis, P., Tzedakis, C., Repapis, K., 2011.
The climate of the Eastern Mediterranean and Greece: past, present, and
future. [In:] The Environmental, Economic and Social Impacts of Climate
Change in Greece. Bank of Greece, Athens, 1-126.
Estimation of harbor and bay resonances by MMS-FEM model with application to the bay of Toulon France
Oceanologia, 66 (4)/2024, 66402, 15 pp.
https://doi.org/10.5697/LOZC6742
Kostas Belibassakis1,*, Vincent Rey2
1School of Naval Architecture and Marine Engineering, National Technical University of Athens, Zografos 15780, Athens, Greece;
e-mail: kbel@fluid.mech.ntua.gr (K. Belibassakis), vincent.rey@univ-tln.f (V.Rey)
2Université de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France
*corresponding author
Keywords:
Harbor resonances; Bay resonances; Modified Mild-Slope model; FEM; Toulon Bay
Received: 22 January 2024; revised: 18 July 2024; accepted: 30 August 2024.
Highlights
- Estimation of bay and harbor resonances by Modified Mild-Slope Model
- Efficient calculation of eigenperiods and eigenmodes by a low-order FEM-scheme
- Application to the coastal and port region of Toulon, France, and comparison with measured data
- Investigation of applicability to the extended nearshore area of Toulon, including the Gulf of Giens
Abstract
Bay and harbor resonances are investigated in this work, taking into account the variable bathymetry of the semi-enclosed basin. The Modified Mild-Slope (MMS) equation is implemented for the description of combined refraction-diffraction effects, from which the eigenperiods and eigenmodes are calculated by means of a low-order Finite Element Method (FEM scheme). The model is first applied to a coastal-port region of Toulon, France, illustrating the versatility of the model to easily include coastal structures such as detached breakwater. Next, the present model is applied to the extended nearshore area of Toulon including the Gulf of Giens showing the applicability of the developed MMS-FEM model for the estimation of harbor and bay resonances, as well as more extended nearshore regions where variable bottom topography effects become important. The calculated resonant frequency depends on the domain characteristics and the size of the open sea boundary and accurately reproduces the measurements within Toulon Bay.
On the other hand, for open bays such as the Gulf of Giens, a discrepancy is observed between calculated and measured eigenperiods which is due to a very wide opening of the sea boundary that cannot accurately describe the seiching. This underlines the difficulty of accurately calculating the resonance frequency for open bays, in contrast to the classic studies carried out for ports, which are considered virtually closed basins, and confirms the complementary nature of long-term water level measurements and numerical calculations, for better quantification of the risks associated with energetic meteorological and/or oceanographic events.
References
Athanassoulis, G.A., Belibassakis, K.A., Gerostathis, Th., 2002.
The
POSEIDON nearshore wave model and its application to the prediction of the wave
conditions in the nearshore/coastal region of the Greek Seas. J. Atmos.
Ocean Sci. 8(2–3), 101–117.
Bertin, X., De Bakker, A., Van Dongeren, A., Coco G., Andre, G., Ardhuin, F.,
Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson, M., Deen,
M., Dodet, G., Guerin, T., Inch, K., Leckler, F., Mccall, R., Muller, H.,
Olabarrieta, M., Roelvink, D., Ruessink, G., Sous, D., Stutzmann, E., Tissier,
M., 2018.
Infragravity waves: from driving mechanisms to impacts.
Earth Sci. Rev. 177, 774–799.
https://doi.org/10.1016/j.earscirev.2018.01.002
Chamberlain, P.G., Porter, D., 1995.
The modified mild-slope equation.
J. Fluid Mech. 291, 393–407.
Dufresne, Ch., Duffa, C., Rey, V., 2014.
Wind-forced circu- lation model
and water exchanges through the channel in the Bay of Toulon, Ocean Dynam.
64, 209–224.
https://doi.org/10.1007/s10236-013-0676-3
Gao, J., Hou, L., Liu, Y., Shi, H., 2024.
Influences of Bragg reflection on
harbor resonance triggered by irregular wave groups. Ocean Eng. 305,
117941.
Gao, J., Ma, X., Chen, H., Zang ,J., Dong, G., 2021.
On hydrodynamic
characteristics of transient harbor resonance excited by double solitary
waves. Ocean Eng. 219, 108345.
Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021.
Investigation
on the effects of Bragg reflection on harbor oscillations. Coastal Eng.
170, 103977.
Gao, J., Ma X., Zang, J., Dong, G., Ma, X., Zhu, Y. , Zhou, L., 2020.
Numerical investigation of harbor oscillations induced by focused transient
wave groups. Coastal Eng. 158, 103670.
Gao, J., Shi, H., Zang, J., Liu, Y., 2023.
Mechanism analysis on the
mitigation of harbor resonance by periodic undulating topography. Ocean
Eng. 281, 114923.
Heinrich, P., Gailler, A., Dupont, A., Rey, V., Hébert, H., Listowski, C.,
2023.
Observation and simulation of the meteotsunami generated in the
Mediterranean Sea by the Tonga eruption on 15 Jan 2022, Geophys. J. Int.
234, 2, 903–914.
https://doi.org/10.1093/gji/ggad092
Karathanasi, F., Karperaki, A., Gerostathis Th., Belibassakis K., 2020.
Offshore-to-Nearshore Transformation of Wave Conditions and Directional
Extremes with Application to Port Resonances in the Bay of Sitia-Crete.
Atmosphere 11(3), 280.
Karperaki, A., Papathanasiou, T.K., Belibassakis, K.A., 2019.
An optimized,
parameter-free PML-FEM for wave scattering problems in the ocean and coastal
environment. Ocean Eng. 179, 307–324.
Massel, S.R., 1993.
Extended refraction-diffraction equation for surface
waves. Coastal Eng. 19, 97–127. Mei, C.C., 1994. The applied dynamics of
ocean surface waves. World Sci., Singapore, 768 pp.
Miles, J.W., Chamberlain, P.G., 1998.
Topographical scattering of gravity
waves. J. Fluid Mech. 361, 175–188.
Millot, C., Broyard, R., Metais, O., Tine, J., 1981.
Les oscillations
propres de la Rade de Toulon, Oceanologica Acta, 4(3), 259–262.
Rabinovich, A.B., 2009. Seiches and Harbor Oscillations. [In:]
Handbook of
Coastal and Ocean Engineering. Young, C.K. (ed.), World Sci., Singapore,
193–236.
Rey, V., Dufresne, C., Fuda, J. L., Mallarino, D., Missamou, T., Paugam, C.,
Rougier, G., Taupier-Letage, I. , 2020.
On the use of long term observation
of water level and temperature along the shore for a better understanding of
the dynamics: Example of Toulon area, France, Ocean Dynam. 70, 913–933.
https://doi.org/10.1007/s10236-020-01363-7
Rey, V., Paugam, C., Dufresne, C., Mallarino, D., Missamou, T., Fuda, J.L.,
2022.
Seiches à l’échelle de baies: origines et identification des
périodes propres d’oscillations à partir des données d’observations sur
le long terme en Provence à partir du réseau HTM-NET, XVIIème journées
génie civil – génie côtier, Chatou, 11–13.
Vanem, E., 2017.
A regional extreme value analysis of ocean waves in a
changing climate. Ocean Eng. 144, 277–295.
Yalciner A.C., Pelinovsky E., 2006.
A short cut numerical method for
determination of periods of free oscillations for basins with irregular
geometry and bathymetry. Ocean Eng. 34, 747–757.
Variability and relationships between particle sizes, composition and optical properties of suspended particulate matter in the coastal waters of western Spitsbergen, assessed through measurements of size-fractionated seawater samples
Oceanologia, 66 (4)/2024, 66403, 23 pp.
https://doi.org/10.5697/EZNP4044
Sławomir B. Woźniak*, Dagmara Litwicka, Joanna Stoń-Egiert
Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: woznjr@iopan.pl (S.B. Woźniak)
*corresponding author
Keywords: Inherent optical properties (spectral scattering coefficient of particles, spectral absorption coefficients of particles, depigmented (non-algal) particles and phytoplankton); Composition of suspended particulate matter (mass concentrations of particulate organic matter, particulate inorganic matter, chlorophyll a; Seawater samples fractionated by particle size; Contributions of size fractions of suspended matter to particle concentration metrics and optical coefficients; Relations between metrics of size, composition and optical coefficients; Arctic coastal waters
Received: 12 April 2024; revised: 10 July 2024; accepted: 5 September 2024.
Highlights
- optically complex Arctic coastal waters
- inherent optical properties (IOPs) and characteristics of suspended particles
- measurements of size-fractionated seawater samples
- contribution of particle size fractions to optical properties
- statistical relationships between characteristics of particle size and IOPs
Abstract
Measurements of inherent optical properties (IOPs) and characteristics of concentration and composition of suspended particles were made on original and size-fractionated surface water samples from Arctic fjords and coastal waters of western Spitsbergen in the Svalbard archipelago, in the summer months of 2021 and 2022. Optical measurements included the spectral scattering coefficient of particles, and spectral absorption coefficients of particles as well as depigmented (non-algal) particles and phytoplankton. Assemblages of suspended particles were characterised by measuring the mass concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate inorganic matter (PIM), and phytoplankton pigments including chlorophyll a (Chla ). All measurements were performed on original (unfiltered) seawater and on size-fractionated samples obtained by filtration using a combination of nylon meshes and membrane filters. This allowed us to determine the contribution of the fractions of very small (VS), small (S) and combined medium and large particles (ML) to the total SPM and Chla, as well as to the total scattering and absorption coefficients. The obtained results: (i) indirectly indicate a clear variability in particle size distributions occurring in the studied marine environment (e.g., the contribution of ML size fraction to SPM (the ratio SPMML/SPM) varied between 0.10 and 0.52); (ii) indicate noticeable differences in composition between size fractions (e.g., the POM/SPM ratio was on average 0.21 for the S fraction, and 0.34 and 0.32 for the VS and ML fractions, respectively); (iii) in most cases indicate that the fraction S had the largest contribution to all analysed spectral optical coefficients, followed by the VS and ML fractions (the average contributions of the S fraction to
scattering coefficient of particles and absorption coefficient of particles or depigmented (non-algal) particles were above 0.6 in the entire analysed spectral ranges); (iv) allowed for the identification of statistical relationships between selected characteristics describing changes in particle size and variability of particle IOPs (e.g., we observed statistical relations between SPMML/SPM and the spectral slope of scattering coefficient by particles, as well as SPM-specific coefficients of scattering by particles).
References
Ahn, Y.-H., 1999.
Proprietes optiques des particules biologiques et
minerales presentes dans l’ocean. Application: inversion de la
reflectance. PhD thes. Univ. Pierre and Marie Curie, Paris, France.
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003.
Light scattering properties of marine particles in coastal and oceanic
waters as related to the particle mass concentration. Limnol. Oceanogr.
48, 843–859.
https://doi.org/10.4319/lo.2003.48.2.0843
Babin, M., Stramski, D., 2002.
Light absorption by aquatic particles in the
near-infrared spectral region. Limnol. Oceanogr. 47, 911–915.
https://doi.org/10.4319/lo.2002.47.3.0911
Babin, M., Stramski, D., 2004.
Variations in the mass-specific absorption
coefficient of mineral particles suspended in water. Limnol. Oceanogr. 49,
756–767.
https://doi.org/10.4319/lo.2004.49.3.0756
Bricaud, A., Morel, A., 1986.
Light attenuation and scattering by
phytoplanktonic cells: a theoretical modeling. Appl. Opt. 25, 571–580.
Ciotti, A.M., Lewis, M.R., Cullen, J.J., 2002.
Assessment of the
relationships between dominant cell size in natural phytoplankton communities
and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47
(2), 404–417.
Davies, E.J., McKee, D., Bowers, D., Graham, G.W., Nimmo-Smith, W.A.M., 2014.
Optically significant particle sizes in seawater. Appl. Opt. 53,
1067–1074.
http://dx.doi.org/10.1364/AO.53.001067
IOCCG Protocol Series, 2018. Inherent Optical Property Measurements and
Protocols: Absorption Coefficient, [in:] Neeley, A. R. Mannino, A. (Eds.),
IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour
Sensor Validation Vol. 1.0, IOCCG, Dartmouth, NS, Canada, 78 pp.
http://dx.doi.org/10.25607/OBP-119
Jonasz, M., Fournier, G.R., 2007.
Light scattering by particles in water.
Theoretical and experimental foundations. Acad. Press, Amsterdam, 704 pp.
Koestner, D., Stramski, D., Reynolds, R.A., 2020.
Assessing the effects of
particle size and composition on light scattering through measurements of
size-fractionated seawater samples. Limnol. Oceanogr. 65 (2), 173–190.
https://doi.org/10.1002/lno.11259
Meler, J., Litwicka, D., Zabłocka, M., 2023.
Variability of light
absorption coefficients by different size fractions of suspensions in the
southern Baltic Sea, Biogeosciences 20, 2525–2551.
https://doi.org/10.5194/bg-20-2525-2023
Mobley, C. D. (Ed.), 2022. The Oceanic Optics Book,
International Ocean
Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, 924 pp.
https://doi.org/10.25607/OBP-1710
Morel, A., Bricaud, A., 1986.
Inherent optical properties of algal cells
including picoplankton theoretical and experimental results. Canadian
Bull. Fish. Aquat. Sci. 214, 521–560.
Neukermans, G., Loisel, H., Meriaux, X., Astoreca, R., McKee, D., 2012.
In
situ variability of mass- specific beam attenuation and backscattering of
marine particles with respect to particle size, density, and composition.
Limnol. Oceanogr. 57 (1), 124–144.
https://doi.org/10.4319/lo.2011.57.1.0124
Pearlman, S.R., Costa, H.S., Jung, R.A., McKeown, J.J., Pearson, H.E., 1995.
Solids (section 2540), [in:] Eaton, A.D., Clesceri, L.S., Greenberg, A.E.
(Eds.),
Standard Methods for the Examination of Water and Wastewater.
American Publ. Health Assoc., Washington, D.C., 2-53–2-64.
Peng, F., Effler, S.W., 2007.
Suspended minerogenic particles in a
reservoir: Light-scattering features from individual particle analysis,
Limnol. Oceanogr. 52, 204–216.
Ramı́rez-Pérez, M., Röttgers, R., Torrecilla, E., Piera, J., 2015.
Cost-Effective Hyperspectral Transmissometers for Oceanographic
Applications: Performance Analysis. Sensors 15, 20967–20989.
https://doi.org/10.3390/s150920967
Reynolds, R.A., Stramski, D., Neukermans, G., 2016.
Optical backscattering
of particles in Arctic seawater and relationships to particle mass
concentration, size distribution, and bulk composition. Limnol. Oceanogr.
61, 1869–1890.
https://doi.org/10.1002/lno.10341
Röttgers, R., Gehnke, S., 2012.
Measurement of light absorption by
aquatic particles: improvement of the quantitative filter technique by use of
an integrating sphere approach. Appl. Opt. 51, 1336–1351.
Stoń, J., Kosakowska, A., 2002.
Phytoplankton pigments designation – an
application of RP-HPLC in qualitative and quantitative analysis. J. Appl.
Phycol. 14, 205–210.
https://doi.org/10.1023/A:1019928411436
Stoń-Egiert, J., Kosakowska, A., 2005.
RP-HPLC determination of
phytoplankton pigments comparison of calibration results for two columns.
Mar. Biol. 147, 251–260.
https://doi.org/10.1007/s00227-004-1551-z
Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010.
The
influence of biotic factors on phytoplankton pigment composition and resources
in Baltic ecosystems: new analytical results. Oceanologia 52(1),
101–125.
https://doi.org/10.5697/oc.52-1.101
Stramski, D., Babin, M., Woźniak, S.B., 2007.
Variations in the optical
properties of terrigenous mineral-rich particulate matter suspended in
seawater. Limnol. Oceanogr. 52, 2418–2433.
https://doi.org/10.4319/lo.2007.52.6.241
Stramski, D., Kiefer, D.A, 1991.
Light scattering by microorganisms in the
open ocean. Prog. Oceanogr. 28, 343–383.
https://doi.org/10.1016/0079-6611(91)90032-H
Stramski, D., Reynolds, R.I., Kaczmarek, S., Uitz, J., Zheng, G., 2015.
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region. Appl. Opt. 54, 6763–6782.
https://doi.org/10.1364/AO.54.006763
Stramski, D., Woźniak, S.B., Flatau, P.J., 2004.
Optical properties of
Asian mineral dust suspended in seawater. Limnol. Oceanogr. 49, 749–755.
https://doi.org/10.4319/lo.2004.49.3.0749
Tassan, S., Ferrari, G.M., 1995.
An alternative approach to absorption
measurements of aquatic particles retained on filters. Limnol. Oceanogr.
40(8), 1358–1368.
Tassan, S., Ferrari, G.M., 2002.
A sensitivity analysis of the
’transmittance-reflectance’ method for measuring light absorption by
aquatic particles. J. Plankton Res. 24(8), 757–774.
https://doi.org/10.1093/plankt/24.8.757
Woźniak, B., Dera, J., 2007.
Light Absorption in Sea Water.
Springer, New York.
Woźniak, S.B., Litwicka, D., Stoń-Egiert, J., Stramski, D., 2024
.
Variability of inherent optical properties of seawater in relation to the
concentration and composition of suspended particulate matter in the coastal
Arctic waters of western Spitsbergen. J. Mar. Syst. 246, 104019.
https://doi.org/10.1016/j.jmarsys.2024.104019
Woźniak, S.B., Meler, J., Stoń-Egiert, J., 2022
. Inherent optical
properties of suspended particulate matter in the southern Baltic Sea in
relation to the concentration, composition and characteristics of the particle
size distribution; new forms of multicomponent parameterizations of optical
properties. J. Mar. Syst. 229, 103720.
https://doi.org/10.1016/j.jmarsys.2022.103720
Woźniak, S.B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K.,
2018
. Light scattering and backscattering by particles suspended in the
Baltic Sea in relation to the mass concentration of particles and the
proportions of their organic and inorganic fractions. J. Mar. Syst. 182,
79–96.
https://doi.org/10.1016/j.jmarsys.2017.12.005
Woźniak, S.B., Stramski, D., Stramska, M., Reynolds, R.A., Wright, V.M.,
Miksic, E.Y., Cichocka, M., Cieplak, A.M., 2010.
Optical variability of
seawater in relation to particle concentration, composition, and size
distribution in the nearshore marine environment at Imperial Beach,
California. J. Geophys. Res. Oceans 115, C08027.
https://doi.org/10.1029/2009JC005554
Dynamics of phytoplankton functional communities in the South China Sea in response to multiple simultaneous stressors and ENSO-related climate anomalies
Oceanologia, 66 (4)/2024, 66404, 16 pp.
https://doi.org/10.5697/YEIT8094
Anthony Banyouko Ndah1,2,3,*, Julien Di Pane2
1Plymouth Marine Laboratory, Plymouth, UK;
e-mail: andah@pml.ac.uk (A.B. Ndah)
2Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
3Universiti Brunei Darussalam, Jalan Tunku Link Gadong, Brunei Darussalam
*corresponding author
Keywords: Phytoplankton; Environmental stressors; South China Sea; Multivariate statistics; Climate change
Received: 8 February 2021; revised: 5 September 2024; accepted: 6 September 2024.
Highlights
- ENSO climatic anomalies split the study period into two parts: La Nina (1998–2002) and El Nino dominated periods (2003–2012), influencing the niche characteristics of four phytoplankton communities (cyanobacteria, diatoms, coccolithophores, and chlorophytes).
- El Nino-related increase in temperature and light, enhanced stratification, suppressed mixing and nutrient limitation favoured the dominance of cyanobacteria.
- La Nina conditions associated with de-stratification mechanisms (enhanced wind speed, upward mixing, and surface injection of NO3) favoured coccolithophores, diatoms, and overall primary production.
- Chlorophytes occupied the most marginal niche position with a narrow niche breadth under both climatic conditions contributing to their low overall concentrations.
- Accelerated ocean warming will likely drive the widespread dominance of cyanobacteria and most likely dinoflagellates with significant impacts on the food web structure and regional marine biogeochemistry.
Abstract
Phytoplankton is crucial in maintaining the functional integrity of marine ecosystems, shaping the delicate balance between the food web base and higher trophic levels. However, these organisms are also susceptible to environmental changes, with fundamental ecological implications. We investigated the response of four phytoplankton communities (diatoms, coccolithophores, chlorophytes, and cyanobacteria) to hydroclimatic parameters in the South China Sea (SCS) between 1998 and 2012, and ascertained the effects of El Niño and La Niña climatic anomalies on the niche preferences of these communities at interannual timescales. Overall, changes in temperature and NO3 jointly explained 51% of phytoplankton variability. Cyanobacteria was the most generalist taxon, displaying tolerance to both El Niño and La Niña conditions, justifying its relatively high abundance, increasing trend, and spatial expansion. Coccolithophore, the second most abundant community mainly in northern SCS was associated with La Niña-related conditions while diatoms were primarily associated with El Niño but displayed tolerance to both climatic regimes and a strong positive response to iron. Finally, chlorophytes were marginal under both El Niño and La Niña conditions indicating that inherent hydrographic constraints and competition limit their niche breadth and abundance. We concluded that non-linear interactions linked to El Niño drive interannual microbial dynamics in the SCS by modifying hydrographic and geochemical characteristics. Hence, we surmised that under accelerated ocean warming, cyanobacteria, and most likely dinoflagellates will dominate phytoplankton community structure with significant impacts on the food web and regional marine biogeochemistry.
References
Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., 2007.
El Niño
Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007.
https://doi.org/10.1029/2006JC003798
Alves-de-Souza, C., Iriarte, J.L., Mardones, J.I., 2019.
Interannual
Variability of Dinophysis acuminata and Protoceratium reticulatum in a Chilean
Fjord: Insights from the Realized Niche Analysis. Toxins 11(1), 19.
https://doi.org/10.3390/toxins11010019
Baker, M.E., King, R.S., 2010.
A new method for detecting and interpreting
biodiversity and ecological community thresholds. Methods Ecol. Evol. 1,
25–37.
https://doi.org/10.1111/j.2041-210X.2009.00007.x
Bajarias, F.F.A., 2000. Phytoplankton in the surface layers of the South China
Sea, Area III: Western Philippines. [in:]
Proceedings of the Third
Technical Seminar on Marine Fishery Resources Survey in the South China Sea,
Area III: Western Philippines, 13–15 July 1999. Bangkok, Thailand,
Secretariat, Southeast Asian Fisheries Development Center, 220–234. Retrieved
January, 2016, from:
http://repository.seafdec.org/handle/20.500.12066/4355
Birk, S., Chapman, D., Carvalho, L. et al., 2020.
Impacts of multiple
stressors on freshwater biota across spatial scales and ecosystems. Nat.
Ecol. Evol.
https://doi.org/10.1038/s41559-020-1216-4
Borcard, D., Gillet, F. , Legendre, P., 2011.
Numerical Ecology with R.,
1st edn., Springer Int. Publ. AG, Switzerland, 436 pp., ISBN:
978-1-4419-7975-9.
https://doi.org/10.1007/978-1-4419-7976-6
Cheah, W., Taylor, B.B., Wiegmann, S., Raimund, S., Krahmann, G., Quack, B.,
Bracher, A., 2013.
Photophysiological state of natural phytoplankton
communities in the South China Sea the Sulu Sea. Biogeosci. Discuss. 10.
http://dx.doi.org/10.5194/bgd-10-12115-201
Chen, C.C., Shiah, F.K., Chung, S.W., Liu, K.K., 2006.
Winter phytoplankton
blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Marine Syst. 59, 97–110.
https://doi.org/10.1016/j.jmarsys.2005.09.002
Cota, S.S., Borrego, S.A., 1988.
The El Niño effect on the phytoplankton
of a northwestern Baja California coastal lagoon. Estuar. Coast. Shelf
Sci. 27(1), 109–115.
https://doi.org/10.1016/0272-7714(88)90034-0
Cui, D., Wang, J., Tan, L., 2016.
Response of phytoplankton community
structure and size-fractionated chlorophyll-a in an upwelling simulation
experiment in the Western South China Sea. J. Ocean Univ. China Oceanic
& Coastal Sea Res. 15(5), 835–840.
https://doi.org/10.1007/s11802-016-3017-6
DeVantier, L.M., Turak, E., 2009.
Coral Reefs of Brunei Darussalam.
Fisheries Dept., MIPR, Brunei Darussalam, 100 pp., ISBN: 978-99917-31-48-3.
Dolédec, S., Chessel, D., Gimaret-Carpentier C., 2000.
Niche Separation
in Community Analysis: a New Method. Ecology 81, 2914.
https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
Dong, L., Li, L., Li, Q., Liu, J., 2015.
Basin-wide distribution of
phytoplankton lipids in the South China Sea during intermonsoon seasons:
influence by nutrient and physical dynamics. Deep Sea Res. Pt. II 122,
52–63.
https://doi.org/10.1016/j.dsr2.2015.07.005
Gao, X.L., Song, J.M., 2005.
Phytoplankton distributions and their
relationship with the environment in the Changjiang. Estuary, China. Mar.
Pollut. Bull. 50 (3), 327–335.
https://doi.org/10.1016/j.marpolbul.2004.11.004
Gao, X.L., Bowler, C., Kazamia, E., 2021.
Iron metabolism strategies in
diatoms. J. Experiment. Botany 72(6), 2165–2180.
https://doi.org/10.1093/jxb/eraa575
Giehl, N.F.S., Brasil, L.S., Dias-Silva, K., Nogueira, D.S., Cabette, H.S.R.,
2019.
Environmental Thresholds of Nepomorpha in Cerrado Streams, Brazilian
Savannah. Neotrop. Entomol. 482, 186–196. h
ttps://doi.org/10.1007/s13744-018-0632-5
Gieswein, A., Hering, D., Lorenz, A.W., 2019.
Development and validation of
a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in
small mountain streams. Sci. Total Environ. 652, 1290–1301.
https://doi.org/10.1016/j.scitotenv.2018.10.180
Groß, E., Di Pane, J., Boersma, M., Meunier, C.L., 2022.
River
discharge-related nutrient effects on North Sea coastal and offshore
phytoplankton communities. J. Plankton Res. 44(6), 947–960.
Guisan, A., Edwards, Jr. T.C., Hastie, T., 2002.
Generalized linear and
generalized additive models in studies of species distributions: setting the
scene. Ecol. Modell. 157(2–3), 89–100.
https://doi.org/10.1016/S0304-3800(02)00204-1
Guo, C., Yu, J., Ho, T.-Y., Wang, L., Song, S., Kong, L., Liu, H., 2012.
Dynamics of phytoplankton community structure in the South China Sea in
response to the East Asian aerosol input. Biogeosciences 9, 1519–1536.
https://doi.org/10.5194/bg-9-1519-2012
Guo, X., Yu, Y., Zhu, H., Zhao, X., Liu, X., 2020.
Multivariate analysis of
phytoplankton community structure in Changli Gold Coast National Nature Reserve
of Hebei Province in spring, 2019. IOP Conf. Ser.: Earth Environ. Sci.
467, 012141.
https://doi.org/10.1088/1755-1315/467/1/012141
Guo, X., Zhu, A., Chen, R., 2021.
China’s algal bloom suffocates marine
life. Science. 373 (6556), 751.
https://doi.org/10.1126/science.abl5774
Hodgkiss, I.J., Lu, S.H., 2004.
The effects of nutrients and their ratios
on phytoplankton abundance in Junk Bay, Hong Kong. Hydrobiol. 512,
215–229.
https://doi.org/10.1023/B:HYDR.0000020330.37366.e5
Huang, K.-F., You, C.-F., 2007.
Tracing freshwater plume migration in the
estuary after a typhoon event using Sr isotopic ratios. Geophys. Res.
Lett. 34, L02403.
https://doi.org/10.1029/2006GL028253
Huapaya, K., Echeveste, P., 2023.
Physiological responses of Humboldt
current system diatoms to Fe and Cu colimitation. Mar. Environ. Res.
187(30), 105937.
https://doi.org/10.1016/j.marenvres.2023.105937
Huppert, A., Blasius, B., Stone, L., 2002.
A model of phytoplankton
blooms. Am. Nat. 159(2) 156–171.
https://doi.org/10.1086/324789
Huynh, H-N.T. Alvera-Azcárate, A., Beckers, J-M., 2019.
Analysis of
surface Chl-a associated with sea surface temperature and surface wind in the
South China Sea. Ocean Dynam. 705.
https://doi.org/10.1007/s10236-019-01308-9
Hsu, S.-C., Gong, G.-C., Shia, F.-K. et al., 2014.
Sources, solubility, and
acid processing of aerosol iron and phosphorous over the South China Sea: East
Asian dust and pollution outflows vs. Southeast Asian biomass burning.
Atmos. Chem. Phys. Discuss. 14, 21433–21472.
https://doi.org/10.5194/acpd-14-21433-2014
IHO, 1953.
Limits of Oceans and Seas. International Hydrographic
Organization. Bremerhaven, PANGAEA, hdl:10013/epic.37175.d001,
https://epic.awi.de/id/eprint/29772/1/IHO1953a.pdf
Karasiewicz, S., Dolédec, S., Lefebvre, S., 2017.
Within outlying mean
indexes: refining the OMI analysis for the realized niche decomposition.
PeerJ 5:e3364.
https://doi.org/10.7717/peerj.3364
King, R.S., Baker, M.E., Kazyak, P.F., Weller, D.E., 2011.
How novel is too
novel? Stream community thresholds at exceptionally low levels of catchment
urbanization. Ecol. Appl. 215, 1659–78.
https://doi.org/10.1890/10-1357.1
Legendre, P., Legendre., L., 2012. Numerical ecology. 3rd edn., Elsevier Sci.
BV, Amsterdam. xvi + 990 pp. Li, Q.P., Dong, Y., Wang, Y., 2015a.
Phytoplankton dynamics driven by vertical nutrient fluxes during the spring
intermonsoon period in the north-eastern South China Sea. Biogeosci.
Discuss. 12, 6723–6755.
https://doi.org/10.5194/bgd-12-6723-2015
Li, Q.P., Wang, Y.J. Dong, Y. Gan, J.P. et al., 2015b.
Modeling long-term
change of planktonic ecosystems in the northern South China Sea and the
upstream Kuroshio Current. J. Geophys. Res. 120(6), 3913–3936.
https://doi.org/10.1002/2014JC010609
Liao, X., Ma, J., Zhan, H., 2012.
Effect of different types of El Niño on
primary productivity in the South China Sea. Aquat. Ecosyst. Health 15,
135–143.
https://doi.org/10.1080/14634988.2012.687655
Lin, I.-I., Lien, C.-C., Wu, C.-R., Wong, G.T.F., Huang, C.-W., Chiang, T.-L.,
2010.
Enhanced primary production in the oligotrophic South China Sea by
eddy injection in spring. Geophys. Res. Lett. 37, L16602.
https://doi.org/10.1029/2010GL043872
Liu, H., Song, X., Huang, L., Tan, Y., Zhang, J., 2011.
Phytoplankton
biomass and production in the northern South China Sea during summer:
Influenced by Pearl River discharge and coastal upwelling. Acta Ecol. Sin.
31, 133–136.
https://doi.org/10.1016/J.CHNAES.2011.02.001
Louanchi, F., Najjar, R.G., 2001.
Annual cycles of nutrients and oxygen in
the upper layers of the North Atlantic Ocean. Deep Sea Res. Pt. II: Top.
Stud. Oceanogr. 4810, 2155–2171.
https://doi.org/10.1016/S0967-06450000185-5
Lu, S.H., Hodgkiss, I.J., 1999.
An unusual year for the occurrence of
harmful algae. Harmful Algal News 18, 1–3.
Lu, S., Hodgkiss, I.J., 2004.
Harmful algal bloom causative collected from
Hong Kong waters. [in:] Ang P.O., (ed.), Asian Pacific Phycology in the
21st Century: Prospects and Challenges. Developments in Hydrobiology. Springer,
Dordrecht, 173 pp.
https://doi.org/10.1007/978-94-007-0944-7_30
Mackey, K.R.M., Kavanaugh, M.T., Wang, F. et al., 2017.
Atmospheric and
Fluvial Nutrients Fuel Algal Blooms in the East China Sea. Front. Mar.
Sci. 4.
https://doi.org/10.3389/fmars.2017.00002
Meehl, G.A., Arblaster, J.M., Fasullo, J.T., Hu, A., Trenberth, K.E., 2011.
Model-based evidence of deep-ocean heat uptake during surface-temperature
hiatus periods. Nat. Clim. Change 1(7), 360–364.
http://dx.doi.org/10.1038/nclimate1229
Meehl, G.A., Teng, H., Arblaster, J.M., 2014.
Climate model simulations of
the observed early-2000s hiatus of global warming. Nat. Clim. Change
4(10), 898–902.
https://www.nature.com/articles/nclimate2357
Milliman, J.D., Mie-e, R., 1995.
River flux to the sea: impact of human
intervention on river systems and adjacent coastal areas, [Chapter 4].
[in:] Eisma, D., (ed.), Climate Change: Impact on coastal habitation, Lewis
Publ., Boca Raton, 57–84.
Moreno, H.D., Köring, M., Di Pane, J. et al., 2022.
An integrated
multiple driver mesocosm experiment reveals the effect of global change on
planktonic food web structure. Commun Biol. 5, 179 pp.
https://doi.org/10.1038/s42003-022-03105-5
NCDC, 2003.
El Niño/Southern Oscillation – Annual 2003. NOAA
National Centres for Environmental Informa- tion. Retrieved October, 2020,
from:
https://www.ncdc.noaa.gov/sotc/enso/200313
NCDC, 2004.
El Niño/Southern Oscillation – Annual 2004. NOAA
National Centres for Environmental Informa- tion. Retrieved October, 2020,
from:
https://www.ncdc.noaa.gov/sotc/enso/200413
NCDC, 2009.
El Niño/Southern Oscillation – September 2009. NOAA
National Centres for Environmental In- formation. Retrieved February, 2020,
from:
https://www.ncdc.noaa.gov/sotc/enso/200909
Ndah, A.B., 2017.
Multi-temporal patterns of sea surface temperature in the
South China Sea: a perfect reflection of global ocean-climatic variability
modes?, 18th Int. GHRSST Sci. Team Meeting, Qingdao, China, 5–9 June
2017. Retrieved March, 2019, from:
https://www.researchgate.net/publication/3201616
72_multi-temporal_patterns_of_sea_surface_temperature_in_the_south_china_sea_a_perfect_reflection_of_g
lobal_ocean-climatic_variability_modes
Ndah, A.B., Dagar, L.K., Becek, B., Odihi, J.O., 2019.
Spatiotemporal
dynamics of phytoplankton functional groups in the South China Sea and their
relative contributions to marine primary production. Region. Stud. Mar.
Sci. 29, 100598.
https://doi.org/10.1016/j.rsma.2019.100598
Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., Shi, J., 2004.
Physical-biological oceanographic coupling influencing phytoplankton and
primary production in the South China Sea. J. Geophys. Res. 109, C10005.
https://doi.org/10.1029/2004JC002365
Palacz, A. P., Xue, H., Armbrecht, C., Zhang, C., Chai, F., 2011.
Seasonal
and inter-annual changes in the surface chlorophyll of the South China
Sea. J. Geophys. Res. 116, C09015.
https://doi.org/10.1029/2011JC007064
Pedersen, E.J, Miller, D.L., Simpson, G.L., Ross, N., 2019.
Hierarchical
generalized additive models in ecology: an introduction with mgcv. PeerJ
7:e6876.
https://doi.org/10.7717/peerj.6876
Peng, Y., Wang, Z., 1999.
Analysis of nutritive status and variation of
hydrochemical indexes in seawater of aquaculture area at Dapeng’ao Bight in
Daya Bay. J. Oceanogr. Taiwan Strait 18(1), 26–32.
Phang, S-M., Yeong, Y.H., Ganzon-Fortes, E.T. et al., 2016.
Marine algae of
the South China Sea is bordered by Indonesia, Malaysia, Philippines,
Singapore, Thailand and Vietnam. Raffles Bull. Zool. 34, 13–59.
https://doi.org/10.1007/A43C-165932685F02
Qiu, D.J., Huang, L.M., Zhang, J.L., Lin, S.J., 2010.
Phytoplankton
dynamics in and near the highly eutrophic Pearl River Estuary, South China
Sea. Continent. Shelf Res. 30(2), 177–186. h
ttps://doi.org/10.1016/j.csr.2009.10.015
Raitsos, D.E., Lavender, S.J., Maravelias, C.D., Haralabous, J., Richardson,
A.J., Reid, P.C., 2008.
Identifying four phytoplankton functional types
from space: An ecological approach. Limnol. Oceanogr. 532, 605–613.
https://doi.org/10.4319/lo.2008.53.2.0605
Roemmich, D., McGowan, J., 1995.
Climatic warming and the decline of
zooplankton in the California Current. Science 267, 5202, 1324–1326.
https://doi.org/10.1126/science.267.5202.1324
Shen, P.-P., Li, G., Huang, L.-M., Zhang, J.-L., Tan, Y.-H., 2011.
Spatio-temporal variability of phytoplankton assemblages in the Pearl River
estuary, with special reference to the influence of turbidity and
temperature. Cont. Shelf Res. 31(16), 1672–1681.
https://doi.org/10.1016/j.csr.2011.07.002
Shih, Y-Y., Hung, C-C., Tuo, S., et al., 2020.
The Impact of Eddies on
Nutrient Supply, Diatom Biomass and Carbon Export in the Northern South China
Sea. Front. Earth Sci. 8, 537332.
https://doi.org/10.3389/feart.2020.537332
Simpson, G.L., 2018.
Modelling Palaeoecological Time Series Using
Generalized Additive Models. Front. Ecol. Evol. 6, 149.
https://doi.org/10.3389/fevo.2018.00149
Siswanto, E., Ye, H., Yamazaki, D. and Tang, D.L., 2017.
Detailed
spatiotemporal impacts of El Niño on phytoplankton biomass in the South China
Sea. J. Geophys. Res. Oceans 122, 2709–2723.
https://doi.org/10.1002/2016JC012276
Sultana, J., Tibby, J., Recknagel, F., Maxwell, S., Goonan, P., 2020.
Comparison of two commonly used methods for identifying water quality
thresholds in freshwater ecosystems using field and synthetic data. Sci.
Total Environ. 724, 137999.
https://doi.org/10.1016/j.scitotenv.2020.137999
Sun, C., 2017.
Riverine inluence on ocean color in the equatorial South
China Sea. Cont. Shelf Res. 143, 151–158.
https://doi.org/10.1016/j.csr.2016.10.008
Tan, S.C., Shi, G.Y., 2009. S
patiotemporal variability of satellite-derived
primary production in the South China Sea, 1998–2006. J. Geophys. Res.
114, G03015.
https://doi.org/10.1029/2008JG000854
Tan, S., Zhang, J., Li, H. et al., 2020.
Deep Ocean Particle Flux in the
Northern South China Sea: Variability on Intra-Seasonal to Seasonal
Timescales. Front. Earth Sci. 8, 74.
https://doi.org/10.3389/feart.2020.00074
Tang, D.L., Ni, I.H., Kestner, D.R., Muller-Kargen, F.E., 1999.
Remote
sensing observations of winter phytoplankton blooms southeast of the Luzon
Strait in the South China Sea. Mar. Ecol. Prog. Ser. 191, 43–51.
https://doi.org/10.3354/meps191043
Tang, D.L., Kawamura, H., Dien, T.V., Lee, M.A., 2004.
Offshore
phytoplankton biomass increase and its oceanographic causes in the South China
Sea. Mar. Ecol. Prog. Ser. 268, 31–41.
https://doi.org/10.3354/meps268031
Tang, S. and Liu, F., 2020.
Remote sensing of phytoplankton declined during
the late 1980s and early 1990s in the South China Sea. Int. J. Remote
Sens. 41, 6010–6021.
https://doi.org/10.1080/01431161.2020.1718241
Tian, Y.Q., Huang, B., Yu, C., Chen, N.W., Hong, H.S., 2014.
Dynamics of
phytoplankton communities in Jiangdong Reservoir, Jiulong River, Fujian,
China. Chin. J. Oceanol. Limnol. 32(2) 255–265.
https://doi.org/10.1007/s00343-014-3158-7
Trenberth, K., Nat. Center Atmospheric Res.Staff (Eds.), 2020.
The Climate
Data Guide: Niño SST Indices Niño 1+2, 3, 3.4, 4; ONI and TNI. Retrieved
November, 2019, from:
https://climatedataguide.ucar.edu/climate-data/Ni~{n}o-sst-indices-Ni~{n}o-12-3-34-4-oni-and-tni
Turak, E., DeVantier, L.M., 2011.
Field Guide to Reef-building Corals of
Brunei Darussalam. Fisheries Dept., MIPR Brunei Darussalam, 256 pp., ISBN:
978-99917-31-49-0.
van Strien, A.J., Soldaat, L.L., Gregory, R.D., 2012.
Desirable
mathematical properties of indicators for biodiversity change. Ecol.
Indic. 14, 202–208.
https://doi:10.1016/j.ecolind.2011.07.007
Von Rückert, G., Giani, A., 2004.
Effect of nitrate and ammonium on the
growth and protein concentration of Microcystis viridis Lemmermann
cyanobacteria. Rev. Bras. Bot. 27(2).
https://doi.org/10.1590/S0100-84042004000200011
Wang, Z.-D., Ho, K.-C., 2002.
Oceanographic conditions of the South China
Sea continental shelf. Retrieved January, 2015, from:
http://www.red-tide.org/new_site/ocean_con.htm
Wang, Z., Qi, Y. Chen, J., Xu, N., Yang Y., 2006.
Phytoplankton abundance,
community structure, and nutrients in cultural areas of Daya Bay, South China
Sea. J. Mar. Syst. 62, 85–94.
https://doi.org/10.1016/j.jmarsys.2006.04.008
Wang, J.J., Tang, D.L., Sui, Y., 2010.
Winter phytoplankton bloom induced
by subsurface upwelling and mixed layer entrainment southwest of Luzon
Strait, J. Mar. Syst. 83, 141–149.
Wang, G., Cao, W., Wang, G., Zhou, W., 2013.
Phytoplankton size class
derived from phytoplankton absorption and chlorophyll-a concentrations in the
northern South China Sea. Chinese J. Oceanol. Limnol. 31(4), 750–761.
http://dx.doi.org/10.1007/s00343-013-2291-z
Wang, Y., Zhao, M., Dai, C., Pan, X., 2014.
Nonlinear dynamics of a
nutrient-plankton model. Abstract Appl. Analysis, Hindawi Publ. Corp.,
451757, 10.
http://dx.doi.org/10.1155/2014/451757
Wang, J., Bouwman, A.F., Liu, X. et al., 2021.
Harmful algal blooms in
Chinese coastal waters will persistdue to pertur bed nutrientratios.
Environ. Sci. Technol. Lett. 8(3), 276–284.
Wei, N., Thangaraj, Ian, S., Jenkinson, R. et al., 2018.
Factors driving
the spatiotemporal variability in phytoplankton in the Northern South China
Sea. Cont. Shelf Res. 162.
https://doi.org/10.1016/j.csr.2018.04.009
Wong, G.T.F., Tseng, C.M., Wen, L.S., Chung, S.W., 2007.
Nutrient dynamics
and N-anomaly at the SEATS station. Deep Sea Res. Pt. II 54(14),
1528–1545.
http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2226
Wood, S.N., 2004.
Stable and efficient multiple smoothing parameter
estimation for generalized additive models. J. Am. Sta. Assoc. 99,
673–686.
https://doi.org/10.2307/27590439
Wu, J., Chung, S.-W., Wen, L.-S., Liu, K.-K., Chen, Y.-L.L. Chen, H.-Y., Karl,
D.M., 2003.
Dissolved inorganic phosphorus, dissolved iron, and
Trichodesmium in the oligotrophic South China Sea. Global Biogeochem. Cy.
171, 1008.
https://doi.org/10.1029/2002GB001924
Xu, Y., Zhang. T., Zhou, J., 2019.
Historical Occurrence of Algal Blooms in
the Northern Beibu Gulf of China and Implications for Future Trends.
Front. Microbiol. 10, 451, PMID: 30918499; PMCID: PMC6424905.
https://doi.org/10.3389/fmicb.2019.00451
Zhao, H., Tang, D., 2007.
Effect of 1998 El Niño on the distribution of
phytoplankton in the South China Sea. J. Geophys. Res. 112, C02017.
https://doi.org/10.1029/2006JC003536
Zhang, X., Zhuang, G., Guo, J., Yin, K. Zhang, P., 2007.
Characterization
of aerosol over the Northern South China Sea during two cruises in 2003.
Atmos. Environ. 41, 7821–783.
https://doi.org/10.1016/j.atmosenv.2007.06.031
A study of upper ocean characteristics in response to the three intense re-curving tropical cyclones from the Arabian Sea using satellite and in-situ measurements
Oceanologia, 66 (4)/2024, 66405, 14 pp.
https://doi.org/10.5697/VIVV8745
Adarsh Dube1,4,*, Ajeet Ku Maurya2, Rajesh Singh3, T. Dharmaraj1
1Indian Institute of Tropical Meteorology, Pune, India;
e-mail: adarsh.dube92@gmail.com (A. Dube)
2Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India
3K.S. Krishnan Geomagnetic Research Laboratory, IIG, Prayagraj, India
4India Meteorological Department, Pune, India
*corresponding author
Keywords: Tropical cyclones re-curvature; Argo floats; SST; Enthalpy fluxes
Received: 14 April 2024; revised: 3 September 2024; accepted: 6 September 2024.
Highlights
- The presence of two simultaneous re-curving tropical cyclones over the Arabian Sea from 1961 to 2018 are studied
- A decrease in maximum SST up to 8°C is found near the cyclone best track re-curvature regions
- Enthalpy fluxes are seen to increase fourfold and along the cyclone best track
Abstract
We present the sea surface temperature (SST), latent heat flux (LHF), and sensible heat flux (SHF) studies of three tropical cyclones in the Indian subcontinent region. These three tropical cyclones were scrutinized based on their intensity scale ranging from Category 2 (Very Severe Cyclonic Storm, VSCS) to Category 5 (Super Cyclonic Storm, SuCS) on a hurricane scale (IMD scale). VSCS Vayu, SuCS Kyarr, and ESCS (Extremely Severe Cyclonic Storm) Maha formed over the Arabian Sea in June, October, and November 2019, respectively. There is a 2°C to 4°C difference in the SST during the pre- and post-cyclone period along the best track. The maximum reductions in SST up to 8°C have occurred in the region from where the cyclones have re-curved. The enthalpy fluxes (LHF and SHF) are highest at 280 W/m2 around the cyclone’s best track and follow the same direction of the cyclone development. Prior flux changes in the cyclone region may have a role in directing the cyclone’s best track. Argo floats within 1° from the best track revealed that pre-cyclone SST was warmer at the surface than post-cyclone SST. The sub-surface SST at a depth of 100–150 m suggests a warming of the ocean in the post-cyclone period near and adjacent to cyclone intensification regions due to the upwelling of the warm subsurface waters. The upper ocean response is crucial to studying the increasing intensity of TCs and the re-curvature of its best track over the Arabian Sea.
References
Aiyyer, A., 2015.
Recurving western North Pacific tropical cyclones and
midlatitude predictability, Geophys. Res. Lett. 42, 7799–7807.
https://doi.org/10.1002/2015GL065082
Shyamala, B., Sudevan, S., Shinde, G.M., Burte, M.D., 2001.
Behaviour of
recurving cyclonic storms in the Arabian Sea as a response to atmospheric
interactions, MAUSAM 52(3), 469–478.
https://doi.org/10.54302/mausam.v52i3.1718
Bhaskar Rao, D.V., Hari Prasad, D., Srinivas, D., 2009.
Impact of
Horizontal resolution and the advantages of nested domains approach in the
prediction of tropical cyclone intensification and movement, JGR 114,
D11106.
https://doi.org/10.1029/2008JD011623
Bongirwar, V., Rakesh, V., Kishtawal, C.M., Joshi, P.C., 2011.
Impact of
satellite observed microwave SST on the simulation of tropical cyclones.
Natural Hazards 58, 929–944.
https://doi.org/10.1007/s11069-010-9699-y
Cai, Y., 2022.
Enhanced Predictability of rapidly intensifying tropical
cyclones over the western North Pacific associated with snow depth changes over
the Tibetan Plateau, J. Clim., 1–17.
https://doi.org/10.1175/JCLI-D-21-0758.1
Cao, J., Haikun Z., Bin W., Liguang W., 2021.
Hemisphere asymmetric
tropical cyclones response to anthropogenic aerosol forcing. Nat.Commun.
12, 6787, 1–8.
https://doi.org/10.1038/s41467-021-27030-z
Chand, S. S., Walsh, K. J., Camargo, S. J., Kossin, J. P., Tory, K. J., Wehner,
M. F., et al., 2022.
Declining tropical cyclone frequency under global
warming. Nature Climate Change 12(7), 655–661.
https://doi.org/10.1038/s41558-022-01388-4
Cione, J.J., Uhlhorn, E.W., 2003.
Sea surface temperature variability in
hurricanes: Implications concerning intensity change. Mon. Weather Rev.
131, 1783–1796.
Craig, G. C., Gray, S. L., 1996.
CISK or WISHE as the mechanism for
tropical cyclone intensification. J. Atmos. Sci. 53, 3528–3540.
https://doi.org/10.1175/1520-0469(1996)053,3528COWATM.2.0.CO;2
Crespo, J.A., Posselt, D.J., Asharaf, S., 2019.
CYGNSS Surface Heat Flux
Product Development. Remote Sens. 11, 2294.
https://doi.org/10.3390/rs11192294
Dare, R.A., McBride, J.L., 2011a.
The threshold sea surface temperature
condition for tropical cyclogenesis. J. Climate 24, 4570–4576.
https://doi.org/10.1175/JCLI-D-10-05006.1
Dare, R.A., McBride, J.L., 2011b.
Sea surface temperature response to
tropical cyclones, Mon. Wea. Rev., 139, 3798–3808.
https://doi.org/10.1175/MWR-D-10-05019.1
Emanuel, K.A., 1986.
An air-sea interaction theory for tropical cyclones.
Part I: Steady state maintenance. J. Atmos. Sci. 43, 585–604.
https://doi.org/10.1175/1520-0469(1986)043,0585:AASITF.2.0.CO;2
Evan, A.T., Camargo, S. J., 2011
A climatology of Arabian Sea Cyclonic
storms, J. Clim. 24(1), 140–158.
https://doi.org/10.1175/2010JCLI3611.1
Gautam, R., Cervone, G., Singh, R.P., Kafatos, M., 2005.
Characteristics of
meteorological parameters associated with Hurricane Isabel. Geophys. Res.
Lett., 32, L04801.
https://doi.org/10.1029/2004GL021559
Guan, S., Zhao, W., Huthnance, J., Tian, J., Wang, J., 2014.
Observed upper
ocean response to Typhoon Megi (2010) in the northern South China Sea. J.
Geophys. Res. Oceans, 119, 3134–3157.
https://doi.org/10.1002/2013JC009661
Hari, V., Pathak, A., Koppa, A., 2021.
Dual response of Arabian Sea
cyclones and strength of Indian monsoon to Southern Atlantic Ocean,
Climate Dynam. 56, 2149–2161.
https://doi.org/10.1007/s00382-020-05577-9
IMD (India Meteorological Department), 2020.
Report on cyclonic
disturbances over North Indian Ocean during 2019. MOES/IMD/RSMC Tropical
Cyclone Rep. No. 01 (2020)/10.IPCC, 2014. Intergovernmental Panel for Climate
Change 2014. Synthesis Rep. Summary for Policy Makers.
Jaimes, B., Shay, L.K., Uhlhorn, E.W., 2015.
Enthalpy and momentum fluxes
during Hurricane Earl relative to underlying ocean features. Mon. Wea.
Rev. 143, 111–131.
James P. Kossin, 2018.
A global slowdown of tropical cyclone translational
speed. Nature 104(558). h
ttps://doi.org/10.1038/s41586-018-0158-3
Katsube, K., Inatsu, M., 2016.
Response of tropical cyclone tracks to sea
surface temperature in the western North Pacific. J. Climate 29,
1955–1975.
https://doi.org/10.1175/JCLI-D-15-0198.1
Khan S, Shengchun Piao, Imran U. Khan, Bingchen Xu, Shazia Khan, Muhammad Asim
Ismail and Yang Song, 2021.
Variability of SST and ILD in the Arabian Sea
and Sea of Oman in Association with the Monsoon Cycle. Recent Trends in
Advanced Robotic Systems.
https://doi.org/10.1155/2021/9958257
Knaff, J. A., DeMaria, M., Sampson, C.R., Peak, J.E., Cummings, J., Schubert,
W.H., 2013.
Upper oceanic energy response to tropical cyclone passage.
J. Climate 26, 2631–2650.
https://doi.org/10.1175/JCLI-D-12-00038.1
Korty, R. L., Emanuel, K.A., Scott, J.R., 2008.
Tropical cyclone-induced
upper-ocean mixing and climate: Application to equable climates. J.
Climate 21, 638–654.
https://doi.org/10.1175/2007JCLI1659.1
Kotal, S.D., Bhowmik, R., Kumdu, P.K., Ananda D.K., 2008.
A statistical
cyclone intensity prediction (SCIP) model for the bay of Bengal. J. Earth
Syst. Sci. 117(2), 157–168.
https://doi.org/10.1007/s12040-008-0006-1
Krishnamurti, T N., Pattnaik, S., Stefanova, L., Kumar, T.S.V.V., Mackey, B.P.,
O’Shay, A.J., Pasch, R.J., 2005.
The Hurricane Intensity Issue. Mon.
Wea. Rev. 133, 1886–1912.
https://doi.org/10.1175/MWR2954.1
Lin, I.-I., Chen, C.-H., Pun, I.-F., Liu, W.T., Wu, C.-C., 2009.
Warm ocean
anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone
Nargis (2008). Geophys. Res. Lett. 36, L03817.
https://doi.org/10.1029/2008GL035815
Wahiduzzaman, M., Cheung, K.K., Jing-Jia, L., Bhaskaran, P.K., 2022.
A
spatial model for predicting North Indian Ocean tropical cyclone intensity:
Role of sea surface temperature and tropical cyclone heat potential.
Weather and Climate Extremes 36, 100431.
https://doi.org/10.1016/j.wace.2022.100431
Ma, Z., 2018.
Examining the contribution of surface sensible heat flux
induced sensible heating to tropical cyclone intensification from the balance
dynamics theory. Dynm. Atmos. Oceans 84, 33–45.
https://doi.org/10.1016/j.dynatmoce.2018.09.001
Ma, Z., Fei, J., Huang, X., Cheng, X., 2015.
Contributions of surface
sensible heat fluxes to a tropical cyclone. Part I: Evolution of tropical
cyclone intensity and structure. J. Atmos. Sci. 72, 120–140.
https://doi.org/10.1175/JAS-D-14-0199.1
Maneesha, K., Murty, V.S.N., Ravichandran, M., Lee, T., Weidong, Y., McPhaden,
M.J., 2012
Upper ocean variability in the Bay of Bengal during the tropical
cyclones Nargis and Laila. Prog. Oceanogr. 106, 49–61.
https://doi.org/10.1016/j.pocean.2012.06.006
Mohanty, S, Raghu, N., Krishna, K., O.„ Sujata P., Mohanty, U.C., Sourav S.,
2019.
Role of Sea Surface Temperature in Modulating Life Cycle of Tropical
Cyclones over Bay of Bengal. Tropical Cycl. Res. Rev. 8(2), 68–83.
https://doi.org/10.1016/j.tcrr.2019.07.007
Murakami, H., Vecchi, G.A., Underwood, S., 2017.
Increasing frequency of
extremely severe cyclonic storms over the Arabian Sea. Nature Clim. Chang.
7, 885–889.
https://doi.org/10.1038/s41558-017-0008-6
Navaneeth, K.N., Martin, M.V, Joseph, K.J., Venkatesan, R., 2019.
Contrasting the upper ocean response to two intense cyclones in the Bay of
Bengal. Deep Sea Res. Pt. I 147, 65–78.
https://doi.org/10.1016/j.dsr.2019.03.010
Neetu, S., Lengaigne, M., Vincent, E.M., Vialard, J., Madec, G., Samson, G.,
Ramesh Kumar, M.R., Durand, F., 2012.
Influence of upper-ocean
stratification on tropical cyclone-induced surface cooling in the Bay of
Bengal. J. Geophys. Res. Ocean. 117, C12020.
https://doi.org/10.1029/2012JC008433
Park, J.J., Y.-O. Kwon, Price, J.F., 2011.
Argo array observation of ocean
heat content changes induced by tropical cyclones in the north Pacific. J.
Geophys. Res. 116, C12025.
https://doi.org/10.1029/2011JC007165
Price, J.F., 1981.
Upper ocean response to a hurricane. J. Phys.
Oceanogr. 11, 153–175.
https://doi.org/10.1175/1520-0485(1981)011<01
53:UORTAH>2.0.CO;2
Sun, Y., Zhong, Z., Tim, L., Lan, Y., Yijia, H., Hongchao, W., Haishan, Ch.,
Qianfeng, L., Chen, M., Qihua, L., 2017.
Impact of ocean warming on
tropical cyclone size and its destructiveness. Sci. Rep. 7, 8154.
https://doi.org/10.1038/s41598-017-08533-6
Zhang, B., Renhe, Z., Pinker, R.T., Yerong, F., Changchun, N., Guan, Y., 2019.
Changes of tropical cyclone activity in a warming world are sensitive to
sea surface temperature environment. Environ. Res. Lett. 14, 124052.
https://doi.org/1748-9326/ab5ada
Zhao, H., Duan, X., Raga, G.B., Klotzbach, P.J., 2018.
Changes in
characteristics of rapidly intensifying western North Pacific tropical cyclones
related to climate regime shifts. J. Clim. 31, 8163–8179.
https://doi.org/10.1175/JCLI-D-18-0029.1
High levels of Polycyclic Aromatic Hydrocarbons in the Date Mussel (Lithophaga lithophaga) from Bizerte coast (northern Tunisia): Sources and human health risk implications
Oceanologia, 66 (4)/2024, 66406, 10 pp.
https://doi.org/10.5697/POMM4827
Ferdaous Jaafar Kefi1, Yassine Elmegdiche2, Jihène Maatoug Béjaoui1, Youssef Lahbib1,3,*, Imed Chraief4, Mohamed El Hammami4, Najoua Trigui El Menif1
1Laboratory of Environmental monitoring (LR01ES14), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia;
e-mail: lahbibyoussef@yahoo.fr (Y. Lahbib)
2Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
3Higher Institute of Heritage Crafts, University of Tunis, Impasse Bachrouche, Monfleury, Tunis, Tunisia
4Biochemistry Laboratory “Nutrition-Functional Foods and Vascular Health” (LR12ES05), Faculty of Medicine, University of Monastir,
Monastir, Tunisia
*corresponding author
Keywords: Lithophaga lithophaga; PAHs; Human risk; Public awareness; Tunisia
Received: 6 September 2023; revised: 27 September 2024; accepted: 15 October 2024.
Highlights
- Sixteen priority PAHs were detected in mussel tissues originating from both pyrolytic and petrogenic inputs
- High PAHs concentrations were recorded in the summer and were associated with port activity and the petroleum industry
- The benzo(a)pyrene toxic equivalent factor and excess cancer risk values exceeded permissible limits.
Awareness is necessary to prevent consumer intoxication.
Abstract
The date mussel Lithophaga lithophaga is protected by law in Tunisia. Still, illegal consumption of this luxury seafood has increased over time due to high demand and high prices, which have made the species regularly available in the seafood market of Bizerte, putting wild stocks at risk of decline. To raise public awareness of the risks to human health associated with the consumption of this bivalve, 16 priority polycyclic aromatic hydrocarbons (PAHs) were quantified in the soft tissue of the species, which was collected from two sites of high fishery pressure in the bay and lagoon of Bizerte. Total PAHs concentrations differ significantly between the studied sites ranging from 0.45 to 546.05 μg g−1 d.w., and were associated with port activity and the petroleum industry. The benzo(a)pyrene toxic equivalent factor and excess cancer risk showed both high values exceeding permissible limits in the polluted site. These findings provide valuable information regarding the distribution of PAHs in mussels from wild ecosystems that could be useful to prevent consumer intoxication and improve awareness against illegal harvesting of this species.
References
A.F.S.S.A., 2003. Agence Française de Sécurité Sanitaire des Aliments.
Avis sur l’évaluation des risques présentés par le benzo(a)pyrène (B(a)P)
et par d’autres hydrocarbures aromatiques polycycliques (HAP). Saisie
2000-SA-0005, 1–59.
Andral, B., 2011. Assessment of polycyclic aromatic hydrocarbon
concentrations in mussels (Mytilus galloprovincialis) from the Western
basin of the Mediterranean Sea. Environ. Monit. Assess. 172, 301–317.
Balcıoğlu, E.B., 2016. Potential effects of polycyclic aromatic
hydrocarbons (PAHs) in marine foods on human health: a critical review.
Toxin Rev. 35, 98–105.
Bandowe, B.A.M., Bigalke, M., Boamah, L., Nyarko, E., Saalia, F.K., Wilcke, W.,
2014. Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace
metals in fish species from Ghana (West Africa): bioaccumulation and health
risk assessment. Environ. Int. 65, 135–146.
Barhoumi, B., Le Menach, K., Clérandeau, C., Ben Ameur, W, Budzinski, H.,
Driss, M.R., Cachot, J., 2014. Assessment of pollution in the Bizerte
lagoon (Tunisia) by the combined use of chemical and biochemical markers in
mussels, Mytilus galloprovincialis. Mar. Pollut. Bull. 84,
379–390.
Baumard, P., Budzinski, H., Garrigues, P., 1998. PAHs in Arcachon Bay,
France: origin and biomonitoring with caged organisms. Mar. Pollut. Bull.
36, 577–586.
Bihari, N, Fafandel, M, Piskur, V., 2007. Polycyclic Aromatic Hydrocarbons
and Ecotoxicological Characterization of Sea water, Sediment and Mussel
Mytilus galloprovincialis from the Gulf of Rijeka, the Adriatic Sea,
Croatia. Environ. Contam. Toxicol. 52, 379–387.
Budzinski, H., Jones, I., Belloc, J., Piérard, C., Garrigues, P., 1997.
Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in
the Gironde estuary. Mar. Chem. 58, 85–97.
Deudero, S., Box, A., March, D., Valencia, J.M., Grau, A.M., Tintore, J.,
Calvo, M., Caixach, J., 2007. Organic compounds temporal trends at some
invertebrate species from the Balearics, Western Mediterranean.
Chemosphere, 68, 1650–1659.
Devescovi, M., Iveša, L., 2008. Colonization patterns of the date mussel
Lithophaga lithophaga (L., 1758) on limestone breakwater boulders of a
marina. Period. Biol. 110, 339–345.
DGEQV, 2003. Etude sur la dépollution industrielle dans le bassin versant
du lac de Bizerte. Direction Générale de l’Environnement et de la Qualité
de la Vie. Ministère de l’Agriculture Tunisien, 1–200.
Dujmov, J., Sučević, P., 1990. The contamination of date shell
(Lithophaga lithophaga) from the eastern coast of the Adriatic Sea by
polycyclic aromatic hydrocarbons. Acta. Adriat. 31, 153–161.
Dyrynda, E.A., Law, R.J., Dyrynda, P.E.J., Kelly, C.A., Pipe, R.K., Ratcliffe,
N.A., 2000. Changes in immune parameters of natural mussel Mytilus
edulis populations following major oil spill (’Sea Empress’, Wales,
UK). Mar. Ecol. Prog. Ser. 206, 155–170.
E.F.S.A. [European Food Safety Authority], 2008. Scientific Opinion of the
Panel on Contaminants in the Food Chain on a request from the European
Commission on Polycyclic Aromatic Hydrocarbons in Food. The EFSA Journal,
724, 1–114.
FAO., 2012. Food balance Sheets by Main Groups of Fish Species and Fish
Nutritional Factors – by Selected Countries. Food and Agriculture
Organization of the United Nations.
Frouin, H., Pellerin, J., Fournier, M., Pelletier, E., Richard, P., Pichaud,
N., Rouleau, C., Garnerot, F., 2007. Physiological effects of polycyclic
aromatic hydrocarbons on soft-shell clam Mya arenaria. Aquat. Toxicol. 82, 120–134
Galinou-Mitsoudi, S., Sinis, A.I., 1995. Age and growth of Lithophaga
lithophaga (Linnaeus, 1758) (Bivalvia: Mytilidae), based on annual growth
lines in the shell. J. Mollus. Stud. 61, 435–453.
Jung, K. H., Yan, B., Chillrud, S.N., Perera, F.P., Whyatt, R., Camann, D.,
Kinney, P.L., Miller, R.L., 2010. Assessment of Benzo(a)pyrene-equivalent
carcinogenicity and mutagenicity of residential indoor versus outdoor
polycyclic aromatic hydrocarbons exposing young children in New York city.
Int. J. Environ. Res. Pu. 7, 1889–1900.
Jaafar Kefi, F., Boubaker, S., Trigui El Menif, N., 2014. Relative growth
and reproductive cycle of the date mussel Lithophaga lithophaga
(Linnaeus, 1758) sampled from the Bizerta Bay (Northern Tunisia). Helgol.
Mar. Res. 68, 439–450.
Jaafar Kefi, F., Lahbib, Y., Gargouri Ben Abdallah, L., Trigui El Menif, N.,
2012. Shell disturbances and butyltins burden in commercial bivalves
collected from the Bizerta lagoon (northern Tunisia). Environ. Monit.
Assess. 184, 6869–6876.
Katsanevakis, S., Lefkaditou, E., Galinou-Mitsoudi, S., Koutsoubas, D.,
Zenetos, A., 2008. Molluscan species of minor commercial interest in
hellenic seas: distribution, exploitation and conservation status.
Mediterr. Mar. Sci. 9, 77–118.
Ke, C.L., Gu, Y.G., Liu, Q., Li, L.D., Huang, H.H., Cai, N., Sun, Z.W., 2017.
Polycyclic aromatic hydrocarbons (PAHs) in wild marine organisms from South
China Sea: Occurrence, sources, and human health implications. Mar.
Pollut. Bull. 117, 507–511.
Khairy, M.A., Kolb, M., Mostafa, A.R., EL-Fiky, A., Bahadir, M., 2009. Risk
assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed
basin affected by human activities (Abu Qir Bay, Egypt). J. Hazard. Mater.
170, 389–397.
Knafla, A., Phillipps, K.A., Brecher, R.W., Petrovic, S., Richardson, M., 2006.
Development of a dermal cancer slope factor for benzo[a]pyrene. Regul.
Toxicol. Pharm. 45, 159–168.
León, V.M., Moreno-González, R., González, E., Martı́nez, F.,
Garcı́a, V., Campillo, J.A., 2013. Interspecific comparison of polycyclic
aromatic hydrocarbons and persistent organochlorines bioaccumulation in
bivalves from a Mediterranean coastal lagoon. Sci. Total. Environ. 129,
975–987.
Magi, E., Bianco, R., Ianni, C., Di Carro, M., 2002. Distribution of
polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea.
Environ. Pollut. 119, 91–98.
Mazeas, O., 2004. Evaluation de l’exposition des organismes aux
hydrocarbures aromatiques polycycliques (HAP) dans le milieu marin par le
dosage des métabolites de HAP. Thesis, University of Bordeaux I. Meador,
J.P., Casillas, E., Sloan, C.A., Varanasi, U., 1995. Comparative
bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two
infaunal invertebrates. Mar. Ecol. Prog. Ser. 123, 107–124.
Mzoughi, N., Chouba, L., 2012. Heavy Metals and PAH Assessment Based on
Mussel Caging in the North Coast of Tunisia (Mediterranean Sea). Int. J.
Environ. Res. 6, 109–118.
Nisbet, I.C.T., Lagoy, P.K., 1992. Toxic equivalency factors (TEFs) for
polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16,
290–300.
Perugini, M., Visciano, P., Giammarino. A., Manera, M., Di Nardo, W., Amorena,
M., 2007. Polycyclic aromatic hydrocarbons in marine organisms from the
Adriatic Sea, Italy. Chemosphere, 66, 1904–1910.
Pichaud, N., 2005. Effets biologiques d’une exposition par les
hydrocarbures aromatiques polycycliques (HAP) sur une espèce bioindicatrice,
Mya arenaria. Univ. Quebec, 1–90.
Porte, C., Albaigés, J., 1994. Bioaccumulation patterns of hydrocarbons
and polychlorinated biphenyls in bivalves, crustaceans and fishes. Arch.
Environ. Con. Tox. 26, 273–281.
Poutiers, J.M., 1987. Bivalvia. Fiches FAO d’identification des espèces
pour les besoins de la pêche. Méditerranée et mer Noire. Zone de
pêche, 37, 369–500.
R.N.O. [Réseau National d’Observation de la qualité du milieu marin],
2000. Surveillance du Milieu Marin. Travaux du RNO. Ifremer et Ministère
de l’Aménagement du Territoire et de l’Environnement. Edition,
Nantes, Paris, 36 pp.
Santos, M.M.D., Brehm, F.D.A., Filippe, T.C., Reichert, G., Azevedo, J.C.R.D.,
2017. PAHs diagnostic ratios for the distinction of petrogenic and
pirogenic sources: applicability in the Upper Iguassu Watershed-Parana,
Brazil. RBRH. 22, e9.
Serpe, F.P., Esposito, M., Gallo, P., Serpe, L., 2010. Optimisation and
validation of an HPLC method for determi- nation of polycyclic aromatic
hydrocarbons (PAHs) in mussels. Food Chem. 122, 920–925.
Shafee, M.S., 1999. Pêche des Bivalves sur la côte méditerranéenne
marocaine. Catalogue d’espèces exploitées et d’engins utilisés.
Pour la FAO – COPEMED, ALICANE, Espagne, 1–58.
Sheehan, D., Power, A., 1999. Effects of seasonality on xenobiotic and
antioxidant defense mechanism of bivalve mollusks. Comp. Biochem. Physiol.
Pt. C, 193–199.
Smith, D., Lynam, K., 2010. GC/MS analysis of European Union (EU) priority
polycyclic aromatic hydrocarbons (PAHs) using an Agilent JandW DB- EUPAH
GC-Column with a column performance comparison. Agilent Tech., 6 pp.
Soclo, H.H., Garrigues, P.H., Ewald, M., 2000. Origin of polycyclic
aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in
Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull. 40,
387–396.
Thorsen, W.A., Cope, W.G., Shea, D., 2004. Bioavailability of PAHs: Effects
of soot carbon and PAH source. Environ. Sci. Technol. 38, 2029–2037.
U.S.E.P.A., 1993. Provisional guidance for quantitative risk assessment of
polycyclic aromatic hydrocarbons. EPA/600/R-93/089 United States
Environmental Protection Agency, Cincinnati.
U.S.E.P.A., 2008. Polycyclic aromatic hydrocarbons (PAHs)– EPA fact
sheet. United States Environmental Protection Agency, National Center for
Environmental Assessment, Office of Research and Development, Washington (DC).
Valavanidis, A., Vlachogianni, T.H., Triantafillaki, S., Dassenakis, M.,
Androutsos, F., Scoullos, M., 2008. Polycyclic aromatic hydrocarbons in
surface seawater and in indigenous mussels (Mytilus galloprovincialis) from
coastal areas of the Saronikos Gulf (Greece). Estuar. Coast. Mar. Sci. 79,
733–739.
Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G.,
Roberts, I., 2012. The weight of nations: an estimation of adult human
biomass. BMC Public Health, 12, 1–6.
Weinstein, J.E., 1995. Seasonal responses of the mixed-function oxygenase
system. In the American oyster Crassostrea virginica (Gmelin 1791) to
urban-derived polycyclic aromatic hydrocarbons. Comp. Biochem. Pysiol.
112, 299–307.
Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, H., Goyette, D.,
Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal
of PAH ratios as indicators of PAH source and composition. Org. Geochem.
33, 489–515.
Position Paper
Philosophical views of Baltic Basin climate and
environmental sciences
Oceanologia, 66 (4)/2024, 66407, 17 pp.
https://doi.org/10.5697/YXZP7286
Anders Omstedt1,*, Inga Dailidienė2, Hans von Storch3, Rasmus Grønfeldt Winther4,5
1Department of Marine Sciences, University of Gothenburg, Sweden;
e-mail: anders.omstedt@marine.gu.se (A. Omstedt)
2Institute of Marine Research, Klaipeda University, Lithuania
3Helmholtz-Zentrum Hereon Geesthacht, Germany
4Humanities Division, University of California Santa Cruz, USA
5Section for GeoGenetics, Globe Institute, University of Copenhagen, Denmark
*corresponding author
Keywords:
BALTEX; Baltic Earth; Water and energy cycles; Biogeochemistry; Carbon cycle; Climate and environmental research; Atmosphere-ocean-land surface modeling
Received: 19 February 2024; revised: 19 June 2024; accepted: 29 August 2024.
Highlights
- BALTEX/Baltic Earth has addressed the climate and environment of the Baltic Basin
- Non-hierarchical science can analyze complex systems via idealization
- Pluralistic science can improve our understanding of the regional earth system
- The current research opens a scientific vision to deal with the current climate data for any future mitigation and adaptation scenarios
Abstract
The scientific practice from 1993 to 2024 in the ongoing BALTEX/Baltic Earth program has applied a philosophical view of complex systems that promotes improved understanding through idealizations without organizing science hierarchically. Instead, the pluralistic scientific approach used by the BALTEX/Baltic Earth program has successfully generated a new scientific understanding of how to address climate and environmental changes in the region. Some of these major advances are as follows:
- The program has developed new communication skills by developing conceptual views into drawings with substantial
information content at various spatial and temporal scales.
- The program has gained experience in increasing the number of data and data products and in realizing the need
for well-documented, homogenized, and open datasets; it has also provided training in characterizing and detecting
climate and environmental changes in the region.
- Indices and statistical models have played an important role in understanding complex dynamics; we have learned
that they also need to take account of homogeneities and often have severe limitations.
- Several new maps of the region conveying geographic and human information have, in a convenient visual way,
opened our eyes to the need for multi-disciplinary research.
- Intensive research on the atmosphere-ocean boundary layers has improved our understanding of these factors.
- New understanding has been achieved through establishing water, heat, nutrient, and carbon budgets.
- The program has generated improved understanding by developing mechanistic and system models of water, heat,
nutrient, and carbon cycling.
- Maximum complexity models have been developed as computer capacity has grown, yielding important results when
attributing the causes of climate change and creating scenarios of possible future developments.
- Experience with assessment has taught us about the strengths and weaknesses in evaluating science and scenarios. It
has also enhanced our understanding of multidisciplinary research.
References
̊ström, J., Haapala, J., Polojärvi, A., 202
3. A large-scale
high-resolution numerical model for sea-ice fragmentation dynamics, Cryosphere
Discuss. [in review].
https://doi.org/10.5194/tc-2023-97
BACC Author Team I, 2008.
The BALTEX Assessment of Climate Change for the
Baltic Sea Basin. Springer-Verlag.
BACC Author Team II, 2015.
The Second Assessment of Climate Change for the
Baltic Sea Basin. Springer Regional Climate Studies, 22 pp.
https://doi.org/10.1007/978-3-319-16006-1
Benestad, R.E., Hanssen-Bauer, I., Chen, D., 2008.
Empirical-statistical
downscaling. World Science Publishing Co., Singapore.
Bengtsson, L., 2001.
Numerical modelling of the energy and water cycle of
the Baltic Sea. Meteorol. Atmos. Phys. 77, 9–17.
https://doi.org/10.1007/s007030170014
Bergström, H., Moberg, A., 2002.
Daily air temperature and pressure
series for Uppsala (1722–1998). Climate Change, 53, 213–252.
https://doi.org/10.1023/A:1014983229213.
Bergström, S., Graham, L.P., 1998.
On the scale problem in hydrological
modelling. J. Hydrol. 211, 253–265.
Burchard, H., 2002. The GOTM model. [In:]
Applied Turbulence Modeling in
Marine Waters. Lecture Notes in Earth Sciences. Springer Verlag.
https://doi.org/10.1007/3-540-45419-5_5
Burgess, M.G., Ritchie, J., Shapland, J., Pielke Jr., R., 2021.
IPCC
baseline scenarios have over-projected CO2 emissions and economic
growth. Environ. Res. Lett. 16, 014016.
Cartwright, N., 1983. How the Laws of Physics Lie. Oxford University Press, New
York. Christensen, O.B., Kjellström, E., Dieterich, C., Gröger, M., Meier,
H.E.M, 2022
. Atmospheric regional climate projections for the Baltic Sea
region until 2100. Earth Syst. Dynam. 13, 133–157.
https://doi.org/10.5194/esd-13-133-2022
Coen, D.R., Sobel, A., 2022.
Introduction: Critical and historical
perspectives on usable climate science. Climatic Change 172, 15.
https://doi.org/10.1007/s10584-022-03369-0
Cushman-Roisin, B., Beckers, J.M., 2011.
Introduction to Geophysical Fluid
Dynamics. Physical and numerical aspects. Acad. Press. Edman, M., Omstedt,
A., 2013. Modeling the dissolved CO
2 system in the redox environment
of the Baltic Sea. Limnol. Oceanogr. 58(1), 74–92.
Eriksson, C., Omstedt, A., Overland, J.E., Percival, D.B., Mofield, H.O., 2007.
Characterizing the European sub-arctic winter climate since 1500 using ice,
temperature and circulation time series. J. Climate, 20, 5316–5334.
Graham, L.P., 1999.
Modeling runoff to the Baltic Sea. Ambio, 28,
328–334.
Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H.T.M., Hagemann, S.,
Jakacki, J., May, W., Meier, H.E.M., Miller, P.A., Rutgersson, A., Wu, L.,
2021.
Coupled regional Earth system modeling in the Baltic Sea region.
Earth Syst. Dynam. 12, 939–973.
https://doi.org/10.5194/esd-12-939-2021
Gryning, S.E., Batchvarova, E., 2002.
Marine Boundary Layer And Turbulent
Fluxes Over The Baltic Sea: Measurements And Modelling. Bound.-Lay.
Meteorol. 103, 29–47.
https://doi.org/10.1023/A:1014514513936
Gustafsson, B.G., 2000a.
Time-dependent modelling of the Baltic Entrance
Area. 1. Quantification of circulation and residence times in the Kattegat and
the straits of the Baltic Sill. Estuaries, 23(2), 231–252.
Gustafsson, B.G., 2000b.
Time-dependent modelling of the Baltic Entrance
Area. 2. Water and salt exchange of the Baltic Sea. Estuaries, 23(2),
253–266.
Gustafsson, E., Savchuk, O.P., Gustafsson, B.G., Muller-Karulis, B., 2017.
Key processes in the coupled carbon, nitrogen, and phosphorus cycling of
the Baltic Sea. Biogeochemistry, 34, 301–317.
https://doi.org/10.1007/s10533-017-0361-6
Haapala, J., Leppäranta, M., 1996.
Simulating the Baltic Sea ice season
with a coupled ice-ocean model. Tellus A, 48(5), 622–643.
Hacking, I., 2002.
Historical Ontology. Cambridge Univ. Press,
Cambridge.
Hagemann, S., Stacke, T., Ho-Hagemann, H.T.M., 2000.
High Resolution
Discharge Simulations Over Europe and the Baltic Sea Catchment. Front.
Earth Sci. 8.
https://doi.org/10.3389/feart.2020.00012
Hasse, L., Grossklaus, M., Uhlig, K., Timm, P., 1998.
A ship rain gauge for
the use in high wind speeds. J. Atmos. Ocean. Tech. 15(2), 380–386.
https://doi.org/10.1175/1520-0426(1998)015<0380:ASRGFU>2.0.CO;2
Hasselmann, K., 1988. PIPs and POPs:
The reduction of complex dynamical
systems using Principal Interaction and Oscillation Patterns. J. Geophys.
Res. 93, 11015–11021.
Hausfather, Z., Peters, G., 2020.
Emissions – the “business as usual”
story is misleading. Nature 577, 618–620.
https://doi.org/10.1038/d41586-020-00177-3
HELCOM, 2010. Ecosystem Health of the Baltic Sea 2003–2007.
Initial
holistic assessment. Baltic Sea Environment Proceedings No. 122, Helsinki
Commission, Finland.
HELCOM, 2018.
State of the Baltic Sea – Second HELCOM holistic assessment
2011–2016. Baltic Sea Environ- ment Proceedings No. 155.
https://helcom.fi/wp-content/uploads/2019/06/BSEP155.pdf
HELCOM, 2023.
State of the Baltic Sea – Third HELCOM holistic assessment
2016–2021. Baltic Sea Environ. Proc. no. 194, 69 pp.
https://helcom.fi/wp-content/uploads/2023/10/State-of-the-Baltic-Sea-2023.pdf
Högström, U., Rutgersson, A., Sahlée, E., Smedman, A.-S., Hristov, T.S.,
Drennan, W.M., Kahma, K.K., 2012.
Air-sea interaction features in the
Baltic Sea and at a Pacific trade-wind site-an intercomparison study.
Bound.-Lay. Meteorol. 147, 139–163.
Jacob, D., 2001.
A note to the simulation of the annual and inter-annual
variability of the water budget over the Baltic Sea drainage basin.
Meteorol. Atmos. Phys. 77, 61-73.
Jakobsson, M., Stranne, C., O’Regan, M., Greenwood, S.L., Gustafsson, B.,
Humborg, C., Elizabeth Weidner, E., 2019.
Bathymetric properties of the
Baltic Sea. Ocean Sci., 15, 905–924.
https://doi.org/10.5194/os-15-905-2019
Jutterström, S., Andersson, H.C., Omstedt, A., Malmaeus, J.M., 2014.
Multiple stressors threatening the future of the Baltic Sea-Kattegat marine
ecosystem: Implications for policy and management actions. Mar. Pollut.
Bull. 86, 468–480.
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J.F.,
Devasthale, A., et al. 2016.
CLARA-A2: The second edition of the CM SAF
cloud and radiation data record from 34 years of global AVHRR data. Atmos.
Chem. Phys. 17, 5809–5828.
Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J.,
Gustafsson, B., Hall, P.O.J., Humborg, Ch., Jilbert, T., Jürgens, K., Meier,
H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm,
A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2021.
Baltic Earth Assessment Report on the biogeochemistry of the Baltic
Sea. Earth Syst. Dynam. Discuss. [preprint].
https://doi.org/10.5194/esd-2021-33
Kuliński, K., She, J., Pempkowiak, J., 2011.
Short and medium term
dynamics of the carbon exchange between the Baltic Sea and the North Sea.
Cont. Shelf Res. 31, 21611–1619.
Launianen, J., Cheng, B., Uotila, J., Vihma, T., 2001.
Turbulent surface
fluxes and air–ice coupling in the Baltic Air–Sea–Ice Study (BASIS).
Ann. Glaciol. 33, 237–242.
Lehmann, A., Hinrichsen. H.-H., 2000.
On the thermohaline variability of
the Baltic Sea. J. Marine Syst. 25, 333–357.
Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen,
H.-H., Hüssy, K., Liblik, T., Meier, H.E.M., Lips, U., Bukanova, T., 2022.
Salinity dynamics of the Baltic Sea. Earth Syst. Dynam. 13, 373–392.
https://doi.org/10.5194/esd-13-373-2022
Leppäranta, M., 2011.
The drift of sea ice. 2nd Ed.,
Springer-Praxis, Chichester, 347 pp.
https://doi.org/10.1007/978-3-642-04683-4
Levins, R., 1966.
The Strategy of Model Building in Population
Biology. Am. Sci. 54, 421–431.
Lloyd, E.A., Shepherd, T.G., 2020,
Environmental catastrophes, climate
change, and attribution. Ann. N.Y. Acad. Sci., 1469, 105–124.
https://doi.org/10.1111/nyas.14308.
Longino, H., 2002.
The Fate of Knowledge, Princeton University Press,
Princeton.
Luterbacher, J.R., Dietrich, D., Xoplaki, E., Grosjean, M., Wanner, H., 2004.
European seasonal and annual temperature variability, trends, and extremes
since 1500. Science, 303, 1499–1503.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F.,
Safonova, K., Christensen, O.B., Kjellström, E., 2022a.
Oceanographic
regional climate projections for the Baltic Sea until 2100. Earth
Syst. Dynam., 13, 159–199.
https://doi.org/10.5194/esd-13-159-2022
Meier, H.E.M., Döscher, R., 2002.
Simulated water and heat cycles of the
Baltic Sea using a 3D coupled atmosphere-ice-ocean model. Boreal Environ.
Res. 7(4), 327–334.
Meier, H.E.M., Kauker, F., 2003.
Sensitivity of the Baltic Sea salinity to
the freshwater supply. Clim. Res. 24(3), 231–242.
Meier, H.E.M., Kniebusch, M., Dieterich, C., et al., 2022b.
Climate Change
in the Baltic Sea Region: A Summary. Earth Syst. Dynam. 13, 457–593.
https://doi.org/10.5194/esd-13-457-2022
Mitchell, S.D., 2003.
Biological Complexity and Integrative Pluralism.
Cambridge Univ. Press, Cambridge.
Moberg, A., Bergström, H., Ruiz Krigsman, J., Svanered, O., 2002.
Daily
air temperature and pressure series for Stockholm (1756–1998). Climatic
Change, 53(1–3), 171–212.
Mohrholz, V., 2018.
Major Baltic Inflow Statistics – Revised. Front.
Mar. Sci. 5, 384.
https://doi.org/10.3389/fmars.2018.00384
Moros, M., Kotilainen, A.T., Snowball, I., Neumann, T., Perner, K., Meier,
H.E.M., Papenmeier, S., Kolling, H., Leipe, T., Sinninghe Damsté, J.S.,
Schneider, R., 2023.
Giant saltwater inflow in AD 1951 triggered Baltic Sea
hypoxia. Boreas, 53(2), 125–138.
https://doi.org/10.1111/bor.12643
Müller, P., von Storch, H., 2004.
Computer Modelling in Atmospheric and
Oceanic Sciences – Building Knowledge. Springer-Verlag, Berlin,
Heidelberg, New York, 304 pp.
Omstedt, A., 1987.
Water cooling in the entrance of the Baltic Sea.
Tellus A, 38, 254–265.
Omstedt, A., 1990a.
Modelling the Baltic Sea as thirteen subbasins with
vertical resolution. Tellus A, 42, 286–301.
Omstedt, A., 1990b.
A coupled one-dimensional sea ice-ocean model applied
to a semi-enclosed basin. Tellus A, 42, 568–582.
Omstedt, A., 2015.
Guide to process based modelling of lakes and coastal
seas. 2nd Ed., Springer-Praxis, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-319-17990-2
Omstedt, A., Chen, D., 2001.
Influence of atmospheric circulation on the
maximum ice extent in the Baltic Sea. J. Geophys. Res. 106(C3),
4493–4500.
Omstedt, A., Edman, M., Claremar, B., Frodin, P., Gustafsson, E., Humborg, Ch.,
Hägg, H., Mörth, M., Rutgersson, A., Schurgers, G., Smith, B., Wällstedt,
T., Yurova, A., 2012.
Future changes of the Baltic Sea acid–base (pH) and
oxygen balances. Tellus B, 64(19586), 1958.
https://doi.org/10.3402/tellusb.v64i0.19586
Omstedt, A., Gustavsson, B., 2022.
The complex interactions between humans
and the marine environment require new efforts to build beauty and
harmony. Front. Mar. Sci. 9, 913276.
https://doi.org/10.3389/fmars.2022.913276
Omstedt, A., Gustafsson, B., Rodhe, B., Walin, G., 2000.
Use of Baltic Sea
modelling to investigate the Water and heat cycles in GCM and regional climate
models. Clim. Res. 15, 95–108.
Omstedt, A., Hansson, D., 2006.
The Baltic Sea ocean climate system memory
and response to changes in the Water and heat balance components. Cont.
Shelf Res. 26, 236–251.
https://doi.org/10.1016/j.csr.2005.11.003
Omstedt, A., Nohr, C., 2004.
Calculating the water and heat balances of the
Baltic Sea using ocean modelling and available meteorological, hydrological and
ocean data. Tellus A, 56, 400–414.
https://doi.org/10.1111/j.1600-0870.2004.00070.x
Omstedt, A., Nyberg, L., 1996. Response of Baltic Sea ice to seasonal,
interannual forcing and climate change. Tellus A, 48, 644–662.
Omstedt, A., Rutgersson, A., 2000.
Closing the water and heat cycles of the
Baltic Sea. Meteorol. Z., 9, 57–64.
Omstedt, A., von Storch, H., 2023.
The BALTEX/Baltic Earth programs:
Excursions and returns. Oceanologia, 66(1), 1–8.
https://doi.org/10.1016/j.oceano.2023.06.001
Piechura, J., Walczowski, W., Beszczynska-Moeller, A., 1997.
On the
structure and dynamics of the water in the Słupsk Furrow. Oceanologia,
39(1), 35–54.
Pielke Jr., R., 2023.
How Could the IPCC Make an Error this Large? Part 1:
A major mistake with profound consequences for science and policy. The
Honest Broker, published October 11 2023.
https://rogerpielkejr.substack.com/p/how-could-the-ipcc-make-an-error
Pirazzini, R., Vihma, T., Granskog, M.A., Cheng, B., 2006.
Surface albedo
measurements over sea ice in the Baltic Sea during the spring snowmelt
period. Ann. Glaciol., 44, 7–14.
Post, P., Aun, M., 2023.
Changes in cloudiness contribute to changing
seasonality in the Baltic Sea region. Oceanologia, 66(1), 91–98.
https://doi.org/10.1016/j.oceano.2023.11.004
Potochnik, A., 2017.
Idealizations and the aim of science. The
University of Chicago Press, 222 pp.
https://doi.org/10.7208/chicago/9780226507194.001.0001
Reckermann, M., Omstedt, A., Soomere, et al., 2022.
Human impacts and their
interactions in the Baltic Sea region. Earth Syst. Dynam. 13, 1–80.
https://doi.org/10.5194/esd-13-1-2022
Rutgersson, A., Kjellström, E., Haapala, J.,Stendel, M., Danilovich, I.,
Drews, M., Jylhä, K., Kujala, P., Guo-Larsén, X., Halsnæs, K., Lehtonen,
I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L.,
Wasmund, N., 2022.
Natural hazards and extreme events in the Baltic Sea
region, Earth Syst. Dynam. 13, 251–301.
https://doi.org/10.5194/esd-13-251-2022
Rutgersson, A., Omstedt, A., Räisänen, J., 2002
. Net precipitation over
the Baltic Sea during present and future climate conditions. Clim. Res.
22, 27–39.
Rutgersson, A., Pettersson, H., Nilsson, E., Bergström, H., Wallin, M.B.,
Nilsson, E.D., Sahlée, E., Wu, L., Mårtensson, E.M., 2020.
Using
land-based stations for air–sea interaction studies. Tellus A,
72(1), 1–23.
https://doi.org/10.1080/16000870.2019.1697601
Savchuk, O.P., Wulff, F., 2007.
Modeling the Baltic Sea eutrophication in a
decision support system. Ambio 36, 141–148.
Schneider, B., Müller, J.D., 2018.
Biogeochemical Transformations in the
Baltic Sea. Springer Oceanography.
Schneider, B., Nausch, G., Pohl, C., 2010.
Mineralization of organic matter
and nitrogen transformations in the Gotland Sea deep water. Mar. Chem.
119, 153–161.
https://doi.org/10.1016/j.marchem.2010.02.004
Smith, B., Prentice, I.C., Sykes, M.T., 2001.
Representation of vegetation
dynamics in modelling of terrestrial ecosystems: comparing two contrasting
approaches within European climate space. Glob. Ecol. Biogeogr. 10,
621–637.
Stigebrandt, A., 2001. Physical Oceanography of the Baltic Sea. [In:] Wulff,
F., Rahm, L., Larsson., P., 2001.
A System Analysis of the Baltic Sea.
Ecological Studies Vol. 148, Springer-Verlag, Berlin, Heidelberg, New York.
Stigebrandt, A., Andersson, A., 2020.
The Eutrophication of the Baltic Sea
has been boosted and perpetuated by a major internal phosphorus source.
Front. Mar. Sci. 7, 572994.
https://doi.org/10.3389/fmars.2020.572994
Stocker, T., 2011.
Introduction to climate modelling. Adv. Geophys.
Environ. Mech. Math. Springer-Verlag, Berlin, Heidelberg, 182 pp.
https://doi.org/10.1007/978-3-642-00773-6
Suppes, P., 1960.
A comparison of the meaning and uses of models in
mathematics and the empirical sciences, Synthese, 12(2–3), 287–301.
Suppes, P., 1962,
Models of data, in logic, methodology, and philosophy of
science. [In:] Proceedings of the 1960 International Congress, E. Nagel,
P. Suppes, A. Tarski (Eds.), Stanford, CA: Stanford University Press,
252–261.
Suppes, P., 2002.
Representation and Invariance of Scientific
Structures, Stanford, CA, CSLI Publications.
Svensson, U., 1978.
A Mathematical Model of the Seasonal Thermocline.
Dept. Water Res. Eng., Report No. 1002, Lund Institute of Technology, Lund,
Sweden.
Thompson, E., 2022.
Escape from the model land. How mathematical models can
lead us astray and what we can do about it. Basic Books UK, 256 pp.
Vihma, T., Pirazzini, R., Renfrew, I.A., Sedlar, J., Tjernström, M., et al.,
2013.
Advances in understanding and parameterization of small-scale
physical processes in the marine Arctic climate system: a review. Atmos.
Chem. Phys. Discuss., 13, 32703–32816.
https://doi.org/10.5194/acpd-13-32703-2013
Viitasalo, M., Bonsdorff, E., 2021.
Global climate change and the Baltic
Sea ecosystem: direct and indirect effects on species, communities and
ecosystem functioning. Earth Syst. Dynam. Discuss. [preprint].
https://doi.org/10.5194/esd-2021-73.
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt,
A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021.
Sea level dynamics and coastal erosion in the Baltic Sea region. Earth
Syst. Dynam., 12, 871–898.
https://doi.org/10.5194/esd-12-871-2021
Wimsatt, W.C., 1987.
False Models as Means to Truer Theories. [In:]
Neutral Models in Biology M.H. Nitecki, A. Hoffman (eds.), Oxford Univ. Press,
23–55.
Winsor, P., Rodhe, J., Omstedt, A., 2001.
Baltic Sea ocean climate: an
analysis of 100 yr of hydrographic data with focus on the freshwater
budget. Clim. Res. 18(1–2), 5–15.
Winsor, P., Rodhe, J., Omstedt, A., 2003.
Erratum: Baltic Sea ocean
climate: an analysis of 100 yr of hydrographical data with focus on the
freshwater budget. Clim. Res. 25(2), 183.
Winther, R.G., 2006.
On the Dangers of Making Scientific Models
Ontologically Independent: Taking Richard Levins’ Warnings Seriously.
Biol. Philos. 21, 703–724.
Winther, R.G., 2020.
When Maps Become the World. Univ. Chicago Press,
Chicago.
Wulff, F., Rahm, L., Larsson, P., 2001.
A System Analysis of the Baltic
Sea. Ecol. Stud. Vol. 148. Springer-Verlag, Berlin, Heidelberg, New York.
Wulff, F., Stigebrandt, A., Rahm, L., 1990.
Nutrient Dynamics of the Baltic
Sea. Ambio, 19(3), 126–133.
Short Communications
Non-native shrimps in Polish coastal waters: first record of Palaemon longirostris H. Milne Edwards, 1837 and new sites for P. macrodactylus Rathbun, 1902
Oceanologia, 66 (4)/2024, 66408, 6 pp.
https://doi.org/10.5697/DTMY8095
Katarzyna Spich*, Bartosz Witalis, Sławomira Gromisz, Lena Szymanek, Adam Woźniczka
Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81–332
Gdynia, Poland;
e-mail: kspich@mir.gdynia.pl (K. Spich)
*corresponding author
Keywords: Palaemon longirostris; Palaemon macrodactylus; Non-native species; Gulf of Gdańsk; Southern Baltic Sea
Received: 16 February 2023; revised: 20 May 2024; accepted: 5 September 2024.
Highlights
- optically complex Arctic coastal waters
- inherent optical properties (IOPs) and characteristics of suspended particles
- measurements of size-fractionated seawater samples
- contribution of particle size fractions to optical properties
- statistical relationships between characteristics of particle size and IOPs
Abstract
Two non-indigenous species of shrimps (Palaemon longirostris and Palaemon macrodactylus) were recorded in the Gulf of Gdańsk (Baltic Sea) during surveys of macrozoobenthos. Three individuals of Palaemon longirostris were found in the port of Gdynia in July 2018, and two more outside the port, in the Outer Puck Bay and the Puck Lagoon in September 2019. Palaemon macrodactylus introduced to Polish waters, was recorded in the ports of Gdynia and Gdańsk in June 2021. Of the 25 P. macrodactylus individuals, 8 were ovigerous females. This article aims to record the first appearance of P. longirostris in 2018 and confirm the occurrence of P. longirostris and P. macrodactylus in the Gulf of Gdańsk in the years that followed.
References
AquaNIS. Editorial Board, 2015.
Information system on Aquatic
Non-Indigenous and Cryptogenic Species. World Wide Web electronic
publication. www.corpi.ku.lt/databases/aquanis. Version 2.36+. Accessed
2024-04-17.
Ashelby, C. W., Worsfold, T. M., Fransen, C. H., 2004.
First records of the
oriental prawn Palaemon macrodactylus (Decapoda: Caridea), an
alien species in European waters, with a revised key to British
Palaemonidae. J. Mar. Biol. Assoc. UK 84(5), 1041–1050.
Béguer, M., Bergé, J., Girardin, M., Boët, P., 2010
. Reproductive
biology of Palaemon longirostris (decapoda: palaemonidae) from Gironde
Estuary (France), with a comparison with other european populations. J.
Crustacean Biol. 30(2), 175–185.
http://www.jstor.org/stable/40665208
Béguer, M., Bergé, J., Gardia-Parège, C., Beaulaton, L., Castelnaud, G.,
Girardin, M., Boët, P., 2012.
Long-term changes in population dynamics of
the shrimp Palaemon longirostris in the Gironde Estuary. Estuar.
Coast. 35(4), 1082–1099.
Campbell, P. J., Jones, M. B., 1990.
Water permeability of Palaemon
longirostris and other euryhaline caridean prawns. J. Experiment.
Biol. 150(1), 145–158.
Cartaxana, A., 1994.
Distribution and migrations of the prawn Palaemon
longirostris in the Mira River estuary (southwest Portugal). Estuaries
17(3), 685–694.
Cuesta, J. A., González-Ortegón, E., Drake, P., Rodrı́guez, A., 200
4.
First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Caridea,
Palaemonidae) from European waters. Crustaceana 77(3), 377–380.
Cyberski, J., Szefler, K., 1993.
Klimat Zatoki i jej zlewiska. [In:]
Korzeniewski, K. (ed.) Zatoka Pucka, Inst. Oceanograf. Univ. Gdańsk, 14–39,
(in Polish).
d’Udekem d’Acoz, C., Faasse, M., Dumoulin, E., De Blauwe, H., 2005.
Occurrence of the Asian shrimp, Palaemon macrodactylus Rathbun,
1902, in the Southern Bight of the North Sea, with a key to the Palaemonidae of
North-West Europe (Crustacea, Decapoda, Caridea). Nederland. Faunistische
Mededelingen 22, 95–111.
González-Ortegón, E., Cuesta, J. A., Pascual, E., Drake, P., 2010
.
Assessment of the interaction between the white shrimp, Palaemon longirostris,
and the exotic oriental shrimp, Palaemon macrodactylus, in a European estuary
(SW Spain). Biol. Invasions 12(6), 1731–1745.
Grabowski, M., 2006.
Rapid colonization of the Polish Baltic coast by an
Atlantic palaemonid shrimp Palaemon elegans Rathke, 1837. Aquat. Invasions
1, 116–123.
Gurney, R., 1923.
Some notes on Leander longirostris M. Edwards, and other
British prawns. Proc. Zool. Soc. London 93(1), Blackwell Publishing Ltd.,
Oxford, UK, 97–123.
HELCOM, OSPAR, 2015.
Joint Harmonised Procedure for the Contracting Parties
of HELCOM and OSPAR on the Granting of Exemptions under International
Convention for the Control and Management of Ships’ Ballast Water and
Sediments. Regulation A-4.
https://helcom.fi/wp-content/uploads/2021/01/HELCOM-OSPAR-Joint-Harmonized-Procedure-for-BWMC-A-4-exemptions_2020.pdf
Jacobson, P., Bergström, U., Eklöf, J., 2019
. Size-dependent diet
composition and feeding of Eurasian perch (Perca fluviatilis) and
northern pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 24,
137–153.
Janas, U., Barańska, A., 2008.
What is the diet of Palaemon elegans
Rathke, 1837 (Crustacea, Decapoda), a nonindigenous species in the Gulf of
Gdańsk (Southern Baltic Sea)? Oceanologia 50(2), 221–237.
Janas, U., Tutak, B., 2014.
First record of the oriental shrimp Palaemon
macrodactylus M. J. Rathbun, 1902 in the Baltic Sea. Oceanol.
Hydrobiol. Stud. 43(4) 431–435.
Jażdżewski, K., Grabowski, M., 2011. Alien Crustaceans Along the Southern
and Western Baltic Sea [In:] Galil, B., Clark, P., Carlton, J. (eds.)
In
the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and
Impacts. Invading Nature – Springer Series in Invasion Ecology vol. 6,
Springer, Dordrecht.
https://doi.org/10.1007/978-94-007-0591-3_11
Matern S, Herrmann J-P, Temming A., 2021.
Differences in diet compositions
and feeding strategies of invasive round goby Neogobius melanostomus and
native black goby Gobius niger in the Western Baltic Sea. Aquat.
First record of brush-clawed shore crab Hemigrapsus takanoi (Asakura and Watanabe, 2005) in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia, 66 (4)/2024, 66409, 6 pp.
https://doi.org/10.5697/NZTB7591
Bartosz Witalis 1,*, Joanna Hegele-Drywa2, Sławomira Gromisz1, Agata Nowak1
1National Marine Fisheries Research Institute, Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: bwitalis@mir.gdynia.pl (B. Witalis)
2Faculty of Oceanography and Geography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81–378 Gdynia, Poland
*corresponding author
Keywords: Port; Invasive; Biofouling; Negative impact; Crab
Received: 18 April 2024; revised: 26 September 2024; accepted: 30 September 2024.
Highlights
- First record of Hemigrapsus takanoi in the southern Baltic Sea
- The occurrence of this species in the port indicates maritime transport as a potential vector of introduction
- Expansion and invasiveness of H. takanoi may be limited by environmental conditions in the southern Baltic Sea
statistical relationships between characteristics of particle size and IOPs
Abstract
The first occurrence of the brush-clawed shore crab Hemigrapsus takanoi was recorded during the monitoring of non-indigenous species carried out in the Port of Gdynia (Gulf of Gdańsk) in 2023. The discovery is important as it indicates an expansion of the biogeographic range of this crab in the southern Baltic Sea. Two males with carapace widths of 12.1 and 21.51 mm and wet weights of 3.32 and 6.88 g, respectively, were collected using a Fukui box trap and a self-designed habitat collector. Although H. takanoi is considered a successful invader, according to previous studies, the expansion of this species in the southern Baltic Sea may be limited by the salinity gradient. Its early life stages show low resistance to low salinity conditions, thus precluding the establishment of self-sustaining populations of this crab.
References
AquaNIS, 2015.
Information system on Aquatic Non-Indigenous and Cryptogenic
Species. World Wide Web electronic publication. Version 2.36+ (accessed
2024-03-22).
www.corpi.ku.lt/databases/aquanis
Asakura, A., Watanabe, S., 2005.
Hemigrapsus takanoi, new species, a
sibling species of the common Japanese intertidal crab H. penicillatus
(Decapoda: Brachyura: Grapsoidea). J. Crustacean Biol. 25, 279–292.
https://doi.org/10.1651/C-2514
Bader, M., Chu, K.H., Schubart, C.D., 2024.
Reconstruction of invasion
pathways of East Asian crab species of the genus Hemigrapsus (Decapoda,
Brachyura, Varunidae) based on a comparative phylogeographic approach.
Crustaceana, 97, 453–477.
https://doi.org/10.1163/15685403-bja10414
Breton, G., Faasse, M., Noël P.Y., Vincent T., 2002.
A new alien crab in
Europe: Hemigrapsus sanguineus (Decapoda: Brachyura: Grapsidae). J.
Crustacean Biol. 22, 184–189.
https://doi.org/10.1651/0278-0372(2002)022
Brousseau, D.J., Goldberg, R., Garza, C., 2014.
Impact of Predation by the
Invasive Crab Hemigrapsus sanguineus on Survival of Juvenile Blue Mussels in
Western Long Island Sound. Northeast. Nat. 21 (1), 119–133.
https://doi.org/10.1656/045.021.0110
Cornelius, A., Wagner, K., Buschbaum, C., 2021.
Prey preferences,
consumption rates and predation effects of Asian shore crabs (Hemigrapsus
takanoi) in comparison to native shore crabs (Carcinus maenas) in north-western
Europe. Mar. Biodivers. 51, art. no. 75.
https://doi.org/10.1007/s12526-021-01207-7
Costello, K.E., Lynch, S.A., McAllen, R., O’Riordan, R.M., Culloty, S.C.,
2022.
Assessing the potential for invasive species introductions and
secondary spread using vessel movements in maritime ports. Mar. Pollut.
Bull. 177, 113496.
https://doi.org/10.1016/j.marpolbul.2022.113496
Geburzi, J., 2018.
New species from the Pacific: Establishment and
dispersal of two invasive crabs (genus Hemigrapsus) in German coastal
waters, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel.
Geburzi, J.C., Ewers-Saucedo, C., Brandis, D., Hartl, G.B., 2020.
Complex
patterns of secondary spread without loss of genetic diversity in invasive
populations of the Asian shore crab Hemigrapsus takanoi (Decapoda) along
European coasts. Mar. Biol. 167, 180.
https://doi.org/10.1007/s00227-020-03790-y
Geburzi, J.C., Graumann, G., Köhnk, S., Brandis, D., 2015.
First record
of the Asian crab Hemigrapsus takanoi Asakura and Watanabe, 2005 (Decapoda,
Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107.
https://doi.org/10.3391/bir.2015.4.2.06
Gittenberger, A., Rensing, M., Stegenga, H., Hoeksema, B., 2010.
Native and
non-native species of hard substrata in the Dutch Wadden Sea. Nederlandse
Faunistische Mededelingen. 33, 21–76.
Geißel, J.P., Espinosa-Novo, N., Giménez, L., Ewers, C., Cornelius, A.,
Martı́nez-Alarcón, D., Harzsch, S., Torres G., 2024.
Interactive
responses to temperature and salinity in larvae of the Asian brush-clawed crab
Hemigrapsus takanoi: relevance for range expansion into the Baltic Sea, in the
context of climate change. Biol. Invasions, 26, 1685–1704.
https://doi.org/10.1007/s10530-024-03279-5
Goedknegt, M.A., Havermans, J., Waser, A.M., Luttikhuizen, P.C., Velilla, E.
K., Camphuysen, K.C.J., van der Meer, J., Thieltges, D.W. 2017.
Cross-species comparison of parasite richness, prevalence, and intensity in
a native compared to two invasive brachyuran crabs. Aquat. Invasions 12
(2), 201–212.
https://doi.org/10.3391/ai.2017.12.2.08
Gollasch, S., 1999.
The Asian decapod Hemigrapsus penicillatus (De Haan,
1835) (Grapsidae, Decapoda) introduced in European waters: status quo and
future perspective. Helgoländer Meeresun. 52, 359–366.
https://doi.org/10.1007/BF02908909
Gong, M., Xie, G., Wang, H., Li, X., Li, A., Wan, X., Huang, J., Shi, C.,
Zhang, Q., Huang J., 2022.
Hematodinium perezi naturally infects Asian
brush-clawed crab (Hemigrapsus takanoi). J. Fish Dis. 46 (1), 67–74.
https://doi.org/10.1111/jfd.13718
Griffen, B.D., Byers, J.E., 2009.
Community impacts of two invasive crabs:
the interactive roles of density, prey recruitment, and indirect effects.
Biol. Invasions, 11, 927–940.
https://doi.org/10.1007/s10530-008-9305-3
Hänfling, B., Carvalho, G.R., Brandl, R., 2002.
mt-DNA sequences and
possible invasion pathways of the Chinese mitten crab. Mar. Ecol. Prog.
Ser. 238, 307–310.
HELCOM, OSPAR, 2020.
Joint Harmonised Procedure for the Contracting Parties
of HELCOM and OSPAR on the Granting of Exemptions under International
Convention for the Control and Management of Ships’ Ballast Water and
Sediments. Regulation A-4, published online (accessed 2024-03-22).
https://helcom.fi/wp-content/uploads/2021/01/HELCOM-OSPAR-Joint-HarmonizedProcedure-for-BWMC-A-4-exemptions_2020.pdf
iNaturalist, [n.d.],
Observatiobs: Brush-clawed Shore Crab Online resource
(accessed 2024-03-22).
https://www.inaturalist.org/observations?place_id=any&subview=map&taxon_id=491876
Jensen, G.C., McDonald, P.S., Armstrong, D.A., 2002.
East meets west:
competitive interactions between green crab Carcinus maenas, and native and
introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225,
251–262.
https://doi.org/10.3354/meps225251
Kazmierczak, F., Leitinger, J., Schüler, L., Pomrehn, S., 2020.
Erfassung
und Bewertung nicht einheimischer Arten-Neobiota- in Küstengewässern
Mecklenburg-Vorpom-merns Endbericht 2019. IfAÖ Institut für Angewandte
Ökosystemforschung GmbH, Neu Broderstorf, 49 pp.
Kraemer, G.P., Sellberg, M., Gordon, A., Main, J., 2007.
Eight-year Record
of Hemigrapsus sanguineus (Asian Shore Crab) Invasion in Western Long Island
Sound Estuary. Northeast. Nat. 14, 207–224.
https://doi.org/10.1656/1092-6194(2007)14[207:EROHSA]2.0.CO;2
Lewis, S., Maslin, M., 2015.
Defining the Anthropocene. Nature, 519
(7542), 171–180. https://doi.org/10.1038/nature14258
Makino, W., Miura, O., Kaiser, F., Geffray, M., Katsube, T., Urabe, J., 2018.
Evidence of multiple introductions and genetic admixture of the Asian
brush-clawed shore crab Hemigrapsus takanoi (Decapoda: Brachyura: Varunidae)
along the Northern European coast. Biol. Invasions, 20, 825–842.
https://doi.org/10.1007/s10530-017-1604-0
McDermott, J.J., 2011.
Parasites of shore crabs in the genus Hemigrapsus
(Decapoda: Brachyura: Varunidae) and their status in crabs geographically
displaced: a review. J. Nat. Hist. 45 (37/40), 2419–2441.
Mingkid, W.M., Masashi, Y.M., Watanabe, S., 2006.
Salinity tolerance of
larvae in the penicillate crab Hemigrapsus takanoi (Decapoda: Brachyura:
Grapsidae). Mer (Paris), 44, 17–21.
Normant-Saremba, M., Hegele-Drywa, J., Marszewska, L., 2020.
Sampling
native and non-native mobile epifauna with baited traps and habitat collectors
– Port of Gdynia case study (southern Baltic Sea, Poland). Oceanol.
Hydrobiol. Stud. 49 (3), 319–327.
https://doi.org/10.1515/ohs-2020-0028
Nour, O., Pansch, C., Lenz, M., Wahl, M., Clemmensen, C., Stummp, M., 2021.
Impaired larval development at low salinities could limit the spread of the
nonnative crab Hemigrapsus takanoi in the Baltic Sea. Aquat. Biol. 30,
85–99.
https://doi.org/10.3354/ab00743
O’Connor, N.J., 2014.
Invasion dynamics on a temperate rocky shore: from
early invasion to establishment of a marine invader. Biol. Invasions. 16,
73–87.
https://doi.org/10.1007/s10530-013-0504-1
Ojaveer, H., Olenin, S., Narščius, A., Florin, A.B., Ezhova, E., Gollasch,
S., Jensen, K.R., Lehtiniemi, M., Minchin, D., Normant-Saremba, M., Strake, S.,
2017.
Dynamics of biological invasions and pathways over time: a case study
of a temperate coastal sea. Biol. Invasions, 19 (3), 799–813.
https://doi.org/10.1007/s10530-016-1316-x
Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton,
J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M.,
Kühn, I., Liebhold, A.M., Mandrak, N.E., Meyerson, L.A., Pauchard, A., Pergl,
J., Roy, H.E., Seebens, H., Kleunen, M., Vilà, M., Wingfield, M.J.,
Richardson, D.M., 2020.
Scientists’ warning on invasive alien
species. Biol. Rev. 95, 1511–1534.
https://doi.org/10.1111/brv.12627
Rato, L.D., Crespo, D., Lemos, M.F.L., 2021.
Mechanisms of bioinvasions by
coastal crabs using integrative approaches – A conceptual review. Ecol.
Indic. 125, 107578.
https://doi.org/10.1016/j.ecolind.2021.107578
Rato, L.D., Simões, T., Novais, S.C., Damasceno, J.M., Van der Meer, J.,
Thieltges, D.W., Marques, J.C., Lemos, M.F.L., 2024.
Thermal performance of
native and invasive crab species: investigating the invasion potential of
Hemigrapsus takanoi in southern European Carcinus maenas’ habitats.
Biol. Invasions. 26, 3587–3601.
https://doi.org/10.1007/s10530-024-03396-1
Ricciardi, A., 2012.
Invasive Species. [In:] Encyclopedia of
Sustainability Science and Technology. Meyers, R.A. (Ed.), Springer, New York,
NY, 5547–5560.
https://doi.org/10.1007/978-1-4419-0851-3_574
Schubert, H., Wasmund N., Sellner, K.G., 2010.
Long term investigations in
Brackish Ecosystems. [In:] Long-Term Ecological Research: Between Theory
and Application. Müller, F., Baessler C., Schubert, H., Klotz, S. (Eds.),
Springer, Heidelberg, London, New York, 163–178.
Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson,
J., Courchamp, F., Galil, B.S., Garcı́a-Berthou, E., Pascal, M., Pyšek, P.,
Sousa, R., Tabacchi, E., Vilà, M., 2013
. Impacts of biological invasions:
What’s what and the way forward. Trends Ecol. Evol. 28,
58–66.
https://doi.org/10.1016/j.tree.2012.07.01
Soors, J., Faasse, M.A., Stevens, M., Verbessem, I., de Regge, N., Van den
Bergh, E., 2010.
New crustacean invaders in the Schelde estuary
(Belgium). Belg. J. Zool. 140, 3–10.
Šargač, Z., Giménez, L., Harzsch, S., Krieger, J., Fjordside, K., Torres,
G., 202
1. Contrasting offspring responses to variation in salinity and
temperature among populations of a coastal crab: A maladaptive ecological
surprise? Mar. Ecol. Prog. Ser. 677, 51–65.
https://doi.org/10.3354/meps13851
Tempesti, J., Mangano, M.C., Langeneck, J., Lardicci, C., Maltagliati, F.,
Castelli, A., 2020.
Non-indigenous species in Mediterranean ports: a
knowledge baseline. Mar. Environ. Res. 161, 105056.
https://doi.org/10.1016/j.marenvres.2020.105056
Theurich, N., Briski, E., Cuthbert, R.N., 2022.
Predicting ecological
impacts of the invasive brush-clawed shore crab under environmental
change. Sci. Rep. 12, 9988.
https://doi.org/10.1038/s41598-022-14008-0
Wolf, M.A., Bousi, A., Juhmani, A.F., Sfriso, A., 2018.
Shellfish import
and hull fouling as vectors for new red algal introductions in the Venice
Lagoon. Estuar. Coast. Shelf. S. 215, 30–38.
https://doi.org/10.1016/j.ecss.2018.09.028
Wood, C.A., Bishop, J.D.D., Davies, C.J., Delduca, E.L., Hatton, J.C., Herbert,
R.J.H., Clark, P.F., 2015.
Hemigrapsus takanoi Asakura and Watanabe, 2005
(Crustacea: Decapoda: Brachyura: Grapsoidea): first records of the brush-clawed
shore crab from Great Britain. BioInva sions Rec. 4, 109–113.
https://doi.org/10.3391/bir.2015.4.2.07
Zabrocki, M., Heibeck, N., Broeg, K., 2021.
Exoten im Bewuchs – Bedeutung
der Freizeitschifffahrt für die Verbreitung nicht-einheimischer Arten.
Schlussbericht der Sportbootuntersuchungen im Themenfeld 2 des
BMVI-Expertennetzwerks.
Decreasing otolith length-to-width ratio with fish length – Atlantic cod (Gadus morhua), southern Baltic Sea
Oceanologia, 66 (4)/2024, 66410, 5 pp.
https://doi.org/10.5697/VZSR4828
Anna Dziubińska, Mariusz Sapota*, Aleksandra Komur
Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: mariusz.sapota@ug.edu.pl (M. Sapota)
*corresponding author
Keywords: Atlantic cod; Otoliths; Stock; Słupsk Bank
Received: 5 April 2024; revised: 16 October 2024; accepted: 25 October 2024.
Highlights
- Otoliths used for analysis were collected from Atlantic cod (Gadus morhua) caught in the Słupsk Bank region
- No differences in otolith growth were found between males and females
- The greater the length of the fish, the smaller the ratio of otolith length to width
Abstract
The observation concerns otoliths of Atlantic cod from the Słupsk Bank. A total of 100 pairs of otoliths were selected
from 100 specimens, the total length of which ranged from 5.2 cm to 62 cm. It was found that the greater the length
of the fish, the smaller the ratio of otolith length to width. Whether this is a regular trend that was observed for the
first time, or a matter of analyzing otoliths from different populations, remains an unresolved question. No differences
were found between males and females in the relationship between fish size and otolith size, or changes in the ratio of
otolith length to width.
References
Andersson, L., André, C., Johannesson, K., Pettersson, M., 2023
.
Ecological adaptation in cod and herring and possible consequences of future
climate change in the Baltic Sea. Front. Marine Sci. 10.
https://doi.org/10.3389/fmars.2023.1101855
Birgersson, L, Söderström, S; Belhaj, M., 2022
. The Decline of Cod in
the Baltic Sea – A review of biology, fisheries and management, including
recommendations for cod recovery. The Fisheries Secretariat, Stockholm,
Sweden.
Campana, S.E., Casselman, J.M., 1993.
Stock Discrimination Using Otolith
Shape Analysis. Can. J. Fish Aquat. Sci. 50 (5), 1062–1083.
https://doi.org/10.1139/f93-123
Cardinale, M., Doering-Arjes, P., Kastowsky, M., Mosegaard, H., 2004.
Effects of sex, stock, and environment on the shape of known-age Atlantic
cod (Gadus morhua) otoliths. Can. J. Fish Aquat. Sci. 61 (2),
158–167.
https://doi.org/10.1139/f03-15
Cohen, D.M., Inada, T., Iwamoto, T., Scialabba, N., 1990.
Gadiform fishes
of the world. FAO Fisheries, Synopsis 10, 125.
Folkvord, A., Johannessen, A., Moksness, E., 2004.
Temperature-dependent
otolith growth in Norwegian spring-spawning herring (Clupea harengus L.)
larvae. Sarsia 89 (5), 297–310.
https://doi.org/10.1080/00364820410002532
HELCOM Red List Fish and Lamprey Species Expert Group, 2013.
https://helcom.fi/wp-content/uploads/2019/08/HELCOM-RedList-All-SIS_Fish.pdf
Hüssy, K., 2008.
Otolith shape in juvenile cod (Gadus morhua):
Ontogenetic and environmental effects. J. Exp. Mar. Biol. Ecol. 364 (1),
35–41.
https://doi.org/10.1016/j.jembe.2008.06.026
Hüssy, K., Mosegaard, H., Albertsen, C.M., Nielsen, E.Eg., Hemmer-Hansen, J.,
Eero, M., 2016.
Evaluation of otolith shape as a tool for stock
discrimination in marine fishes using Baltic Sea cod as a case study.
Fish. Res. 174, 210–218.
https://doi.org/10.1016/j.fishres.2015.10.010
Hüssy, K., 2011.
Review of western Baltic cod (Gadus morhua)
recruitment dynamics. ICES J. Mar. Sci. 68 (7), 1459–1471.
https://doi.org/10.1093/icesjms/fsr088
Irgens C., 2018.
Otolith structure as indicator of key life history events
in Atlantic cod (Gadus morhua).
https://doi.org/10.13140/RG.2.2.35023.74408
Keats, D., Steele, D.H., 1992.
Diurnal Feeding of Juvenile Cod (Gadus
morhua) which Migrate into Shallow Water at Night in Eastern
Newfoundland. J. Northw. Atl. Fish. Sci. 13, 7–14.
https://doi.org/10.2960/J.v13.a1
Mosegaard, H., Svedäng, H., Taberman, K., 1988.
Uncoupling of Somatic and
Otolith Growth Rates in Arctic Char (Salvelinus alpinus) as an Effect of
Differences in Temperature Response. Can. J. Fish Aquat. Sci. 45 (9),
1514–1524.
https://doi.org/10.1139/f88-180
Nelson, J.S., 2006.
Fishes of the World. 4th edn., John Wiley &
Sons, Hoboken, 601 pp.
Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K.H., Andersen, N.G.,
Niiranen, S., Bergström, U., Ustups, D., Kulatska, N., Casini, M., 2020.
Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern
Baltic Sea under environmental change. ICES J. Mar. Sci. 77 (2),
624–632.
https://doi.org/10.1093/icesjms/fsz224
Niiranen, S., Orio, A., Bartolino, V., Bergström, U., Kallasvuo, M.,
Neuenfeldt, S., Ustups, D., Casini, M., 2019.
Predator-prey body size
relationships of cod in a lowdiversity marine system. Mar. Ecol. Prog.
Ser. 627, 201–206.
https://doi.org/10.3354/meps13098
Sapota, M.R., Dąbrowska, V., 2019.
Shapes of otoliths in some Baltic fish
and their proportions. Oceanol. Hydrobiol. St. 48 (3), 296–304.
https://doi.org/10.2478/ohs-2019-0027
Schade, F.M., Weist, P., Dierking, J., Krumme, U., 2022.
Living apart
together: Long-term coexistence of Baltic cod stocks associated with
depth-specific habitat use. PLoS ONE 17 (9), e0274476.
https://doi.org/10.1371/journal.pone.0274476
Corrigendum
Corrigendum to "Bed forms under combined action of waves and wind-driven currents in the remote foreshore of the non-tidal sea" by Magdalena Stella-Bogusz [Oceanologia 65(3) 2023, 484–493. https://doi.org/10.1016/j.oceano.2023.03.001]
Oceanologia, 66 (4)/2024, 66411
https://doi.org/10.5697/BLPY4989
Magdalena Stella-Bogusz
Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland;
e-mail: m.stella@ibwpan.gda.pl
PDF