Oceanologia No. 66 (4) / 24


Original research article


Position Paper


Short Communications


Corrigendum


Original research article



Statistical Downscaling of Global Climate Projections along the Egyptian Mediterranean coast
Oceanologia, 66 (4)/2024, 66401, 25 pp.
https://doi.org/10.5697/OBOE5006

Mohamed ElBessa1,2, Mohamed Shaltout1,*
1Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
2College of Maritime Transport and Technology (CMTT), Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu-Qir, Alexandria, Egypt;
e-mail: mohamed.shaltot@alexu.edu.eg
*corresponding author

Keywords: Statistical downscaling; ERA5; GFDL; Air temperature; Relative humidity; Surface wind

Received: 27 July 2023; revised: 23 June 2024; accepted: 22 August 2024.

Highlights

Abstract

The climatic parameters (surface air temperature, surface relative humidity, surface wind regime, and mean sea level pressure) are important in addressing adaptation/mitigation to climatic changes. In particular, the recent and future of these climatic parameters along the Egyptian Mediterranean Coast (EMC) were analyzed based on hourly real observed data (2007–2020) and hourly reanalysis (ERA5) database (1979–2020) together with daily GFDL (global climate model) mini-ensemble mean (2006–2100). Recent climatic studies in the study area have not given enough attention to the downscaling approach, underscoring the need to set up a statistical downscaling technique to better understand the forces that govern climatic change. Here, we analyze the current climatic and future scenarios for the parameters studied in a three-step process. The first step is to study the current weather variabilities in the short term (14 years) using the real observed data. The second step is to describe the long-term (42 years) current weather variabilities over the studied stations using a reanalysis ERA5 database after bias removal by comparing with the observations. The third step is to statistically downscale the GFDL mini-ensemble, which means describing the future projection along the study area up to 2100. The statistical downscale technique is built on the developed bias correction statistical model by matching cumulative distribution functions (CDF) of the mini-ensemble mean and observations during the overlapped period (2007–2020).
The results show that ERA5 describes the efficiency of the weather characteristics of the five studied stations. This data, along with the EMC 2006–2020, displays a significant positive trend for surface air temperature and significant negative trends for surface wind speed, relative humidity, and sea level pressure. The GFDL mini-ensemble mean projection, up to 2100, has a significant bias with the studied weather parameters. This is partly due to the GFDL coarse resolution (2° × 2.5°). After removing the bias, the statistically downscaled simulations from the GFDL mini ensemble mean show that the study area’s climate will experience significant change, especially surface air temperature and relative humidity with a great range of uncertainties according to the scenario used and regional variations. Our results are the initial step in enhancing the understanding and development of statistical downscaling techniques to project future climate scenarios over EMC.

  References   ref

Abdelwares, M., Lelieveld, J., Hadjinicolaou, P., Zittis, G., Wagdy, A., Haggag, M., 2019. Evaluation of a regional climate model for the eastern Nile basin: Terrestrial and atmospheric water balance. Atmosphere 10 (12). https://doi.org/10.3390/ATMOS10120736

Agrawala, S., Moehner, A., Gagnon-Lebrun, F., Van Aalst, M., Smith, J., Hagenstad, M., El Raey, M., Conway, D., 2004. Development and Climate Change in Egypt. Focus on Coastal Resources and the Nile. International Nuclear Information System (INIS), 36 (1).

Ahmad, I., Tang, D., Wang, T., Wang, M., Wagan, B., 2015. Precipitation trends over time using Mann-Kendall and Spearman's Rho tests in the Swat River Basin, Pakistan. Adv. Meteorol. 431860, 15 pp. https://doi.org/10.1155/2015/431860

Alcamo, J., Moreno, J.M., Novaky, B., Bindi, M., Corobov, R., Devoy, R.J.N, Giannakopoulos, C., Martin, E., Olesen, J.E., Shvidenko, A., 2007. Europe. [In:] Climate Change 2007: Impacts, adaptation, and vulnerability. Contribution by Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Cambridge University Press, Cambridge, UK, 541-580.

Alduchov, O.A., Eskridge, R.E., 1996. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. 35(4), 601-609. https://doi.org/10.2172/548871

Alpert, P., Krichak, S.O., Shafir, H., Haim, D., Osetinsky, I., 2008. Climatic trends in extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Global and Planetary Change 63(2-3), 163-170. https://doi.org/10.1016/j.gloplacha.2008.03.003

Anagnostou, E.N., Negri, A.J., Adler, R.F., 1999. Statistical Adjustment of Satellite Microwave Monthly Rainfall Estimates over Amazonia. J. Appl. Meteorol. 38, 1590-1598.

Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N., Shaltout, M., 2022. Recent atmospheric changes and future projections along the Saudi Arabian Red Sea Coast. Sci. Rep. 12(1). https://doi.org/10.1038/s41598-021-04200-z

Bucchignani, E., Mercogliano, P., Panitz, H.J., Montesarchio, M., 2018. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change Res. 9(1), 66-80. https://doi.org/10.1016/j.accre.2018.01.004

Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 23 July 2020. https://cds.climate.copernicus.eu/cdsapp#!/home

De Vries, A.J., Tyrlis, E., Edry, D., Krichak, S.O., Steil, B., Lelieveld, J., 2013. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. 118(13), 7087-7108. https://doi.org/10.1002/jgrd.50569

Domroes, M., El-Tantawi, A., 2005. Recent temporal and spatial temperature changes in Egypt. Int. J. Climatol. 25(1), 51-63. https://doi.org/10.1002/joc.1114

Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012. GFDL's ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate 25(19), 6646-6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Dunne, J.P., John, J.G., Shevliakova, S., Stouffer, R.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Sentman, L.T., Adcroft, A.J., Cooke, W., Dunne, K.A., Griffies, S.M., Hallberg, R.W., Harrison, M.J., Levy, H., Wittenberg, A.T., Phillips, P.J., Zadeh, N., 2013. GFDL's ESM2 global coupled climatecarbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate 26(7), 2247-2267. https://doi.org/10.1175/JCLI-D-12-00150.1

Egyptian Naval Forces, 1962. Theoretical of meteorology, Egyptian Navy Publication, Educational Authority, 125 pp.

Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2021. Dynamical downscaling of surface air temperature and wind field variabilities over the southeastern levantine basin and Mediterranean Sea. Climate 9(1). https://doi.org/10.3390/cli9100150

Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2022. Modeling the future scenarios for surface temperature and wind regime over the South-Eastern Levantine Basin, Egypt. Egyptian J. Aquatic Biol. Fish. 26(3), 541-564. https://doi.org/10.21608/ejabf.2022.244114

El-Geziry, T.M., Elbessa, M., Tonbol, K.M., 2021. Climatology of Sea-Land Breezes Along the Southern Coast of the Levantine Basin. Pure Appl. Geophys. 178(5), 1927-1941. https://doi.org/10.1007/s00024-021-02726-x

Elsharkawy, M.S., El-Geziry, T.M., El-Din, S.H.S., 2016. General Characteristics of Surface Waves off Port Said, Egypt. IOSR J. Environ. Sci. Toxicol. Food Tech. 10(08).

Essa, K.S.M., Mubarak, F., 2006. Survey and Assessment of Wind-Speed and Wind-power in Egypt, Including Air Density Variation. Wind Engineering 30(2), 95-106. https://doi.org/10.1260/030952406778055081109-115

Griffies, S.M., Winton, M., Donner, L.J., Horowitz, L.W., Downes, S.M., Farneti, R., Gnanadesikan, A., Hurlin, W.J., Lee, H.C., Liang, Z., Palter, J.B., Samuels, B.L., Wittenberg, A.T., Wyman, B.L., Yin, J., Zadeh, N., 2011. The GFDL CM3 coupled climate model: Characteristics of ocean and sea ice simulations. J. Climate, 24(13), 3520-3544. https://doi.org/10.1175/2011JCLI3964.1

Haggag, M., El-Badry, H., 2013. Mesoscale Numerical Study of Quasi-Stationary Convective System over Jeddah in November 2009. Atmos. Climate Sci. 03(01), 73-86. https://doi.org/10.4236/acs.2013.31010

Hamed, A.A., 1979. Atmospheric Circulation Features Over the Southeastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves at Alexandria. M.Sc. Thesis, Alexandria University, Egypt.

Hamed, A.A., 1983. Atmospheric Circulation over the Southeastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves Along the Egyptian Coast. Ph.D. Thesis, Alexandria University, Egypt.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2020. ERA5 hourly data on single levels from 1979 to the present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (accessed on 09-01-2021). https://doi.org/10.24381/CDs.adbb2d47.

Hausfather, Z., Peters, G., 2020. Emissions - the "business as usual" story is misleading. Nature 577 (2020), 618-620. https://doi.org/10.1038/d41586-020-00177-3

IPCC, 2014. Climate change 2014: impacts, adaptation, and vulnerability. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, Pt. A, Cambridge University Press, New York.

IPCC, 2019. Special Report - Global Warming of 1.5°C. Report of the Intergovernmental Panel on Global Warming. https://www.ipcc.ch/sr15/

IPCC, 2022. Strengthening and Implementing the Global Response. [In:] Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press, 313-444. https://doi.org/10.1017/9781009157940.006

IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switzerland, 35-115. https://doi.org/10.59327/IPCC/AR6-9789291691647

Kautz, L.A., Martius, O., Pfahl, S., Pinto, J.G., Ramos, A.M., Sousa, P.M., Woollings, T., 2022. Atmospheric blocking and weather extremes over the Euro-Atlantic sector - A review. Weather and Clim. Dynam. 3(1), 305-336. https://doi.org/10.5194/wcd-3-305-2022

Kendall M.G., 1975. Rank Correlation Methods. 4th edn., Charles Griffin, London, UK.

Krichak, S.O., Alpert, P., Bassat, K., Kunin, P., 2007. The surface climatology of the eastern Mediterranean region obtained in a three-member ensemble climate change simulation experiment. Adv. Geosci. 12, 67-80. https://doi.org/10.5194/adgeo-12-67-2007

Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., Zittis, G., 2016. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change 137(1-2), 245-260. https://doi.org/10.1007/s10584-016-1665-6

Liljegren, J.C., Carhart, R.A., Lawday, P., Tschopp, S., Sharp, R., 2008. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 5(10), 645-655. https://doi.org/10.1080/15459620802310770

Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P.M., Krichak, S.O., Jansà, A, Maheras, P., Sanna, A., Trigo, I.F., Trigo, R., 2006. Chapter 6 Cyclones in the Mediterranean region: Climatology and effects on the environment. [In:] Developments in Earth and Environmental Sciences, Vol. 4, 325-372. https://doi.org/10.1016/S1571-9197(06)80009-1

Mahfouz, B.M.B., Osman, A.G.M., Saber, S.A., Kanhalaf-Allah, H.M.M., 2020. Assessment of weather and climate variability over the western harbor of Alexandria, Egypt. Egyptian J. Aquatic Biol. Fish. 24(5), 323-339. https://doi.org/10.21608/EJABF.2020.105861

Mann H.B., 1945. Non-parametric test against trend, Econometrica 13, 245-259. https://doi.org/10.2307/1907187.

Meligy, M.M., 2000. Wave and Surge Forecasting Along the Egyptian Coast of the Mediterranean. M.Sc. Thesis, Arab Academy for Science and Technology and Maritime Transport, Alexandria Governorate, Egypt.

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756.

Nastos, P.T., Zerefos, C.S., 2009. Spatial and temporal variability of consecutive dry and wet days in Greece. Atmos. Res. 94(4), 616-628. https://doi.org/10.1016/j.atmosres.2009.03.009

Osman, M., Zittis, G., Haggag, M., Abdeldayem, A.W., Lelieveld, J., 2021. Optimizing Regional Climate Model Output for Hydro-Climate Applications in the Eastern Nile Basin. Earth Sys. Environ. 5(2), 185-200. https://doi.org/10.1007/s41748-021-00222-9

Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31(19). https://doi.org/10.1029/2004GL020938

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafaj, P., 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33-57.

Saaroni, H., Bitan, A., Alpert, P., Ziv, B., 1996. Continental polar outbreaks into the Levant and eastern Mediterranean. Int. J. Climatol. 16, 1175-1191. https://doi.org/10.1002/(SICI)1097-0088(199610)16:10<1175:AID-JOC79>3.0.CO;2

Saaroni, H., Ziv, B., Bitan, A., Alpert, P., 1998. Easterly wind storms over Israel. Theor. Appl. Climatol. 59(1-2), 61-77. https://doi.org/10.1007/s007040050013

Sabra, F.A., 1979. Wind, current and sea level variations over the continental shelf Alexandria coast. M.Sc. Thesis, Alexandria University, Egypt, 52-60.

Sallam, G.A.H., Elsayed, E.A., 2015. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt. J. Nat. Resour. Dev. 5., 76-87. https://doi.org/10.5027/jnrd.v5i0.11

Shaltout, M., El Gindy, A., Omstedt, A., 2013. Recent climate trends and future scenarios in the Egyptian Mediterranean coast based on six global climate models. Geofizika J. 30(1), 19-41.

Statistical downscaling of global climate projections ... 25/25 Tuel, A., Eltahir, E.A.B., 2020. Why Is the Mediterranean a Climate Change Hot Spot? J. Climate, 33(14), 5829-5843. https://doi.org/10.1175/JCLI-D-19-0910.1

Tonbol, K.M., El-Geziry, T.M. and Elbessa, M., 2018. Evaluation of Changes and Trends of Air Temperature within the Southern Levantine Basin. Weather, 73(2), 60-66. https://doi.org/10.1002/wea.3186

UNESCO, 1979. Map of the world distribution of arid regions (Explanatory note). MAB Tech. Notes 7, Unesco, Paris, 54 pp.

Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., Wang, G., 2020. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.00014

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., 2011. The representative concentration pathways: an overview. Climatic Change, 109, 5-31.

Vigaud, N., Vrac, M., Caballero, Y., 2013, Probabilistic downscaling of GCM scenarios over southern India. Int. J. Climatol. 33, 1248-1263. https://doi.org/10.1002/joc.3509

Vaittinada Ayar, P., Vrac, M., Mailhot, A., 2021. Ensemble bias correction of climate simulations: preserving internal variability. Sci. Rep. 11, 3098.https://doi.org/10.1038/s41598-021-82715-1

Williamson, D.F., Parker, R.A., Kendrick, J.S., 1989. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 110(11), 916-921. https://doi.org/10.1059/0003-4819-110-11-916

Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. 107(20), ACL 6-1-ACL 6-15. https://doi.org/10.1029/2001JD000659

Yadav, R.K., 2021. Relationship between Azores High and Indian summer monsoon. NPJ Clim. Atmos. Sci. 4(1). https://doi.org/10.1038/s41612-021-00180-z

Zecchetto, S., De Biasio, F., 2007. Sea surface winds over the Mediterranean basin from satellite data (2000-04): Meso- and local-scale features on annual and seasonal time scales. J. Appl. Meteorol. Clim. 46(6), 814-827. https://doi.org/10.1175/JAM2498.1

Zerefos, C., Repapis, C., Giannakopoulos, C., Kapsomenakis, J., Papanikolaou, D., Papanikolaou, M., Poulos, S., Vrekoussis, M., Philandras, C., Tselioudis, G., Gerasopoulos, E., Douvis, K., Diakakis, M., Nastos, P., Hadjinicolaou, P., Xoplaki, E., Luterbacher, J., Zanis, P., Tzedakis, C., Repapis, K., 2011. The climate of the Eastern Mediterranean and Greece: past, present, and future. [In:] The Environmental, Economic and Social Impacts of Climate Change in Greece. Bank of Greece, Athens, 1-126.


full, complete article - PDF


Estimation of harbor and bay resonances by MMS-FEM model with application to the bay of Toulon France
Oceanologia, 66 (4)/2024, 66402, 15 pp.
https://doi.org/10.5697/LOZC6742

Kostas Belibassakis1,*, Vincent Rey2
1School of Naval Architecture and Marine Engineering, National Technical University of Athens, Zografos 15780, Athens, Greece;
e-mail: kbel@fluid.mech.ntua.gr (K. Belibassakis), vincent.rey@univ-tln.f (V.Rey)
2Université de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France
*corresponding author

Keywords: Harbor resonances; Bay resonances; Modified Mild-Slope model; FEM; Toulon Bay

Received: 22 January 2024; revised: 18 July 2024; accepted: 30 August 2024.

Highlights

Abstract

Bay and harbor resonances are investigated in this work, taking into account the variable bathymetry of the semi-enclosed basin. The Modified Mild-Slope (MMS) equation is implemented for the description of combined refraction-diffraction effects, from which the eigenperiods and eigenmodes are calculated by means of a low-order Finite Element Method (FEM scheme). The model is first applied to a coastal-port region of Toulon, France, illustrating the versatility of the model to easily include coastal structures such as detached breakwater. Next, the present model is applied to the extended nearshore area of Toulon including the Gulf of Giens showing the applicability of the developed MMS-FEM model for the estimation of harbor and bay resonances, as well as more extended nearshore regions where variable bottom topography effects become important. The calculated resonant frequency depends on the domain characteristics and the size of the open sea boundary and accurately reproduces the measurements within Toulon Bay. On the other hand, for open bays such as the Gulf of Giens, a discrepancy is observed between calculated and measured eigenperiods which is due to a very wide opening of the sea boundary that cannot accurately describe the seiching. This underlines the difficulty of accurately calculating the resonance frequency for open bays, in contrast to the classic studies carried out for ports, which are considered virtually closed basins, and confirms the complementary nature of long-term water level measurements and numerical calculations, for better quantification of the risks associated with energetic meteorological and/or oceanographic events.

  References   ref

Athanassoulis, G.A., Belibassakis, K.A., Gerostathis, Th., 2002. The POSEIDON nearshore wave model and its application to the prediction of the wave conditions in the nearshore/coastal region of the Greek Seas. J. Atmos. Ocean Sci. 8(2–3), 101–117.

Bertin, X., De Bakker, A., Van Dongeren, A., Coco G., Andre, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson, M., Deen, M., Dodet, G., Guerin, T., Inch, K., Leckler, F., Mccall, R., Muller, H., Olabarrieta, M., Roelvink, D., Ruessink, G., Sous, D., Stutzmann, E., Tissier, M., 2018. Infragravity waves: from driving mechanisms to impacts. Earth Sci. Rev. 177, 774–799. https://doi.org/10.1016/j.earscirev.2018.01.002

Chamberlain, P.G., Porter, D., 1995. The modified mild-slope equation. J. Fluid Mech. 291, 393–407.

Dufresne, Ch., Duffa, C., Rey, V., 2014. Wind-forced circu- lation model and water exchanges through the channel in the Bay of Toulon, Ocean Dynam. 64, 209–224. https://doi.org/10.1007/s10236-013-0676-3

Gao, J., Hou, L., Liu, Y., Shi, H., 2024. Influences of Bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 305, 117941.

Gao, J., Ma, X., Chen, H., Zang ,J., Dong, G., 2021. On hydrodynamic characteristics of transient harbor resonance excited by double solitary waves. Ocean Eng. 219, 108345.

Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coastal Eng. 170, 103977.

Gao, J., Ma X., Zang, J., Dong, G., Ma, X., Zhu, Y. , Zhou, L., 2020. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coastal Eng. 158, 103670.

Gao, J., Shi, H., Zang, J., Liu, Y., 2023. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 281, 114923.

Heinrich, P., Gailler, A., Dupont, A., Rey, V., Hébert, H., Listowski, C., 2023. Observation and simulation of the meteotsunami generated in the Mediterranean Sea by the Tonga eruption on 15 Jan 2022, Geophys. J. Int. 234, 2, 903–914. https://doi.org/10.1093/gji/ggad092

Karathanasi, F., Karperaki, A., Gerostathis Th., Belibassakis K., 2020. Offshore-to-Nearshore Transformation of Wave Conditions and Directional Extremes with Application to Port Resonances in the Bay of Sitia-Crete. Atmosphere 11(3), 280.

Karperaki, A., Papathanasiou, T.K., Belibassakis, K.A., 2019. An optimized, parameter-free PML-FEM for wave scattering problems in the ocean and coastal environment. Ocean Eng. 179, 307–324.

Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coastal Eng. 19, 97–127. Mei, C.C., 1994. The applied dynamics of ocean surface waves. World Sci., Singapore, 768 pp.

Miles, J.W., Chamberlain, P.G., 1998. Topographical scattering of gravity waves. J. Fluid Mech. 361, 175–188.

Millot, C., Broyard, R., Metais, O., Tine, J., 1981. Les oscillations propres de la Rade de Toulon, Oceanologica Acta, 4(3), 259–262.

Rabinovich, A.B., 2009. Seiches and Harbor Oscillations. [In:] Handbook of Coastal and Ocean Engineering. Young, C.K. (ed.), World Sci., Singapore, 193–236.

Rey, V., Dufresne, C., Fuda, J. L., Mallarino, D., Missamou, T., Paugam, C., Rougier, G., Taupier-Letage, I. , 2020. On the use of long term observation of water level and temperature along the shore for a better understanding of the dynamics: Example of Toulon area, France, Ocean Dynam. 70, 913–933. https://doi.org/10.1007/s10236-020-01363-7

Rey, V., Paugam, C., Dufresne, C., Mallarino, D., Missamou, T., Fuda, J.L., 2022. Seiches à l’échelle de baies: origines et identification des périodes propres d’oscillations à partir des données d’observations sur le long terme en Provence à partir du réseau HTM-NET, XVIIème journées génie civil – génie côtier, Chatou, 11–13.

Vanem, E., 2017. A regional extreme value analysis of ocean waves in a changing climate. Ocean Eng. 144, 277–295.

Yalciner A.C., Pelinovsky E., 2006. A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry. Ocean Eng. 34, 747–757.

full, complete article - PDF


Variability and relationships between particle sizes, composition and optical properties of suspended particulate matter in the coastal waters of western Spitsbergen, assessed through measurements of size-fractionated seawater samples
Oceanologia, 66 (4)/2024, 66403, 23 pp.
https://doi.org/10.5697/EZNP4044

Sławomir B. Woźniak*, Dagmara Litwicka, Joanna Stoń-Egiert
Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: woznjr@iopan.pl (S.B. Woźniak)
*corresponding author

Keywords: Inherent optical properties (spectral scattering coefficient of particles, spectral absorption coefficients of particles, depigmented (non-algal) particles and phytoplankton); Composition of suspended particulate matter (mass concentrations of particulate organic matter, particulate inorganic matter, chlorophyll a; Seawater samples fractionated by particle size; Contributions of size fractions of suspended matter to particle concentration metrics and optical coefficients; Relations between metrics of size, composition and optical coefficients; Arctic coastal waters

Received: 12 April 2024; revised: 10 July 2024; accepted: 5 September 2024.

Highlights

Abstract

Measurements of inherent optical properties (IOPs) and characteristics of concentration and composition of suspended particles were made on original and size-fractionated surface water samples from Arctic fjords and coastal waters of western Spitsbergen in the Svalbard archipelago, in the summer months of 2021 and 2022. Optical measurements included the spectral scattering coefficient of particles, and spectral absorption coefficients of particles as well as depigmented (non-algal) particles and phytoplankton. Assemblages of suspended particles were characterised by measuring the mass concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate inorganic matter (PIM), and phytoplankton pigments including chlorophyll a (Chla ). All measurements were performed on original (unfiltered) seawater and on size-fractionated samples obtained by filtration using a combination of nylon meshes and membrane filters. This allowed us to determine the contribution of the fractions of very small (VS), small (S) and combined medium and large particles (ML) to the total SPM and Chla, as well as to the total scattering and absorption coefficients. The obtained results: (i) indirectly indicate a clear variability in particle size distributions occurring in the studied marine environment (e.g., the contribution of ML size fraction to SPM (the ratio SPMML/SPM) varied between 0.10 and 0.52); (ii) indicate noticeable differences in composition between size fractions (e.g., the POM/SPM ratio was on average 0.21 for the S fraction, and 0.34 and 0.32 for the VS and ML fractions, respectively); (iii) in most cases indicate that the fraction S had the largest contribution to all analysed spectral optical coefficients, followed by the VS and ML fractions (the average contributions of the S fraction to scattering coefficient of particles and absorption coefficient of particles or depigmented (non-algal) particles were above 0.6 in the entire analysed spectral ranges); (iv) allowed for the identification of statistical relationships between selected characteristics describing changes in particle size and variability of particle IOPs (e.g., we observed statistical relations between SPMML/SPM and the spectral slope of scattering coefficient by particles, as well as SPM-specific coefficients of scattering by particles).

  References   ref

Ahn, Y.-H., 1999. Proprietes optiques des particules biologiques et minerales presentes dans l’ocean. Application: inversion de la reflectance. PhD thes. Univ. Pierre and Marie Curie, Paris, France.

Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859. https://doi.org/10.4319/lo.2003.48.2.0843

Babin, M., Stramski, D., 2002. Light absorption by aquatic particles in the near-infrared spectral region. Limnol. Oceanogr. 47, 911–915. https://doi.org/10.4319/lo.2002.47.3.0911

Babin, M., Stramski, D., 2004. Variations in the mass-specific absorption coefficient of mineral particles suspended in water. Limnol. Oceanogr. 49, 756–767. https://doi.org/10.4319/lo.2004.49.3.0756

Bricaud, A., Morel, A., 1986. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Appl. Opt. 25, 571–580.

Ciotti, A.M., Lewis, M.R., Cullen, J.J., 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47 (2), 404–417.

Davies, E.J., McKee, D., Bowers, D., Graham, G.W., Nimmo-Smith, W.A.M., 2014. Optically significant particle sizes in seawater. Appl. Opt. 53, 1067–1074. http://dx.doi.org/10.1364/AO.53.001067

IOCCG Protocol Series, 2018. Inherent Optical Property Measurements and Protocols: Absorption Coefficient, [in:] Neeley, A. R. Mannino, A. (Eds.), IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Vol. 1.0, IOCCG, Dartmouth, NS, Canada, 78 pp. http://dx.doi.org/10.25607/OBP-119

Jonasz, M., Fournier, G.R., 2007. Light scattering by particles in water. Theoretical and experimental foundations. Acad. Press, Amsterdam, 704 pp.

Koestner, D., Stramski, D., Reynolds, R.A., 2020. Assessing the effects of particle size and composition on light scattering through measurements of size-fractionated seawater samples. Limnol. Oceanogr. 65 (2), 173–190. https://doi.org/10.1002/lno.11259

Meler, J., Litwicka, D., Zabłocka, M., 2023. Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea, Biogeosciences 20, 2525–2551. https://doi.org/10.5194/bg-20-2525-2023

Mobley, C. D. (Ed.), 2022. The Oceanic Optics Book, International Ocean Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, 924 pp. https://doi.org/10.25607/OBP-1710

Morel, A., Bricaud, A., 1986. Inherent optical properties of algal cells including picoplankton theoretical and experimental results. Canadian Bull. Fish. Aquat. Sci. 214, 521–560.

Neukermans, G., Loisel, H., Meriaux, X., Astoreca, R., McKee, D., 2012. In situ variability of mass- specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 57 (1), 124–144. https://doi.org/10.4319/lo.2011.57.1.0124

Pearlman, S.R., Costa, H.S., Jung, R.A., McKeown, J.J., Pearson, H.E., 1995. Solids (section 2540), [in:] Eaton, A.D., Clesceri, L.S., Greenberg, A.E. (Eds.), Standard Methods for the Examination of Water and Wastewater. American Publ. Health Assoc., Washington, D.C., 2-53–2-64.

Peng, F., Effler, S.W., 2007. Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis, Limnol. Oceanogr. 52, 204–216.

Ramı́rez-Pérez, M., Röttgers, R., Torrecilla, E., Piera, J., 2015. Cost-Effective Hyperspectral Transmissometers for Oceanographic Applications: Performance Analysis. Sensors 15, 20967–20989. https://doi.org/10.3390/s150920967

Reynolds, R.A., Stramski, D., Neukermans, G., 2016. Optical backscattering of particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 61, 1869–1890. https://doi.org/10.1002/lno.10341

Röttgers, R., Gehnke, S., 2012. Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach. Appl. Opt. 51, 1336–1351.

Stoń, J., Kosakowska, A., 2002. Phytoplankton pigments designation – an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14, 205–210. https://doi.org/10.1023/A:1019928411436

Stoń-Egiert, J., Kosakowska, A., 2005. RP-HPLC determination of phytoplankton pigments comparison of calibration results for two columns. Mar. Biol. 147, 251–260. https://doi.org/10.1007/s00227-004-1551-z

Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010. The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results. Oceanologia 52(1), 101–125. https://doi.org/10.5697/oc.52-1.101

Stramski, D., Babin, M., Woźniak, S.B., 2007. Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 52, 2418–2433. https://doi.org/10.4319/lo.2007.52.6.241

Stramski, D., Kiefer, D.A, 1991. Light scattering by microorganisms in the open ocean. Prog. Oceanogr. 28, 343–383. https://doi.org/10.1016/0079-6611(91)90032-H

Stramski, D., Reynolds, R.I., Kaczmarek, S., Uitz, J., Zheng, G., 2015. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Appl. Opt. 54, 6763–6782. https://doi.org/10.1364/AO.54.006763

Stramski, D., Woźniak, S.B., Flatau, P.J., 2004. Optical properties of Asian mineral dust suspended in seawater. Limnol. Oceanogr. 49, 749–755. https://doi.org/10.4319/lo.2004.49.3.0749

Tassan, S., Ferrari, G.M., 1995. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 40(8), 1358–1368.

Tassan, S., Ferrari, G.M., 2002. A sensitivity analysis of the ’transmittance-reflectance’ method for measuring light absorption by aquatic particles. J. Plankton Res. 24(8), 757–774. https://doi.org/10.1093/plankt/24.8.757

Woźniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer, New York.

Woźniak, S.B., Litwicka, D., Stoń-Egiert, J., Stramski, D., 2024. Variability of inherent optical properties of seawater in relation to the concentration and composition of suspended particulate matter in the coastal Arctic waters of western Spitsbergen. J. Mar. Syst. 246, 104019. https://doi.org/10.1016/j.jmarsys.2024.104019

Woźniak, S.B., Meler, J., Stoń-Egiert, J., 2022. Inherent optical properties of suspended particulate matter in the southern Baltic Sea in relation to the concentration, composition and characteristics of the particle size distribution; new forms of multicomponent parameterizations of optical properties. J. Mar. Syst. 229, 103720. https://doi.org/10.1016/j.jmarsys.2022.103720

Woźniak, S.B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 182, 79–96. https://doi.org/10.1016/j.jmarsys.2017.12.005

Woźniak, S.B., Stramski, D., Stramska, M., Reynolds, R.A., Wright, V.M., Miksic, E.Y., Cichocka, M., Cieplak, A.M., 2010. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. Oceans 115, C08027. https://doi.org/10.1029/2009JC005554

full, complete article - PDF


Dynamics of phytoplankton functional communities in the South China Sea in response to multiple simultaneous stressors and ENSO-related climate anomalies
Oceanologia, 66 (4)/2024, 66404, 16 pp.
https://doi.org/10.5697/YEIT8094

Anthony Banyouko Ndah1,2,3,*, Julien Di Pane2
1Plymouth Marine Laboratory, Plymouth, UK;
e-mail: andah@pml.ac.uk (A.B. Ndah)
2Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
3Universiti Brunei Darussalam, Jalan Tunku Link Gadong, Brunei Darussalam
*corresponding author

Keywords: Phytoplankton; Environmental stressors; South China Sea; Multivariate statistics; Climate change

Received: 8 February 2021; revised: 5 September 2024; accepted: 6 September 2024.

Highlights

Abstract

Phytoplankton is crucial in maintaining the functional integrity of marine ecosystems, shaping the delicate balance between the food web base and higher trophic levels. However, these organisms are also susceptible to environmental changes, with fundamental ecological implications. We investigated the response of four phytoplankton communities (diatoms, coccolithophores, chlorophytes, and cyanobacteria) to hydroclimatic parameters in the South China Sea (SCS) between 1998 and 2012, and ascertained the effects of El Niño and La Niña climatic anomalies on the niche preferences of these communities at interannual timescales. Overall, changes in temperature and NO3 jointly explained 51% of phytoplankton variability. Cyanobacteria was the most generalist taxon, displaying tolerance to both El Niño and La Niña conditions, justifying its relatively high abundance, increasing trend, and spatial expansion. Coccolithophore, the second most abundant community mainly in northern SCS was associated with La Niña-related conditions while diatoms were primarily associated with El Niño but displayed tolerance to both climatic regimes and a strong positive response to iron. Finally, chlorophytes were marginal under both El Niño and La Niña conditions indicating that inherent hydrographic constraints and competition limit their niche breadth and abundance. We concluded that non-linear interactions linked to El Niño drive interannual microbial dynamics in the SCS by modifying hydrographic and geochemical characteristics. Hence, we surmised that under accelerated ocean warming, cyanobacteria, and most likely dinoflagellates will dominate phytoplankton community structure with significant impacts on the food web and regional marine biogeochemistry.

  References   ref


Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007. https://doi.org/10.1029/2006JC003798

Alves-de-Souza, C., Iriarte, J.L., Mardones, J.I., 2019. Interannual Variability of Dinophysis acuminata and Protoceratium reticulatum in a Chilean Fjord: Insights from the Realized Niche Analysis. Toxins 11(1), 19. https://doi.org/10.3390/toxins11010019

Baker, M.E., King, R.S., 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol. Evol. 1, 25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x

Bajarias, F.F.A., 2000. Phytoplankton in the surface layers of the South China Sea, Area III: Western Philippines. [in:] Proceedings of the Third Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area III: Western Philippines, 13–15 July 1999. Bangkok, Thailand, Secretariat, Southeast Asian Fisheries Development Center, 220–234. Retrieved January, 2016, from: http://repository.seafdec.org/handle/20.500.12066/4355

Birk, S., Chapman, D., Carvalho, L. et al., 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1216-4

Borcard, D., Gillet, F. , Legendre, P., 2011. Numerical Ecology with R., 1st edn., Springer Int. Publ. AG, Switzerland, 436 pp., ISBN: 978-1-4419-7975-9. https://doi.org/10.1007/978-1-4419-7976-6

Cheah, W., Taylor, B.B., Wiegmann, S., Raimund, S., Krahmann, G., Quack, B., Bracher, A., 2013. Photophysiological state of natural phytoplankton communities in the South China Sea the Sulu Sea. Biogeosci. Discuss. 10. http://dx.doi.org/10.5194/bgd-10-12115-201

Chen, C.C., Shiah, F.K., Chung, S.W., Liu, K.K., 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Marine Syst. 59, 97–110. https://doi.org/10.1016/j.jmarsys.2005.09.002

Cota, S.S., Borrego, S.A., 1988. The El Niño effect on the phytoplankton of a northwestern Baja California coastal lagoon. Estuar. Coast. Shelf Sci. 27(1), 109–115. https://doi.org/10.1016/0272-7714(88)90034-0

Cui, D., Wang, J., Tan, L., 2016. Response of phytoplankton community structure and size-fractionated chlorophyll-a in an upwelling simulation experiment in the Western South China Sea. J. Ocean Univ. China Oceanic & Coastal Sea Res. 15(5), 835–840. https://doi.org/10.1007/s11802-016-3017-6

DeVantier, L.M., Turak, E., 2009. Coral Reefs of Brunei Darussalam. Fisheries Dept., MIPR, Brunei Darussalam, 100 pp., ISBN: 978-99917-31-48-3.

Dolédec, S., Chessel, D., Gimaret-Carpentier C., 2000. Niche Separation in Community Analysis: a New Method. Ecology 81, 2914. https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2

Dong, L., Li, L., Li, Q., Liu, J., 2015. Basin-wide distribution of phytoplankton lipids in the South China Sea during intermonsoon seasons: influence by nutrient and physical dynamics. Deep Sea Res. Pt. II 122, 52–63. https://doi.org/10.1016/j.dsr2.2015.07.005

Gao, X.L., Song, J.M., 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang. Estuary, China. Mar. Pollut. Bull. 50 (3), 327–335. https://doi.org/10.1016/j.marpolbul.2004.11.004

Gao, X.L., Bowler, C., Kazamia, E., 2021. Iron metabolism strategies in diatoms. J. Experiment. Botany 72(6), 2165–2180. https://doi.org/10.1093/jxb/eraa575

Giehl, N.F.S., Brasil, L.S., Dias-Silva, K., Nogueira, D.S., Cabette, H.S.R., 2019. Environmental Thresholds of Nepomorpha in Cerrado Streams, Brazilian Savannah. Neotrop. Entomol. 482, 186–196. https://doi.org/10.1007/s13744-018-0632-5

Gieswein, A., Hering, D., Lorenz, A.W., 2019. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci. Total Environ. 652, 1290–1301. https://doi.org/10.1016/j.scitotenv.2018.10.180

Groß, E., Di Pane, J., Boersma, M., Meunier, C.L., 2022. River discharge-related nutrient effects on North Sea coastal and offshore phytoplankton communities. J. Plankton Res. 44(6), 947–960.

Guisan, A., Edwards, Jr. T.C., Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Modell. 157(2–3), 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1

Guo, C., Yu, J., Ho, T.-Y., Wang, L., Song, S., Kong, L., Liu, H., 2012. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input. Biogeosciences 9, 1519–1536. https://doi.org/10.5194/bg-9-1519-2012

Guo, X., Yu, Y., Zhu, H., Zhao, X., Liu, X., 2020. Multivariate analysis of phytoplankton community structure in Changli Gold Coast National Nature Reserve of Hebei Province in spring, 2019. IOP Conf. Ser.: Earth Environ. Sci. 467, 012141. https://doi.org/10.1088/1755-1315/467/1/012141

Guo, X., Zhu, A., Chen, R., 2021. China’s algal bloom suffocates marine life. Science. 373 (6556), 751. https://doi.org/10.1126/science.abl5774

Hodgkiss, I.J., Lu, S.H., 2004. The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong. Hydrobiol. 512, 215–229. https://doi.org/10.1023/B:HYDR.0000020330.37366.e5

Huang, K.-F., You, C.-F., 2007. Tracing freshwater plume migration in the estuary after a typhoon event using Sr isotopic ratios. Geophys. Res. Lett. 34, L02403. https://doi.org/10.1029/2006GL028253

Huapaya, K., Echeveste, P., 2023. Physiological responses of Humboldt current system diatoms to Fe and Cu colimitation. Mar. Environ. Res. 187(30), 105937. https://doi.org/10.1016/j.marenvres.2023.105937

Huppert, A., Blasius, B., Stone, L., 2002. A model of phytoplankton blooms. Am. Nat. 159(2) 156–171. https://doi.org/10.1086/324789

Huynh, H-N.T. Alvera-Azcárate, A., Beckers, J-M., 2019. Analysis of surface Chl-a associated with sea surface temperature and surface wind in the South China Sea. Ocean Dynam. 705. https://doi.org/10.1007/s10236-019-01308-9

Hsu, S.-C., Gong, G.-C., Shia, F.-K. et al., 2014. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning. Atmos. Chem. Phys. Discuss. 14, 21433–21472. https://doi.org/10.5194/acpd-14-21433-2014

IHO, 1953. Limits of Oceans and Seas. International Hydrographic Organization. Bremerhaven, PANGAEA, hdl:10013/epic.37175.d001, https://epic.awi.de/id/eprint/29772/1/IHO1953a.pdf

Karasiewicz, S., Dolédec, S., Lefebvre, S., 2017. Within outlying mean indexes: refining the OMI analysis for the realized niche decomposition. PeerJ 5:e3364. https://doi.org/10.7717/peerj.3364

King, R.S., Baker, M.E., Kazyak, P.F., Weller, D.E., 2011. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecol. Appl. 215, 1659–78. https://doi.org/10.1890/10-1357.1

Legendre, P., Legendre., L., 2012. Numerical ecology. 3rd edn., Elsevier Sci. BV, Amsterdam. xvi + 990 pp. Li, Q.P., Dong, Y., Wang, Y., 2015a. Phytoplankton dynamics driven by vertical nutrient fluxes during the spring intermonsoon period in the north-eastern South China Sea. Biogeosci. Discuss. 12, 6723–6755. https://doi.org/10.5194/bgd-12-6723-2015

Li, Q.P., Wang, Y.J. Dong, Y. Gan, J.P. et al., 2015b. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120(6), 3913–3936. https://doi.org/10.1002/2014JC010609

Liao, X., Ma, J., Zhan, H., 2012. Effect of different types of El Niño on primary productivity in the South China Sea. Aquat. Ecosyst. Health 15, 135–143. https://doi.org/10.1080/14634988.2012.687655

Lin, I.-I., Lien, C.-C., Wu, C.-R., Wong, G.T.F., Huang, C.-W., Chiang, T.-L., 2010. Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring. Geophys. Res. Lett. 37, L16602. https://doi.org/10.1029/2010GL043872

Liu, H., Song, X., Huang, L., Tan, Y., Zhang, J., 2011. Phytoplankton biomass and production in the northern South China Sea during summer: Influenced by Pearl River discharge and coastal upwelling. Acta Ecol. Sin. 31, 133–136. https://doi.org/10.1016/J.CHNAES.2011.02.001

Louanchi, F., Najjar, R.G., 2001. Annual cycles of nutrients and oxygen in the upper layers of the North Atlantic Ocean. Deep Sea Res. Pt. II: Top. Stud. Oceanogr. 4810, 2155–2171. https://doi.org/10.1016/S0967-06450000185-5

Lu, S.H., Hodgkiss, I.J., 1999. An unusual year for the occurrence of harmful algae. Harmful Algal News 18, 1–3.

Lu, S., Hodgkiss, I.J., 2004. Harmful algal bloom causative collected from Hong Kong waters. [in:] Ang P.O., (ed.), Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Developments in Hydrobiology. Springer, Dordrecht, 173 pp. https://doi.org/10.1007/978-94-007-0944-7_30

Mackey, K.R.M., Kavanaugh, M.T., Wang, F. et al., 2017. Atmospheric and Fluvial Nutrients Fuel Algal Blooms in the East China Sea. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00002

Meehl, G.A., Arblaster, J.M., Fasullo, J.T., Hu, A., Trenberth, K.E., 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1(7), 360–364. http://dx.doi.org/10.1038/nclimate1229

Meehl, G.A., Teng, H., Arblaster, J.M., 2014. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Change 4(10), 898–902. https://www.nature.com/articles/nclimate2357

Milliman, J.D., Mie-e, R., 1995. River flux to the sea: impact of human intervention on river systems and adjacent coastal areas, [Chapter 4]. [in:] Eisma, D., (ed.), Climate Change: Impact on coastal habitation, Lewis Publ., Boca Raton, 57–84.

Moreno, H.D., Köring, M., Di Pane, J. et al., 2022. An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure. Commun Biol. 5, 179 pp. https://doi.org/10.1038/s42003-022-03105-5

NCDC, 2003. El Niño/Southern Oscillation – Annual 2003. NOAA National Centres for Environmental Informa- tion. Retrieved October, 2020, from: https://www.ncdc.noaa.gov/sotc/enso/200313

NCDC, 2004. El Niño/Southern Oscillation – Annual 2004. NOAA National Centres for Environmental Informa- tion. Retrieved October, 2020, from: https://www.ncdc.noaa.gov/sotc/enso/200413

NCDC, 2009. El Niño/Southern Oscillation – September 2009. NOAA National Centres for Environmental In- formation. Retrieved February, 2020, from: https://www.ncdc.noaa.gov/sotc/enso/200909

Ndah, A.B., 2017. Multi-temporal patterns of sea surface temperature in the South China Sea: a perfect reflection of global ocean-climatic variability modes?, 18th Int. GHRSST Sci. Team Meeting, Qingdao, China, 5–9 June 2017. Retrieved March, 2019, from: https://www.researchgate.net/publication/3201616 72_multi-temporal_patterns_of_sea_surface_temperature_in_the_south_china_sea_a_perfect_reflection_of_g lobal_ocean-climatic_variability_modes

Ndah, A.B., Dagar, L.K., Becek, B., Odihi, J.O., 2019. Spatiotemporal dynamics of phytoplankton functional groups in the South China Sea and their relative contributions to marine primary production. Region. Stud. Mar. Sci. 29, 100598. https://doi.org/10.1016/j.rsma.2019.100598

Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., Shi, J., 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109, C10005. https://doi.org/10.1029/2004JC002365

Palacz, A. P., Xue, H., Armbrecht, C., Zhang, C., Chai, F., 2011. Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J. Geophys. Res. 116, C09015. https://doi.org/10.1029/2011JC007064

Pedersen, E.J, Miller, D.L., Simpson, G.L., Ross, N., 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7:e6876. https://doi.org/10.7717/peerj.6876

Peng, Y., Wang, Z., 1999. Analysis of nutritive status and variation of hydrochemical indexes in seawater of aquaculture area at Dapeng’ao Bight in Daya Bay. J. Oceanogr. Taiwan Strait 18(1), 26–32.

Phang, S-M., Yeong, Y.H., Ganzon-Fortes, E.T. et al., 2016. Marine algae of the South China Sea is bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull. Zool. 34, 13–59. https://doi.org/10.1007/A43C-165932685F02

Qiu, D.J., Huang, L.M., Zhang, J.L., Lin, S.J., 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Continent. Shelf Res. 30(2), 177–186. https://doi.org/10.1016/j.csr.2009.10.015

Raitsos, D.E., Lavender, S.J., Maravelias, C.D., Haralabous, J., Richardson, A.J., Reid, P.C., 2008. Identifying four phytoplankton functional types from space: An ecological approach. Limnol. Oceanogr. 532, 605–613. https://doi.org/10.4319/lo.2008.53.2.0605

Roemmich, D., McGowan, J., 1995. Climatic warming and the decline of zooplankton in the California Current. Science 267, 5202, 1324–1326. https://doi.org/10.1126/science.267.5202.1324

Shen, P.-P., Li, G., Huang, L.-M., Zhang, J.-L., Tan, Y.-H., 2011. Spatio-temporal variability of phytoplankton assemblages in the Pearl River estuary, with special reference to the influence of turbidity and temperature. Cont. Shelf Res. 31(16), 1672–1681. https://doi.org/10.1016/j.csr.2011.07.002

Shih, Y-Y., Hung, C-C., Tuo, S., et al., 2020. The Impact of Eddies on Nutrient Supply, Diatom Biomass and Carbon Export in the Northern South China Sea. Front. Earth Sci. 8, 537332. https://doi.org/10.3389/feart.2020.537332

Simpson, G.L., 2018. Modelling Palaeoecological Time Series Using Generalized Additive Models. Front. Ecol. Evol. 6, 149. https://doi.org/10.3389/fevo.2018.00149

Siswanto, E., Ye, H., Yamazaki, D. and Tang, D.L., 2017. Detailed spatiotemporal impacts of El Niño on phytoplankton biomass in the South China Sea. J. Geophys. Res. Oceans 122, 2709–2723. https://doi.org/10.1002/2016JC012276

Sultana, J., Tibby, J., Recknagel, F., Maxwell, S., Goonan, P., 2020. Comparison of two commonly used methods for identifying water quality thresholds in freshwater ecosystems using field and synthetic data. Sci. Total Environ. 724, 137999. https://doi.org/10.1016/j.scitotenv.2020.137999

Sun, C., 2017. Riverine inluence on ocean color in the equatorial South China Sea. Cont. Shelf Res. 143, 151–158. https://doi.org/10.1016/j.csr.2016.10.008

Tan, S.C., Shi, G.Y., 2009. Spatiotemporal variability of satellite-derived primary production in the South China Sea, 1998–2006. J. Geophys. Res. 114, G03015. https://doi.org/10.1029/2008JG000854

Tan, S., Zhang, J., Li, H. et al., 2020. Deep Ocean Particle Flux in the Northern South China Sea: Variability on Intra-Seasonal to Seasonal Timescales. Front. Earth Sci. 8, 74. https://doi.org/10.3389/feart.2020.00074

Tang, D.L., Ni, I.H., Kestner, D.R., Muller-Kargen, F.E., 1999. Remote sensing observations of winter phytoplankton blooms southeast of the Luzon Strait in the South China Sea. Mar. Ecol. Prog. Ser. 191, 43–51. https://doi.org/10.3354/meps191043

Tang, D.L., Kawamura, H., Dien, T.V., Lee, M.A., 2004. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea. Mar. Ecol. Prog. Ser. 268, 31–41. https://doi.org/10.3354/meps268031

Tang, S. and Liu, F., 2020. Remote sensing of phytoplankton declined during the late 1980s and early 1990s in the South China Sea. Int. J. Remote Sens. 41, 6010–6021. https://doi.org/10.1080/01431161.2020.1718241

Tian, Y.Q., Huang, B., Yu, C., Chen, N.W., Hong, H.S., 2014. Dynamics of phytoplankton communities in Jiangdong Reservoir, Jiulong River, Fujian, China. Chin. J. Oceanol. Limnol. 32(2) 255–265. https://doi.org/10.1007/s00343-014-3158-7

Trenberth, K., Nat. Center Atmospheric Res.Staff (Eds.), 2020. The Climate Data Guide: Niño SST Indices Niño 1+2, 3, 3.4, 4; ONI and TNI. Retrieved November, 2019, from: https://climatedataguide.ucar.edu/climate-data/Ni~{n}o-sst-indices-Ni~{n}o-12-3-34-4-oni-and-tni

Turak, E., DeVantier, L.M., 2011. Field Guide to Reef-building Corals of Brunei Darussalam. Fisheries Dept., MIPR Brunei Darussalam, 256 pp., ISBN: 978-99917-31-49-0.

van Strien, A.J., Soldaat, L.L., Gregory, R.D., 2012. Desirable mathematical properties of indicators for biodiversity change. Ecol. Indic. 14, 202–208. https://doi:10.1016/j.ecolind.2011.07.007

Von Rückert, G., Giani, A., 2004. Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann cyanobacteria. Rev. Bras. Bot. 27(2). https://doi.org/10.1590/S0100-84042004000200011

Wang, Z.-D., Ho, K.-C., 2002. Oceanographic conditions of the South China Sea continental shelf. Retrieved January, 2015, from: http://www.red-tide.org/new_site/ocean_con.htm

Wang, Z., Qi, Y. Chen, J., Xu, N., Yang Y., 2006. Phytoplankton abundance, community structure, and nutrients in cultural areas of Daya Bay, South China Sea. J. Mar. Syst. 62, 85–94. https://doi.org/10.1016/j.jmarsys.2006.04.008

Wang, J.J., Tang, D.L., Sui, Y., 2010. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait, J. Mar. Syst. 83, 141–149.

Wang, G., Cao, W., Wang, G., Zhou, W., 2013. Phytoplankton size class derived from phytoplankton absorption and chlorophyll-a concentrations in the northern South China Sea. Chinese J. Oceanol. Limnol. 31(4), 750–761. http://dx.doi.org/10.1007/s00343-013-2291-z

Wang, Y., Zhao, M., Dai, C., Pan, X., 2014. Nonlinear dynamics of a nutrient-plankton model. Abstract Appl. Analysis, Hindawi Publ. Corp., 451757, 10. http://dx.doi.org/10.1155/2014/451757

Wang, J., Bouwman, A.F., Liu, X. et al., 2021. Harmful algal blooms in Chinese coastal waters will persistdue to pertur bed nutrientratios. Environ. Sci. Technol. Lett. 8(3), 276–284.

Wei, N., Thangaraj, Ian, S., Jenkinson, R. et al., 2018. Factors driving the spatiotemporal variability in phytoplankton in the Northern South China Sea. Cont. Shelf Res. 162. https://doi.org/10.1016/j.csr.2018.04.009

Wong, G.T.F., Tseng, C.M., Wen, L.S., Chung, S.W., 2007. Nutrient dynamics and N-anomaly at the SEATS station. Deep Sea Res. Pt. II 54(14), 1528–1545. http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2226

Wood, S.N., 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Sta. Assoc. 99, 673–686. https://doi.org/10.2307/27590439

Wu, J., Chung, S.-W., Wen, L.-S., Liu, K.-K., Chen, Y.-L.L. Chen, H.-Y., Karl, D.M., 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochem. Cy. 171, 1008. https://doi.org/10.1029/2002GB001924

Xu, Y., Zhang. T., Zhou, J., 2019. Historical Occurrence of Algal Blooms in the Northern Beibu Gulf of China and Implications for Future Trends. Front. Microbiol. 10, 451, PMID: 30918499; PMCID: PMC6424905. https://doi.org/10.3389/fmicb.2019.00451

Zhao, H., Tang, D., 2007. Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. J. Geophys. Res. 112, C02017. https://doi.org/10.1029/2006JC003536

Zhang, X., Zhuang, G., Guo, J., Yin, K. Zhang, P., 2007. Characterization of aerosol over the Northern South China Sea during two cruises in 2003. Atmos. Environ. 41, 7821–783. https://doi.org/10.1016/j.atmosenv.2007.06.031

full, complete article - PDF


A study of upper ocean characteristics in response to the three intense re-curving tropical cyclones from the Arabian Sea using satellite and in-situ measurements
Oceanologia, 66 (4)/2024, 66405, 14 pp.
https://doi.org/10.5697/VIVV8745

Adarsh Dube1,4,*, Ajeet Ku Maurya2, Rajesh Singh3, T. Dharmaraj1
1Indian Institute of Tropical Meteorology, Pune, India;
e-mail: adarsh.dube92@gmail.com (A. Dube)
2Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India
3K.S. Krishnan Geomagnetic Research Laboratory, IIG, Prayagraj, India
4India Meteorological Department, Pune, India
*corresponding author

Keywords: Tropical cyclones re-curvature; Argo floats; SST; Enthalpy fluxes

Received: 14 April 2024; revised: 3 September 2024; accepted: 6 September 2024.

Highlights

Abstract

We present the sea surface temperature (SST), latent heat flux (LHF), and sensible heat flux (SHF) studies of three tropical cyclones in the Indian subcontinent region. These three tropical cyclones were scrutinized based on their intensity scale ranging from Category 2 (Very Severe Cyclonic Storm, VSCS) to Category 5 (Super Cyclonic Storm, SuCS) on a hurricane scale (IMD scale). VSCS Vayu, SuCS Kyarr, and ESCS (Extremely Severe Cyclonic Storm) Maha formed over the Arabian Sea in June, October, and November 2019, respectively. There is a 2°C to 4°C difference in the SST during the pre- and post-cyclone period along the best track. The maximum reductions in SST up to 8°C have occurred in the region from where the cyclones have re-curved. The enthalpy fluxes (LHF and SHF) are highest at 280 W/m2 around the cyclone’s best track and follow the same direction of the cyclone development. Prior flux changes in the cyclone region may have a role in directing the cyclone’s best track. Argo floats within 1° from the best track revealed that pre-cyclone SST was warmer at the surface than post-cyclone SST. The sub-surface SST at a depth of 100–150 m suggests a warming of the ocean in the post-cyclone period near and adjacent to cyclone intensification regions due to the upwelling of the warm subsurface waters. The upper ocean response is crucial to studying the increasing intensity of TCs and the re-curvature of its best track over the Arabian Sea.

  References   ref

Aiyyer, A., 2015. Recurving western North Pacific tropical cyclones and midlatitude predictability, Geophys. Res. Lett. 42, 7799–7807. https://doi.org/10.1002/2015GL065082

Shyamala, B., Sudevan, S., Shinde, G.M., Burte, M.D., 2001. Behaviour of recurving cyclonic storms in the Arabian Sea as a response to atmospheric interactions, MAUSAM 52(3), 469–478. https://doi.org/10.54302/mausam.v52i3.1718

Bhaskar Rao, D.V., Hari Prasad, D., Srinivas, D., 2009. Impact of Horizontal resolution and the advantages of nested domains approach in the prediction of tropical cyclone intensification and movement, JGR 114, D11106. https://doi.org/10.1029/2008JD011623

Bongirwar, V., Rakesh, V., Kishtawal, C.M., Joshi, P.C., 2011. Impact of satellite observed microwave SST on the simulation of tropical cyclones. Natural Hazards 58, 929–944. https://doi.org/10.1007/s11069-010-9699-y

Cai, Y., 2022. Enhanced Predictability of rapidly intensifying tropical cyclones over the western North Pacific associated with snow depth changes over the Tibetan Plateau, J. Clim., 1–17. https://doi.org/10.1175/JCLI-D-21-0758.1

Cao, J., Haikun Z., Bin W., Liguang W., 2021. Hemisphere asymmetric tropical cyclones response to anthropogenic aerosol forcing. Nat.Commun. 12, 6787, 1–8. https://doi.org/10.1038/s41467-021-27030-z

Chand, S. S., Walsh, K. J., Camargo, S. J., Kossin, J. P., Tory, K. J., Wehner, M. F., et al., 2022. Declining tropical cyclone frequency under global warming. Nature Climate Change 12(7), 655–661. https://doi.org/10.1038/s41558-022-01388-4

Cione, J.J., Uhlhorn, E.W., 2003. Sea surface temperature variability in hurricanes: Implications concerning intensity change. Mon. Weather Rev. 131, 1783–1796.

Craig, G. C., Gray, S. L., 1996. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53, 3528–3540. https://doi.org/10.1175/1520-0469(1996)053,3528COWATM.2.0.CO;2

Crespo, J.A., Posselt, D.J., Asharaf, S., 2019. CYGNSS Surface Heat Flux Product Development. Remote Sens. 11, 2294. https://doi.org/10.3390/rs11192294

Dare, R.A., McBride, J.L., 2011a. The threshold sea surface temperature condition for tropical cyclogenesis. J. Climate 24, 4570–4576. https://doi.org/10.1175/JCLI-D-10-05006.1

Dare, R.A., McBride, J.L., 2011b. Sea surface temperature response to tropical cyclones, Mon. Wea. Rev., 139, 3798–3808. https://doi.org/10.1175/MWR-D-10-05019.1

Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci. 43, 585–604. https://doi.org/10.1175/1520-0469(1986)043,0585:AASITF.2.0.CO;2

Evan, A.T., Camargo, S. J., 2011 A climatology of Arabian Sea Cyclonic storms, J. Clim. 24(1), 140–158. https://doi.org/10.1175/2010JCLI3611.1

Gautam, R., Cervone, G., Singh, R.P., Kafatos, M., 2005. Characteristics of meteorological parameters associated with Hurricane Isabel. Geophys. Res. Lett., 32, L04801. https://doi.org/10.1029/2004GL021559

Guan, S., Zhao, W., Huthnance, J., Tian, J., Wang, J., 2014. Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. J. Geophys. Res. Oceans, 119, 3134–3157. https://doi.org/10.1002/2013JC009661

Hari, V., Pathak, A., Koppa, A., 2021. Dual response of Arabian Sea cyclones and strength of Indian monsoon to Southern Atlantic Ocean, Climate Dynam. 56, 2149–2161. https://doi.org/10.1007/s00382-020-05577-9

IMD (India Meteorological Department), 2020. Report on cyclonic disturbances over North Indian Ocean during 2019. MOES/IMD/RSMC Tropical Cyclone Rep. No. 01 (2020)/10.IPCC, 2014. Intergovernmental Panel for Climate Change 2014. Synthesis Rep. Summary for Policy Makers.

Jaimes, B., Shay, L.K., Uhlhorn, E.W., 2015. Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev. 143, 111–131.

James P. Kossin, 2018. A global slowdown of tropical cyclone translational speed. Nature 104(558). https://doi.org/10.1038/s41586-018-0158-3

Katsube, K., Inatsu, M., 2016. Response of tropical cyclone tracks to sea surface temperature in the western North Pacific. J. Climate 29, 1955–1975. https://doi.org/10.1175/JCLI-D-15-0198.1

Khan S, Shengchun Piao, Imran U. Khan, Bingchen Xu, Shazia Khan, Muhammad Asim Ismail and Yang Song, 2021. Variability of SST and ILD in the Arabian Sea and Sea of Oman in Association with the Monsoon Cycle. Recent Trends in Advanced Robotic Systems. https://doi.org/10.1155/2021/9958257

Knaff, J. A., DeMaria, M., Sampson, C.R., Peak, J.E., Cummings, J., Schubert, W.H., 2013. Upper oceanic energy response to tropical cyclone passage. J. Climate 26, 2631–2650. https://doi.org/10.1175/JCLI-D-12-00038.1

Korty, R. L., Emanuel, K.A., Scott, J.R., 2008. Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates. J. Climate 21, 638–654. https://doi.org/10.1175/2007JCLI1659.1

Kotal, S.D., Bhowmik, R., Kumdu, P.K., Ananda D.K., 2008. A statistical cyclone intensity prediction (SCIP) model for the bay of Bengal. J. Earth Syst. Sci. 117(2), 157–168. https://doi.org/10.1007/s12040-008-0006-1

Krishnamurti, T N., Pattnaik, S., Stefanova, L., Kumar, T.S.V.V., Mackey, B.P., O’Shay, A.J., Pasch, R.J., 2005. The Hurricane Intensity Issue. Mon. Wea. Rev. 133, 1886–1912. https://doi.org/10.1175/MWR2954.1

Lin, I.-I., Chen, C.-H., Pun, I.-F., Liu, W.T., Wu, C.-C., 2009. Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett. 36, L03817. https://doi.org/10.1029/2008GL035815

Wahiduzzaman, M., Cheung, K.K., Jing-Jia, L., Bhaskaran, P.K., 2022. A spatial model for predicting North Indian Ocean tropical cyclone intensity: Role of sea surface temperature and tropical cyclone heat potential. Weather and Climate Extremes 36, 100431. https://doi.org/10.1016/j.wace.2022.100431

Ma, Z., 2018. Examining the contribution of surface sensible heat flux induced sensible heating to tropical cyclone intensification from the balance dynamics theory. Dynm. Atmos. Oceans 84, 33–45. https://doi.org/10.1016/j.dynatmoce.2018.09.001

Ma, Z., Fei, J., Huang, X., Cheng, X., 2015. Contributions of surface sensible heat fluxes to a tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci. 72, 120–140. https://doi.org/10.1175/JAS-D-14-0199.1

Maneesha, K., Murty, V.S.N., Ravichandran, M., Lee, T., Weidong, Y., McPhaden, M.J., 2012 Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog. Oceanogr. 106, 49–61. https://doi.org/10.1016/j.pocean.2012.06.006

Mohanty, S, Raghu, N., Krishna, K., O.„ Sujata P., Mohanty, U.C., Sourav S., 2019. Role of Sea Surface Temperature in Modulating Life Cycle of Tropical Cyclones over Bay of Bengal. Tropical Cycl. Res. Rev. 8(2), 68–83. https://doi.org/10.1016/j.tcrr.2019.07.007

Murakami, H., Vecchi, G.A., Underwood, S., 2017. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Clim. Chang. 7, 885–889. https://doi.org/10.1038/s41558-017-0008-6

Navaneeth, K.N., Martin, M.V, Joseph, K.J., Venkatesan, R., 2019. Contrasting the upper ocean response to two intense cyclones in the Bay of Bengal. Deep Sea Res. Pt. I 147, 65–78. https://doi.org/10.1016/j.dsr.2019.03.010

Neetu, S., Lengaigne, M., Vincent, E.M., Vialard, J., Madec, G., Samson, G., Ramesh Kumar, M.R., Durand, F., 2012. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res. Ocean. 117, C12020. https://doi.org/10.1029/2012JC008433

Park, J.J., Y.-O. Kwon, Price, J.F., 2011. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific. J. Geophys. Res. 116, C12025. https://doi.org/10.1029/2011JC007165

Price, J.F., 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr. 11, 153–175. https://doi.org/10.1175/1520-0485(1981)011<01 53:UORTAH>2.0.CO;2

Sun, Y., Zhong, Z., Tim, L., Lan, Y., Yijia, H., Hongchao, W., Haishan, Ch., Qianfeng, L., Chen, M., Qihua, L., 2017. Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep. 7, 8154. https://doi.org/10.1038/s41598-017-08533-6

Zhang, B., Renhe, Z., Pinker, R.T., Yerong, F., Changchun, N., Guan, Y., 2019. Changes of tropical cyclone activity in a warming world are sensitive to sea surface temperature environment. Environ. Res. Lett. 14, 124052. https://doi.org/1748-9326/ab5ada

Zhao, H., Duan, X., Raga, G.B., Klotzbach, P.J., 2018. Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Clim. 31, 8163–8179. https://doi.org/10.1175/JCLI-D-18-0029.1

full, complete article - PDF


High levels of Polycyclic Aromatic Hydrocarbons in the Date Mussel (Lithophaga lithophaga) from Bizerte coast (northern Tunisia): Sources and human health risk implications
Oceanologia, 66 (4)/2024, 66406, 10 pp.
https://doi.org/10.5697/POMM4827

Ferdaous Jaafar Kefi1, Yassine Elmegdiche2, Jihène Maatoug Béjaoui1, Youssef Lahbib1,3,*, Imed Chraief4, Mohamed El Hammami4, Najoua Trigui El Menif1
1Laboratory of Environmental monitoring (LR01ES14), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia;
e-mail: lahbibyoussef@yahoo.fr (Y. Lahbib)
2Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
3Higher Institute of Heritage Crafts, University of Tunis, Impasse Bachrouche, Monfleury, Tunis, Tunisia
4Biochemistry Laboratory “Nutrition-Functional Foods and Vascular Health” (LR12ES05), Faculty of Medicine, University of Monastir, Monastir, Tunisia
*corresponding author

Keywords: Lithophaga lithophaga; PAHs; Human risk; Public awareness; Tunisia

Received: 6 September 2023; revised: 27 September 2024; accepted: 15 October 2024.

Highlights

Abstract

The date mussel Lithophaga lithophaga is protected by law in Tunisia. Still, illegal consumption of this luxury seafood has increased over time due to high demand and high prices, which have made the species regularly available in the seafood market of Bizerte, putting wild stocks at risk of decline. To raise public awareness of the risks to human health associated with the consumption of this bivalve, 16 priority polycyclic aromatic hydrocarbons (PAHs) were quantified in the soft tissue of the species, which was collected from two sites of high fishery pressure in the bay and lagoon of Bizerte. Total PAHs concentrations differ significantly between the studied sites ranging from 0.45 to 546.05 μg g−1 d.w., and were associated with port activity and the petroleum industry. The benzo(a)pyrene toxic equivalent factor and excess cancer risk showed both high values exceeding permissible limits in the polluted site. These findings provide valuable information regarding the distribution of PAHs in mussels from wild ecosystems that could be useful to prevent consumer intoxication and improve awareness against illegal harvesting of this species.

  References   ref

A.F.S.S.A., 2003. Agence Française de Sécurité Sanitaire des Aliments. Avis sur l’évaluation des risques présentés par le benzo(a)pyrène (B(a)P) et par d’autres hydrocarbures aromatiques polycycliques (HAP). Saisie 2000-SA-0005, 1–59.

Andral, B., 2011. Assessment of polycyclic aromatic hydrocarbon concentrations in mussels (Mytilus galloprovincialis) from the Western basin of the Mediterranean Sea. Environ. Monit. Assess. 172, 301–317.

Balcıoğlu, E.B., 2016. Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: a critical review. Toxin Rev. 35, 98–105.

Bandowe, B.A.M., Bigalke, M., Boamah, L., Nyarko, E., Saalia, F.K., Wilcke, W., 2014. Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ. Int. 65, 135–146.

Barhoumi, B., Le Menach, K., Clérandeau, C., Ben Ameur, W, Budzinski, H., Driss, M.R., Cachot, J., 2014. Assessment of pollution in the Bizerte lagoon (Tunisia) by the combined use of chemical and biochemical markers in mussels, Mytilus galloprovincialis. Mar. Pollut. Bull. 84, 379–390.

Baumard, P., Budzinski, H., Garrigues, P., 1998. PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Mar. Pollut. Bull. 36, 577–586.

Bihari, N, Fafandel, M, Piskur, V., 2007. Polycyclic Aromatic Hydrocarbons and Ecotoxicological Characterization of Sea water, Sediment and Mussel Mytilus galloprovincialis from the Gulf of Rijeka, the Adriatic Sea, Croatia. Environ. Contam. Toxicol. 52, 379–387.

Budzinski, H., Jones, I., Belloc, J., Piérard, C., Garrigues, P., 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 58, 85–97.

Deudero, S., Box, A., March, D., Valencia, J.M., Grau, A.M., Tintore, J., Calvo, M., Caixach, J., 2007. Organic compounds temporal trends at some invertebrate species from the Balearics, Western Mediterranean. Chemosphere, 68, 1650–1659.

Devescovi, M., Iveša, L., 2008. Colonization patterns of the date mussel Lithophaga lithophaga (L., 1758) on limestone breakwater boulders of a marina. Period. Biol. 110, 339–345.

DGEQV, 2003. Etude sur la dépollution industrielle dans le bassin versant du lac de Bizerte. Direction Générale de l’Environnement et de la Qualité de la Vie. Ministère de l’Agriculture Tunisien, 1–200.

Dujmov, J., Sučević, P., 1990. The contamination of date shell (Lithophaga lithophaga) from the eastern coast of the Adriatic Sea by polycyclic aromatic hydrocarbons. Acta. Adriat. 31, 153–161.

Dyrynda, E.A., Law, R.J., Dyrynda, P.E.J., Kelly, C.A., Pipe, R.K., Ratcliffe, N.A., 2000. Changes in immune parameters of natural mussel Mytilus edulis populations following major oil spill (’Sea Empress’, Wales, UK). Mar. Ecol. Prog. Ser. 206, 155–170.

E.F.S.A. [European Food Safety Authority], 2008. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. The EFSA Journal, 724, 1–114.

FAO., 2012. Food balance Sheets by Main Groups of Fish Species and Fish Nutritional Factors – by Selected Countries. Food and Agriculture Organization of the United Nations.

Frouin, H., Pellerin, J., Fournier, M., Pelletier, E., Richard, P., Pichaud, N., Rouleau, C., Garnerot, F., 2007. Physiological effects of polycyclic aromatic hydrocarbons on soft-shell clam Mya arenaria. Aquat. Toxicol. 82, 120–134

Galinou-Mitsoudi, S., Sinis, A.I., 1995. Age and growth of Lithophaga lithophaga (Linnaeus, 1758) (Bivalvia: Mytilidae), based on annual growth lines in the shell. J. Mollus. Stud. 61, 435–453.

Jung, K. H., Yan, B., Chillrud, S.N., Perera, F.P., Whyatt, R., Camann, D., Kinney, P.L., Miller, R.L., 2010. Assessment of Benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York city. Int. J. Environ. Res. Pu. 7, 1889–1900.

Jaafar Kefi, F., Boubaker, S., Trigui El Menif, N., 2014. Relative growth and reproductive cycle of the date mussel Lithophaga lithophaga (Linnaeus, 1758) sampled from the Bizerta Bay (Northern Tunisia). Helgol. Mar. Res. 68, 439–450.

Jaafar Kefi, F., Lahbib, Y., Gargouri Ben Abdallah, L., Trigui El Menif, N., 2012. Shell disturbances and butyltins burden in commercial bivalves collected from the Bizerta lagoon (northern Tunisia). Environ. Monit. Assess. 184, 6869–6876.

Katsanevakis, S., Lefkaditou, E., Galinou-Mitsoudi, S., Koutsoubas, D., Zenetos, A., 2008. Molluscan species of minor commercial interest in hellenic seas: distribution, exploitation and conservation status. Mediterr. Mar. Sci. 9, 77–118.

Ke, C.L., Gu, Y.G., Liu, Q., Li, L.D., Huang, H.H., Cai, N., Sun, Z.W., 2017. Polycyclic aromatic hydrocarbons (PAHs) in wild marine organisms from South China Sea: Occurrence, sources, and human health implications. Mar. Pollut. Bull. 117, 507–511.

Khairy, M.A., Kolb, M., Mostafa, A.R., EL-Fiky, A., Bahadir, M., 2009. Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). J. Hazard. Mater. 170, 389–397.

Knafla, A., Phillipps, K.A., Brecher, R.W., Petrovic, S., Richardson, M., 2006. Development of a dermal cancer slope factor for benzo[a]pyrene. Regul. Toxicol. Pharm. 45, 159–168.

León, V.M., Moreno-González, R., González, E., Martı́nez, F., Garcı́a, V., Campillo, J.A., 2013. Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon. Sci. Total. Environ. 129, 975–987.

Magi, E., Bianco, R., Ianni, C., Di Carro, M., 2002. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environ. Pollut. 119, 91–98.

Mazeas, O., 2004. Evaluation de l’exposition des organismes aux hydrocarbures aromatiques polycycliques (HAP) dans le milieu marin par le dosage des métabolites de HAP. Thesis, University of Bordeaux I. Meador, J.P., Casillas, E., Sloan, C.A., Varanasi, U., 1995. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two infaunal invertebrates. Mar. Ecol. Prog. Ser. 123, 107–124.

Mzoughi, N., Chouba, L., 2012. Heavy Metals and PAH Assessment Based on Mussel Caging in the North Coast of Tunisia (Mediterranean Sea). Int. J. Environ. Res. 6, 109–118.

Nisbet, I.C.T., Lagoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16, 290–300.

Perugini, M., Visciano, P., Giammarino. A., Manera, M., Di Nardo, W., Amorena, M., 2007. Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere, 66, 1904–1910.

Pichaud, N., 2005. Effets biologiques d’une exposition par les hydrocarbures aromatiques polycycliques (HAP) sur une espèce bioindicatrice, Mya arenaria. Univ. Quebec, 1–90.

Porte, C., Albaigés, J., 1994. Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans and fishes. Arch. Environ. Con. Tox. 26, 273–281.

Poutiers, J.M., 1987. Bivalvia. Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et mer Noire. Zone de pêche, 37, 369–500.

R.N.O. [Réseau National d’Observation de la qualité du milieu marin], 2000. Surveillance du Milieu Marin. Travaux du RNO. Ifremer et Ministère de l’Aménagement du Territoire et de l’Environnement. Edition, Nantes, Paris, 36 pp.

Santos, M.M.D., Brehm, F.D.A., Filippe, T.C., Reichert, G., Azevedo, J.C.R.D., 2017. PAHs diagnostic ratios for the distinction of petrogenic and pirogenic sources: applicability in the Upper Iguassu Watershed-Parana, Brazil. RBRH. 22, e9.

Serpe, F.P., Esposito, M., Gallo, P., Serpe, L., 2010. Optimisation and validation of an HPLC method for determi- nation of polycyclic aromatic hydrocarbons (PAHs) in mussels. Food Chem. 122, 920–925.

Shafee, M.S., 1999. Pêche des Bivalves sur la côte méditerranéenne marocaine. Catalogue d’espèces exploitées et d’engins utilisés. Pour la FAO – COPEMED, ALICANE, Espagne, 1–58.

Sheehan, D., Power, A., 1999. Effects of seasonality on xenobiotic and antioxidant defense mechanism of bivalve mollusks. Comp. Biochem. Physiol. Pt. C, 193–199.

Smith, D., Lynam, K., 2010. GC/MS analysis of European Union (EU) priority polycyclic aromatic hydrocarbons (PAHs) using an Agilent JandW DB- EUPAH GC-Column with a column performance comparison. Agilent Tech., 6 pp.

Soclo, H.H., Garrigues, P.H., Ewald, M., 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull. 40, 387–396.

Thorsen, W.A., Cope, W.G., Shea, D., 2004. Bioavailability of PAHs: Effects of soot carbon and PAH source. Environ. Sci. Technol. 38, 2029–2037.

U.S.E.P.A., 1993. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089 United States Environmental Protection Agency, Cincinnati.

U.S.E.P.A., 2008. Polycyclic aromatic hydrocarbons (PAHs)– EPA fact sheet. United States Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, Washington (DC).

Valavanidis, A., Vlachogianni, T.H., Triantafillaki, S., Dassenakis, M., Androutsos, F., Scoullos, M., 2008. Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuar. Coast. Mar. Sci. 79, 733–739.

Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., Roberts, I., 2012. The weight of nations: an estimation of adult human biomass. BMC Public Health, 12, 1–6.

Weinstein, J.E., 1995. Seasonal responses of the mixed-function oxygenase system. In the American oyster Crassostrea virginica (Gmelin 1791) to urban-derived polycyclic aromatic hydrocarbons. Comp. Biochem. Pysiol. 112, 299–307.

Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515.
full, complete article - PDF

Position Paper



Philosophical views of Baltic Basin climate and environmental sciences
Oceanologia, 66 (4)/2024, 66407, 17 pp.
https://doi.org/10.5697/YXZP7286

Anders Omstedt1,*, Inga Dailidienė2, Hans von Storch3, Rasmus Grønfeldt Winther4,5
1Department of Marine Sciences, University of Gothenburg, Sweden;
e-mail: anders.omstedt@marine.gu.se (A. Omstedt)
2Institute of Marine Research, Klaipeda University, Lithuania
3Helmholtz-Zentrum Hereon Geesthacht, Germany
4Humanities Division, University of California Santa Cruz, USA
5Section for GeoGenetics, Globe Institute, University of Copenhagen, Denmark
*corresponding author

Keywords: BALTEX; Baltic Earth; Water and energy cycles; Biogeochemistry; Carbon cycle; Climate and environmental research; Atmosphere-ocean-land surface modeling

Received: 19 February 2024; revised: 19 June 2024; accepted: 29 August 2024.

Highlights

Abstract


The scientific practice from 1993 to 2024 in the ongoing BALTEX/Baltic Earth program has applied a philosophical view of complex systems that promotes improved understanding through idealizations without organizing science hierarchically. Instead, the pluralistic scientific approach used by the BALTEX/Baltic Earth program has successfully generated a new scientific understanding of how to address climate and environmental changes in the region. Some of these major advances are as follows:
  References   ref

̊ström, J., Haapala, J., Polojärvi, A., 2023. A large-scale high-resolution numerical model for sea-ice fragmentation dynamics, Cryosphere Discuss. [in review]. https://doi.org/10.5194/tc-2023-97

BACC Author Team I, 2008. The BALTEX Assessment of Climate Change for the Baltic Sea Basin. Springer-Verlag.

BACC Author Team II, 2015. The Second Assessment of Climate Change for the Baltic Sea Basin. Springer Regional Climate Studies, 22 pp. https://doi.org/10.1007/978-3-319-16006-1

Benestad, R.E., Hanssen-Bauer, I., Chen, D., 2008. Empirical-statistical downscaling. World Science Publishing Co., Singapore.

Bengtsson, L., 2001. Numerical modelling of the energy and water cycle of the Baltic Sea. Meteorol. Atmos. Phys. 77, 9–17. https://doi.org/10.1007/s007030170014

Bergström, H., Moberg, A., 2002. Daily air temperature and pressure series for Uppsala (1722–1998). Climate Change, 53, 213–252. https://doi.org/10.1023/A:1014983229213.

Bergström, S., Graham, L.P., 1998. On the scale problem in hydrological modelling. J. Hydrol. 211, 253–265.

Burchard, H., 2002. The GOTM model. [In:] Applied Turbulence Modeling in Marine Waters. Lecture Notes in Earth Sciences. Springer Verlag. https://doi.org/10.1007/3-540-45419-5_5

Burgess, M.G., Ritchie, J., Shapland, J., Pielke Jr., R., 2021. IPCC baseline scenarios have over-projected CO2 emissions and economic growth. Environ. Res. Lett. 16, 014016.

Cartwright, N., 1983. How the Laws of Physics Lie. Oxford University Press, New York. Christensen, O.B., Kjellström, E., Dieterich, C., Gröger, M., Meier, H.E.M, 2022. Atmospheric regional climate projections for the Baltic Sea region until 2100. Earth Syst. Dynam. 13, 133–157. https://doi.org/10.5194/esd-13-133-2022

Coen, D.R., Sobel, A., 2022. Introduction: Critical and historical perspectives on usable climate science. Climatic Change 172, 15. https://doi.org/10.1007/s10584-022-03369-0

Cushman-Roisin, B., Beckers, J.M., 2011. Introduction to Geophysical Fluid Dynamics. Physical and numerical aspects. Acad. Press. Edman, M., Omstedt, A., 2013. Modeling the dissolved CO2 system in the redox environment of the Baltic Sea. Limnol. Oceanogr. 58(1), 74–92.

Eriksson, C., Omstedt, A., Overland, J.E., Percival, D.B., Mofield, H.O., 2007. Characterizing the European sub-arctic winter climate since 1500 using ice, temperature and circulation time series. J. Climate, 20, 5316–5334.

Graham, L.P., 1999. Modeling runoff to the Baltic Sea. Ambio, 28, 328–334.

Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H.T.M., Hagemann, S., Jakacki, J., May, W., Meier, H.E.M., Miller, P.A., Rutgersson, A., Wu, L., 2021. Coupled regional Earth system modeling in the Baltic Sea region. Earth Syst. Dynam. 12, 939–973. https://doi.org/10.5194/esd-12-939-2021

Gryning, S.E., Batchvarova, E., 2002. Marine Boundary Layer And Turbulent Fluxes Over The Baltic Sea: Measurements And Modelling. Bound.-Lay. Meteorol. 103, 29–47. https://doi.org/10.1023/A:1014514513936

Gustafsson, B.G., 2000a. Time-dependent modelling of the Baltic Entrance Area. 1. Quantification of circulation and residence times in the Kattegat and the straits of the Baltic Sill. Estuaries, 23(2), 231–252.

Gustafsson, B.G., 2000b. Time-dependent modelling of the Baltic Entrance Area. 2. Water and salt exchange of the Baltic Sea. Estuaries, 23(2), 253–266.

Gustafsson, E., Savchuk, O.P., Gustafsson, B.G., Muller-Karulis, B., 2017. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea. Biogeochemistry, 34, 301–317. https://doi.org/10.1007/s10533-017-0361-6

Haapala, J., Leppäranta, M., 1996. Simulating the Baltic Sea ice season with a coupled ice-ocean model. Tellus A, 48(5), 622–643.

Hacking, I., 2002. Historical Ontology. Cambridge Univ. Press, Cambridge.

Hagemann, S., Stacke, T., Ho-Hagemann, H.T.M., 2000. High Resolution Discharge Simulations Over Europe and the Baltic Sea Catchment. Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.00012

Hasse, L., Grossklaus, M., Uhlig, K., Timm, P., 1998. A ship rain gauge for the use in high wind speeds. J. Atmos. Ocean. Tech. 15(2), 380–386. https://doi.org/10.1175/1520-0426(1998)015<0380:ASRGFU>2.0.CO;2

Hasselmann, K., 1988. PIPs and POPs: The reduction of complex dynamical systems using Principal Interaction and Oscillation Patterns. J. Geophys. Res. 93, 11015–11021.

Hausfather, Z., Peters, G., 2020. Emissions – the “business as usual” story is misleading. Nature 577, 618–620. https://doi.org/10.1038/d41586-020-00177-3

HELCOM, 2010. Ecosystem Health of the Baltic Sea 2003–2007. Initial holistic assessment. Baltic Sea Environment Proceedings No. 122, Helsinki Commission, Finland.

HELCOM, 2018. State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016. Baltic Sea Environ- ment Proceedings No. 155. https://helcom.fi/wp-content/uploads/2019/06/BSEP155.pdf

HELCOM, 2023. State of the Baltic Sea – Third HELCOM holistic assessment 2016–2021. Baltic Sea Environ. Proc. no. 194, 69 pp. https://helcom.fi/wp-content/uploads/2023/10/State-of-the-Baltic-Sea-2023.pdf

Högström, U., Rutgersson, A., Sahlée, E., Smedman, A.-S., Hristov, T.S., Drennan, W.M., Kahma, K.K., 2012. Air-sea interaction features in the Baltic Sea and at a Pacific trade-wind site-an intercomparison study. Bound.-Lay. Meteorol. 147, 139–163.

Jacob, D., 2001. A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol. Atmos. Phys. 77, 61-73.

Jakobsson, M., Stranne, C., O’Regan, M., Greenwood, S.L., Gustafsson, B., Humborg, C., Elizabeth Weidner, E., 2019. Bathymetric properties of the Baltic Sea. Ocean Sci., 15, 905–924. https://doi.org/10.5194/os-15-905-2019

Jutterström, S., Andersson, H.C., Omstedt, A., Malmaeus, J.M., 2014. Multiple stressors threatening the future of the Baltic Sea-Kattegat marine ecosystem: Implications for policy and management actions. Mar. Pollut. Bull. 86, 468–480.

Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J.F., Devasthale, A., et al. 2016. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 17, 5809–5828.

Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.O.J., Humborg, Ch., Jilbert, T., Jürgens, K., Meier, H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm, A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2021. Baltic Earth Assessment Report on the biogeochemistry of the Baltic Sea. Earth Syst. Dynam. Discuss. [preprint]. https://doi.org/10.5194/esd-2021-33

Kuliński, K., She, J., Pempkowiak, J., 2011. Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont. Shelf Res. 31, 21611–1619.

Launianen, J., Cheng, B., Uotila, J., Vihma, T., 2001. Turbulent surface fluxes and air–ice coupling in the Baltic Air–Sea–Ice Study (BASIS). Ann. Glaciol. 33, 237–242.

Lehmann, A., Hinrichsen. H.-H., 2000. On the thermohaline variability of the Baltic Sea. J. Marine Syst. 25, 333–357.

Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H.E.M., Lips, U., Bukanova, T., 2022. Salinity dynamics of the Baltic Sea. Earth Syst. Dynam. 13, 373–392. https://doi.org/10.5194/esd-13-373-2022

Leppäranta, M., 2011. The drift of sea ice. 2nd Ed., Springer-Praxis, Chichester, 347 pp. https://doi.org/10.1007/978-3-642-04683-4

Levins, R., 1966. The Strategy of Model Building in Population Biology. Am. Sci. 54, 421–431.

Lloyd, E.A., Shepherd, T.G., 2020, Environmental catastrophes, climate change, and attribution. Ann. N.Y. Acad. Sci., 1469, 105–124. https://doi.org/10.1111/nyas.14308.

Longino, H., 2002. The Fate of Knowledge, Princeton University Press, Princeton.

Luterbacher, J.R., Dietrich, D., Xoplaki, E., Grosjean, M., Wanner, H., 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 1499–1503.

Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O.B., Kjellström, E., 2022a. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth Syst. Dynam., 13, 159–199. https://doi.org/10.5194/esd-13-159-2022

Meier, H.E.M., Döscher, R., 2002. Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere-ice-ocean model. Boreal Environ. Res. 7(4), 327–334.

Meier, H.E.M., Kauker, F., 2003. Sensitivity of the Baltic Sea salinity to the freshwater supply. Clim. Res. 24(3), 231–242.

Meier, H.E.M., Kniebusch, M., Dieterich, C., et al., 2022b. Climate Change in the Baltic Sea Region: A Summary. Earth Syst. Dynam. 13, 457–593. https://doi.org/10.5194/esd-13-457-2022

Mitchell, S.D., 2003. Biological Complexity and Integrative Pluralism. Cambridge Univ. Press, Cambridge.

Moberg, A., Bergström, H., Ruiz Krigsman, J., Svanered, O., 2002. Daily air temperature and pressure series for Stockholm (1756–1998). Climatic Change, 53(1–3), 171–212.

Mohrholz, V., 2018. Major Baltic Inflow Statistics – Revised. Front. Mar. Sci. 5, 384. https://doi.org/10.3389/fmars.2018.00384

Moros, M., Kotilainen, A.T., Snowball, I., Neumann, T., Perner, K., Meier, H.E.M., Papenmeier, S., Kolling, H., Leipe, T., Sinninghe Damsté, J.S., Schneider, R., 2023. Giant saltwater inflow in AD 1951 triggered Baltic Sea hypoxia. Boreas, 53(2), 125–138. https://doi.org/10.1111/bor.12643

Müller, P., von Storch, H., 2004. Computer Modelling in Atmospheric and Oceanic Sciences – Building Knowledge. Springer-Verlag, Berlin, Heidelberg, New York, 304 pp.

Omstedt, A., 1987. Water cooling in the entrance of the Baltic Sea. Tellus A, 38, 254–265.

Omstedt, A., 1990a. Modelling the Baltic Sea as thirteen subbasins with vertical resolution. Tellus A, 42, 286–301.

Omstedt, A., 1990b. A coupled one-dimensional sea ice-ocean model applied to a semi-enclosed basin. Tellus A, 42, 568–582.

Omstedt, A., 2015. Guide to process based modelling of lakes and coastal seas. 2nd Ed., Springer-Praxis, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-17990-2

Omstedt, A., Chen, D., 2001. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J. Geophys. Res. 106(C3), 4493–4500.

Omstedt, A., Edman, M., Claremar, B., Frodin, P., Gustafsson, E., Humborg, Ch., Hägg, H., Mörth, M., Rutgersson, A., Schurgers, G., Smith, B., Wällstedt, T., Yurova, A., 2012. Future changes of the Baltic Sea acid–base (pH) and oxygen balances. Tellus B, 64(19586), 1958. https://doi.org/10.3402/tellusb.v64i0.19586

Omstedt, A., Gustavsson, B., 2022. The complex interactions between humans and the marine environment require new efforts to build beauty and harmony. Front. Mar. Sci. 9, 913276. https://doi.org/10.3389/fmars.2022.913276

Omstedt, A., Gustafsson, B., Rodhe, B., Walin, G., 2000. Use of Baltic Sea modelling to investigate the Water and heat cycles in GCM and regional climate models. Clim. Res. 15, 95–108.

Omstedt, A., Hansson, D., 2006. The Baltic Sea ocean climate system memory and response to changes in the Water and heat balance components. Cont. Shelf Res. 26, 236–251. https://doi.org/10.1016/j.csr.2005.11.003

Omstedt, A., Nohr, C., 2004. Calculating the water and heat balances of the Baltic Sea using ocean modelling and available meteorological, hydrological and ocean data. Tellus A, 56, 400–414. https://doi.org/10.1111/j.1600-0870.2004.00070.x

Omstedt, A., Nyberg, L., 1996. Response of Baltic Sea ice to seasonal, interannual forcing and climate change. Tellus A, 48, 644–662.

Omstedt, A., Rutgersson, A., 2000. Closing the water and heat cycles of the Baltic Sea. Meteorol. Z., 9, 57–64.

Omstedt, A., von Storch, H., 2023. The BALTEX/Baltic Earth programs: Excursions and returns. Oceanologia, 66(1), 1–8. https://doi.org/10.1016/j.oceano.2023.06.001

Piechura, J., Walczowski, W., Beszczynska-Moeller, A., 1997. On the structure and dynamics of the water in the Słupsk Furrow. Oceanologia, 39(1), 35–54.

Pielke Jr., R., 2023. How Could the IPCC Make an Error this Large? Part 1: A major mistake with profound consequences for science and policy. The Honest Broker, published October 11 2023. https://rogerpielkejr.substack.com/p/how-could-the-ipcc-make-an-error

Pirazzini, R., Vihma, T., Granskog, M.A., Cheng, B., 2006. Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Ann. Glaciol., 44, 7–14.

Post, P., Aun, M., 2023. Changes in cloudiness contribute to changing seasonality in the Baltic Sea region. Oceanologia, 66(1), 91–98. https://doi.org/10.1016/j.oceano.2023.11.004

Potochnik, A., 2017. Idealizations and the aim of science. The University of Chicago Press, 222 pp. https://doi.org/10.7208/chicago/9780226507194.001.0001

Reckermann, M., Omstedt, A., Soomere, et al., 2022. Human impacts and their interactions in the Baltic Sea region. Earth Syst. Dynam. 13, 1–80. https://doi.org/10.5194/esd-13-1-2022

Rutgersson, A., Kjellström, E., Haapala, J.,Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Guo-Larsén, X., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., Wasmund, N., 2022. Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam. 13, 251–301. https://doi.org/10.5194/esd-13-251-2022

Rutgersson, A., Omstedt, A., Räisänen, J., 2002. Net precipitation over the Baltic Sea during present and future climate conditions. Clim. Res. 22, 27–39.

Rutgersson, A., Pettersson, H., Nilsson, E., Bergström, H., Wallin, M.B., Nilsson, E.D., Sahlée, E., Wu, L., Mårtensson, E.M., 2020. Using land-based stations for air–sea interaction studies. Tellus A, 72(1), 1–23. https://doi.org/10.1080/16000870.2019.1697601

Savchuk, O.P., Wulff, F., 2007. Modeling the Baltic Sea eutrophication in a decision support system. Ambio 36, 141–148.

Schneider, B., Müller, J.D., 2018. Biogeochemical Transformations in the Baltic Sea. Springer Oceanography.

Schneider, B., Nausch, G., Pohl, C., 2010. Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Mar. Chem. 119, 153–161. https://doi.org/10.1016/j.marchem.2010.02.004

Smith, B., Prentice, I.C., Sykes, M.T., 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637.

Stigebrandt, A., 2001. Physical Oceanography of the Baltic Sea. [In:] Wulff, F., Rahm, L., Larsson., P., 2001. A System Analysis of the Baltic Sea. Ecological Studies Vol. 148, Springer-Verlag, Berlin, Heidelberg, New York.

Stigebrandt, A., Andersson, A., 2020. The Eutrophication of the Baltic Sea has been boosted and perpetuated by a major internal phosphorus source. Front. Mar. Sci. 7, 572994. https://doi.org/10.3389/fmars.2020.572994

Stocker, T., 2011. Introduction to climate modelling. Adv. Geophys. Environ. Mech. Math. Springer-Verlag, Berlin, Heidelberg, 182 pp. https://doi.org/10.1007/978-3-642-00773-6

Suppes, P., 1960. A comparison of the meaning and uses of models in mathematics and the empirical sciences, Synthese, 12(2–3), 287–301.

Suppes, P., 1962, Models of data, in logic, methodology, and philosophy of science. [In:] Proceedings of the 1960 International Congress, E. Nagel, P. Suppes, A. Tarski (Eds.), Stanford, CA: Stanford University Press, 252–261.

Suppes, P., 2002. Representation and Invariance of Scientific Structures, Stanford, CA, CSLI Publications.

Svensson, U., 1978. A Mathematical Model of the Seasonal Thermocline. Dept. Water Res. Eng., Report No. 1002, Lund Institute of Technology, Lund, Sweden.

Thompson, E., 2022. Escape from the model land. How mathematical models can lead us astray and what we can do about it. Basic Books UK, 256 pp.

Vihma, T., Pirazzini, R., Renfrew, I.A., Sedlar, J., Tjernström, M., et al., 2013. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review. Atmos. Chem. Phys. Discuss., 13, 32703–32816. https://doi.org/10.5194/acpd-13-32703-2013

Viitasalo, M., Bonsdorff, E., 2021. Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. Earth Syst. Dynam. Discuss. [preprint]. https://doi.org/10.5194/esd-2021-73.

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dynam., 12, 871–898. https://doi.org/10.5194/esd-12-871-2021

Wimsatt, W.C., 1987. False Models as Means to Truer Theories. [In:] Neutral Models in Biology M.H. Nitecki, A. Hoffman (eds.), Oxford Univ. Press, 23–55.

Winsor, P., Rodhe, J., Omstedt, A., 2001. Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Clim. Res. 18(1–2), 5–15.

Winsor, P., Rodhe, J., Omstedt, A., 2003. Erratum: Baltic Sea ocean climate: an analysis of 100 yr of hydrographical data with focus on the freshwater budget. Clim. Res. 25(2), 183.

Winther, R.G., 2006. On the Dangers of Making Scientific Models Ontologically Independent: Taking Richard Levins’ Warnings Seriously. Biol. Philos. 21, 703–724.

Winther, R.G., 2020. When Maps Become the World. Univ. Chicago Press, Chicago.

Wulff, F., Rahm, L., Larsson, P., 2001. A System Analysis of the Baltic Sea. Ecol. Stud. Vol. 148. Springer-Verlag, Berlin, Heidelberg, New York.

Wulff, F., Stigebrandt, A., Rahm, L., 1990. Nutrient Dynamics of the Baltic Sea. Ambio, 19(3), 126–133.
full, complete article - PDF

Short Communications



Non-native shrimps in Polish coastal waters: first record of Palaemon longirostris H. Milne Edwards, 1837 and new sites for P. macrodactylus Rathbun, 1902
Oceanologia, 66 (4)/2024, 66408, 6 pp.
https://doi.org/10.5697/DTMY8095

Katarzyna Spich*, Bartosz Witalis, Sławomira Gromisz, Lena Szymanek, Adam Woźniczka
Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: kspich@mir.gdynia.pl (K. Spich)
*corresponding author

Keywords: Palaemon longirostris; Palaemon macrodactylus; Non-native species; Gulf of Gdańsk; Southern Baltic Sea

Received: 16 February 2023; revised: 20 May 2024; accepted: 5 September 2024.

Highlights

Abstract

Two non-indigenous species of shrimps (Palaemon longirostris and Palaemon macrodactylus) were recorded in the Gulf of Gdańsk (Baltic Sea) during surveys of macrozoobenthos. Three individuals of Palaemon longirostris were found in the port of Gdynia in July 2018, and two more outside the port, in the Outer Puck Bay and the Puck Lagoon in September 2019. Palaemon macrodactylus introduced to Polish waters, was recorded in the ports of Gdynia and Gdańsk in June 2021. Of the 25 P. macrodactylus individuals, 8 were ovigerous females. This article aims to record the first appearance of P. longirostris in 2018 and confirm the occurrence of P. longirostris and P. macrodactylus in the Gulf of Gdańsk in the years that followed.

  References   ref

AquaNIS. Editorial Board, 2015. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. www.corpi.ku.lt/databases/aquanis. Version 2.36+. Accessed 2024-04-17.

Ashelby, C. W., Worsfold, T. M., Fransen, C. H., 2004. First records of the oriental prawn Palaemon macrodactylus (Decapoda: Caridea), an alien species in European waters, with a revised key to British Palaemonidae. J. Mar. Biol. Assoc. UK 84(5), 1041–1050.

Béguer, M., Bergé, J., Girardin, M., Boët, P., 2010. Reproductive biology of Palaemon longirostris (decapoda: palaemonidae) from Gironde Estuary (France), with a comparison with other european populations. J. Crustacean Biol. 30(2), 175–185. http://www.jstor.org/stable/40665208

Béguer, M., Bergé, J., Gardia-Parège, C., Beaulaton, L., Castelnaud, G., Girardin, M., Boët, P., 2012. Long-term changes in population dynamics of the shrimp Palaemon longirostris in the Gironde Estuary. Estuar. Coast. 35(4), 1082–1099.

Campbell, P. J., Jones, M. B., 1990. Water permeability of Palaemon longirostris and other euryhaline caridean prawns. J. Experiment. Biol. 150(1), 145–158.

Cartaxana, A., 1994. Distribution and migrations of the prawn Palaemon longirostris in the Mira River estuary (southwest Portugal). Estuaries 17(3), 685–694.

Cuesta, J. A., González-Ortegón, E., Drake, P., Rodrı́guez, A., 2004. First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Caridea, Palaemonidae) from European waters. Crustaceana 77(3), 377–380.

Cyberski, J., Szefler, K., 1993. Klimat Zatoki i jej zlewiska. [In:] Korzeniewski, K. (ed.) Zatoka Pucka, Inst. Oceanograf. Univ. Gdańsk, 14–39, (in Polish).

d’Udekem d’Acoz, C., Faasse, M., Dumoulin, E., De Blauwe, H., 2005. Occurrence of the Asian shrimp, Palaemon macrodactylus Rathbun, 1902, in the Southern Bight of the North Sea, with a key to the Palaemonidae of North-West Europe (Crustacea, Decapoda, Caridea). Nederland. Faunistische Mededelingen 22, 95–111.

González-Ortegón, E., Cuesta, J. A., Pascual, E., Drake, P., 2010. Assessment of the interaction between the white shrimp, Palaemon longirostris, and the exotic oriental shrimp, Palaemon macrodactylus, in a European estuary (SW Spain). Biol. Invasions 12(6), 1731–1745.

Grabowski, M., 2006. Rapid colonization of the Polish Baltic coast by an Atlantic palaemonid shrimp Palaemon elegans Rathke, 1837. Aquat. Invasions 1, 116–123.

Gurney, R., 1923. Some notes on Leander longirostris M. Edwards, and other British prawns. Proc. Zool. Soc. London 93(1), Blackwell Publishing Ltd., Oxford, UK, 97–123.

HELCOM, OSPAR, 2015. Joint Harmonised Procedure for the Contracting Parties of HELCOM and OSPAR on the Granting of Exemptions under International Convention for the Control and Management of Ships’ Ballast Water and Sediments. Regulation A-4. https://helcom.fi/wp-content/uploads/2021/01/HELCOM-OSPAR-Joint-Harmonized-Procedure-for-BWMC-A-4-exemptions_2020.pdf

Jacobson, P., Bergström, U., Eklöf, J., 2019. Size-dependent diet composition and feeding of Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 24, 137–153.

Janas, U., Barańska, A., 2008. What is the diet of Palaemon elegans Rathke, 1837 (Crustacea, Decapoda), a nonindigenous species in the Gulf of Gdańsk (Southern Baltic Sea)? Oceanologia 50(2), 221–237.

Janas, U., Tutak, B., 2014. First record of the oriental shrimp Palaemon macrodactylus M. J. Rathbun, 1902 in the Baltic Sea. Oceanol. Hydrobiol. Stud. 43(4) 431–435.

Jażdżewski, K., Grabowski, M., 2011. Alien Crustaceans Along the Southern and Western Baltic Sea [In:] Galil, B., Clark, P., Carlton, J. (eds.) In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts. Invading Nature – Springer Series in Invasion Ecology vol. 6, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0591-3_11

Matern S, Herrmann J-P, Temming A., 2021. Differences in diet compositions and feeding strategies of invasive round goby Neogobius melanostomus and native black goby Gobius niger in the Western Baltic Sea. Aquat.



full, complete article - PDF


First record of brush-clawed shore crab Hemigrapsus takanoi (Asakura and Watanabe, 2005) in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia, 66 (4)/2024, 66409, 6 pp.
https://doi.org/10.5697/NZTB7591

Bartosz Witalis 1,*, Joanna Hegele-Drywa2, Sławomira Gromisz1, Agata Nowak1
1National Marine Fisheries Research Institute, Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: bwitalis@mir.gdynia.pl (B. Witalis)
2Faculty of Oceanography and Geography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81–378 Gdynia, Poland
*corresponding author

Keywords: Port; Invasive; Biofouling; Negative impact; Crab

Received: 18 April 2024; revised: 26 September 2024; accepted: 30 September 2024.

Highlights

Abstract

The first occurrence of the brush-clawed shore crab Hemigrapsus takanoi was recorded during the monitoring of non-indigenous species carried out in the Port of Gdynia (Gulf of Gdańsk) in 2023. The discovery is important as it indicates an expansion of the biogeographic range of this crab in the southern Baltic Sea. Two males with carapace widths of 12.1 and 21.51 mm and wet weights of 3.32 and 6.88 g, respectively, were collected using a Fukui box trap and a self-designed habitat collector. Although H. takanoi is considered a successful invader, according to previous studies, the expansion of this species in the southern Baltic Sea may be limited by the salinity gradient. Its early life stages show low resistance to low salinity conditions, thus precluding the establishment of self-sustaining populations of this crab.

  References   ref

AquaNIS, 2015. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. Version 2.36+ (accessed 2024-03-22). www.corpi.ku.lt/databases/aquanis

Asakura, A., Watanabe, S., 2005. Hemigrapsus takanoi, new species, a sibling species of the common Japanese intertidal crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustacean Biol. 25, 279–292. https://doi.org/10.1651/C-2514

Bader, M., Chu, K.H., Schubart, C.D., 2024. Reconstruction of invasion pathways of East Asian crab species of the genus Hemigrapsus (Decapoda, Brachyura, Varunidae) based on a comparative phylogeographic approach. Crustaceana, 97, 453–477. https://doi.org/10.1163/15685403-bja10414

Breton, G., Faasse, M., Noël P.Y., Vincent T., 2002. A new alien crab in Europe: Hemigrapsus sanguineus (Decapoda: Brachyura: Grapsidae). J. Crustacean Biol. 22, 184–189. https://doi.org/10.1651/0278-0372(2002)022

Brousseau, D.J., Goldberg, R., Garza, C., 2014. Impact of Predation by the Invasive Crab Hemigrapsus sanguineus on Survival of Juvenile Blue Mussels in Western Long Island Sound. Northeast. Nat. 21 (1), 119–133. https://doi.org/10.1656/045.021.0110

Cornelius, A., Wagner, K., Buschbaum, C., 2021. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in north-western Europe. Mar. Biodivers. 51, art. no. 75. https://doi.org/10.1007/s12526-021-01207-7

Costello, K.E., Lynch, S.A., McAllen, R., O’Riordan, R.M., Culloty, S.C., 2022. Assessing the potential for invasive species introductions and secondary spread using vessel movements in maritime ports. Mar. Pollut. Bull. 177, 113496. https://doi.org/10.1016/j.marpolbul.2022.113496

Geburzi, J., 2018. New species from the Pacific: Establishment and dispersal of two invasive crabs (genus Hemigrapsus) in German coastal waters, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel.

Geburzi, J.C., Ewers-Saucedo, C., Brandis, D., Hartl, G.B., 2020. Complex patterns of secondary spread without loss of genetic diversity in invasive populations of the Asian shore crab Hemigrapsus takanoi (Decapoda) along European coasts. Mar. Biol. 167, 180. https://doi.org/10.1007/s00227-020-03790-y

Geburzi, J.C., Graumann, G., Köhnk, S., Brandis, D., 2015. First record of the Asian crab Hemigrapsus takanoi Asakura and Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107. https://doi.org/10.3391/bir.2015.4.2.06

Gittenberger, A., Rensing, M., Stegenga, H., Hoeksema, B., 2010. Native and non-native species of hard substrata in the Dutch Wadden Sea. Nederlandse Faunistische Mededelingen. 33, 21–76.

Geißel, J.P., Espinosa-Novo, N., Giménez, L., Ewers, C., Cornelius, A., Martı́nez-Alarcón, D., Harzsch, S., Torres G., 2024. Interactive responses to temperature and salinity in larvae of the Asian brush-clawed crab Hemigrapsus takanoi: relevance for range expansion into the Baltic Sea, in the context of climate change. Biol. Invasions, 26, 1685–1704. https://doi.org/10.1007/s10530-024-03279-5

Goedknegt, M.A., Havermans, J., Waser, A.M., Luttikhuizen, P.C., Velilla, E. K., Camphuysen, K.C.J., van der Meer, J., Thieltges, D.W. 2017. Cross-species comparison of parasite richness, prevalence, and intensity in a native compared to two invasive brachyuran crabs. Aquat. Invasions 12 (2), 201–212. https://doi.org/10.3391/ai.2017.12.2.08

Gollasch, S., 1999. The Asian decapod Hemigrapsus penicillatus (De Haan, 1835) (Grapsidae, Decapoda) introduced in European waters: status quo and future perspective. Helgoländer Meeresun. 52, 359–366. https://doi.org/10.1007/BF02908909

Gong, M., Xie, G., Wang, H., Li, X., Li, A., Wan, X., Huang, J., Shi, C., Zhang, Q., Huang J., 2022. Hematodinium perezi naturally infects Asian brush-clawed crab (Hemigrapsus takanoi). J. Fish Dis. 46 (1), 67–74. https://doi.org/10.1111/jfd.13718

Griffen, B.D., Byers, J.E., 2009. Community impacts of two invasive crabs: the interactive roles of density, prey recruitment, and indirect effects. Biol. Invasions, 11, 927–940. https://doi.org/10.1007/s10530-008-9305-3

Hänfling, B., Carvalho, G.R., Brandl, R., 2002. mt-DNA sequences and possible invasion pathways of the Chinese mitten crab. Mar. Ecol. Prog. Ser. 238, 307–310.

HELCOM, OSPAR, 2020. Joint Harmonised Procedure for the Contracting Parties of HELCOM and OSPAR on the Granting of Exemptions under International Convention for the Control and Management of Ships’ Ballast Water and Sediments. Regulation A-4, published online (accessed 2024-03-22). https://helcom.fi/wp-content/uploads/2021/01/HELCOM-OSPAR-Joint-HarmonizedProcedure-for-BWMC-A-4-exemptions_2020.pdf

iNaturalist, [n.d.], Observatiobs: Brush-clawed Shore Crab Online resource (accessed 2024-03-22). https://www.inaturalist.org/observations?place_id=any&subview=map&taxon_id=491876

Jensen, G.C., McDonald, P.S., Armstrong, D.A., 2002. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262. https://doi.org/10.3354/meps225251

Kazmierczak, F., Leitinger, J., Schüler, L., Pomrehn, S., 2020. Erfassung und Bewertung nicht einheimischer Arten-Neobiota- in Küstengewässern Mecklenburg-Vorpom-merns Endbericht 2019. IfAÖ Institut für Angewandte Ökosystemforschung GmbH, Neu Broderstorf, 49 pp.

Kraemer, G.P., Sellberg, M., Gordon, A., Main, J., 2007. Eight-year Record of Hemigrapsus sanguineus (Asian Shore Crab) Invasion in Western Long Island Sound Estuary. Northeast. Nat. 14, 207–224. https://doi.org/10.1656/1092-6194(2007)14[207:EROHSA]2.0.CO;2

Lewis, S., Maslin, M., 2015. Defining the Anthropocene. Nature, 519 (7542), 171–180. https://doi.org/10.1038/nature14258

Makino, W., Miura, O., Kaiser, F., Geffray, M., Katsube, T., Urabe, J., 2018. Evidence of multiple introductions and genetic admixture of the Asian brush-clawed shore crab Hemigrapsus takanoi (Decapoda: Brachyura: Varunidae) along the Northern European coast. Biol. Invasions, 20, 825–842. https://doi.org/10.1007/s10530-017-1604-0

McDermott, J.J., 2011. Parasites of shore crabs in the genus Hemigrapsus (Decapoda: Brachyura: Varunidae) and their status in crabs geographically displaced: a review. J. Nat. Hist. 45 (37/40), 2419–2441.

Mingkid, W.M., Masashi, Y.M., Watanabe, S., 2006. Salinity tolerance of larvae in the penicillate crab Hemigrapsus takanoi (Decapoda: Brachyura: Grapsidae). Mer (Paris), 44, 17–21.

Normant-Saremba, M., Hegele-Drywa, J., Marszewska, L., 2020. Sampling native and non-native mobile epifauna with baited traps and habitat collectors – Port of Gdynia case study (southern Baltic Sea, Poland). Oceanol. Hydrobiol. Stud. 49 (3), 319–327. https://doi.org/10.1515/ohs-2020-0028

Nour, O., Pansch, C., Lenz, M., Wahl, M., Clemmensen, C., Stummp, M., 2021. Impaired larval development at low salinities could limit the spread of the nonnative crab Hemigrapsus takanoi in the Baltic Sea. Aquat. Biol. 30, 85–99. https://doi.org/10.3354/ab00743

O’Connor, N.J., 2014. Invasion dynamics on a temperate rocky shore: from early invasion to establishment of a marine invader. Biol. Invasions. 16, 73–87. https://doi.org/10.1007/s10530-013-0504-1

Ojaveer, H., Olenin, S., Narščius, A., Florin, A.B., Ezhova, E., Gollasch, S., Jensen, K.R., Lehtiniemi, M., Minchin, D., Normant-Saremba, M., Strake, S., 2017. Dynamics of biological invasions and pathways over time: a case study of a temperate coastal sea. Biol. Invasions, 19 (3), 799–813. https://doi.org/10.1007/s10530-016-1316-x

Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M., Kühn, I., Liebhold, A.M., Mandrak, N.E., Meyerson, L.A., Pauchard, A., Pergl, J., Roy, H.E., Seebens, H., Kleunen, M., Vilà, M., Wingfield, M.J., Richardson, D.M., 2020. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534. https://doi.org/10.1111/brv.12627

Rato, L.D., Crespo, D., Lemos, M.F.L., 2021. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Indic. 125, 107578. https://doi.org/10.1016/j.ecolind.2021.107578

Rato, L.D., Simões, T., Novais, S.C., Damasceno, J.M., Van der Meer, J., Thieltges, D.W., Marques, J.C., Lemos, M.F.L., 2024. Thermal performance of native and invasive crab species: investigating the invasion potential of Hemigrapsus takanoi in southern European Carcinus maenas’ habitats. Biol. Invasions. 26, 3587–3601. https://doi.org/10.1007/s10530-024-03396-1

Ricciardi, A., 2012. Invasive Species. [In:] Encyclopedia of Sustainability Science and Technology. Meyers, R.A. (Ed.), Springer, New York, NY, 5547–5560. https://doi.org/10.1007/978-1-4419-0851-3_574

Schubert, H., Wasmund N., Sellner, K.G., 2010. Long term investigations in Brackish Ecosystems. [In:] Long-Term Ecological Research: Between Theory and Application. Müller, F., Baessler C., Schubert, H., Klotz, S. (Eds.), Springer, Heidelberg, London, New York, 163–178.

Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B.S., Garcı́a-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., Vilà, M., 2013. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.01

Soors, J., Faasse, M.A., Stevens, M., Verbessem, I., de Regge, N., Van den Bergh, E., 2010. New crustacean invaders in the Schelde estuary (Belgium). Belg. J. Zool. 140, 3–10.

Šargač, Z., Giménez, L., Harzsch, S., Krieger, J., Fjordside, K., Torres, G., 2021. Contrasting offspring responses to variation in salinity and temperature among populations of a coastal crab: A maladaptive ecological surprise? Mar. Ecol. Prog. Ser. 677, 51–65. https://doi.org/10.3354/meps13851

Tempesti, J., Mangano, M.C., Langeneck, J., Lardicci, C., Maltagliati, F., Castelli, A., 2020. Non-indigenous species in Mediterranean ports: a knowledge baseline. Mar. Environ. Res. 161, 105056. https://doi.org/10.1016/j.marenvres.2020.105056

Theurich, N., Briski, E., Cuthbert, R.N., 2022. Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change. Sci. Rep. 12, 9988. https://doi.org/10.1038/s41598-022-14008-0

Wolf, M.A., Bousi, A., Juhmani, A.F., Sfriso, A., 2018. Shellfish import and hull fouling as vectors for new red algal introductions in the Venice Lagoon. Estuar. Coast. Shelf. S. 215, 30–38. https://doi.org/10.1016/j.ecss.2018.09.028

Wood, C.A., Bishop, J.D.D., Davies, C.J., Delduca, E.L., Hatton, J.C., Herbert, R.J.H., Clark, P.F., 2015. Hemigrapsus takanoi Asakura and Watanabe, 2005 (Crustacea: Decapoda: Brachyura: Grapsoidea): first records of the brush-clawed shore crab from Great Britain. BioInva sions Rec. 4, 109–113. https://doi.org/10.3391/bir.2015.4.2.07

Zabrocki, M., Heibeck, N., Broeg, K., 2021. Exoten im Bewuchs – Bedeutung der Freizeitschifffahrt für die Verbreitung nicht-einheimischer Arten. Schlussbericht der Sportbootuntersuchungen im Themenfeld 2 des BMVI-Expertennetzwerks.

full, complete article - PDF


Decreasing otolith length-to-width ratio with fish length – Atlantic cod (Gadus morhua), southern Baltic Sea
Oceanologia, 66 (4)/2024, 66410, 5 pp.
https://doi.org/10.5697/VZSR4828

Anna Dziubińska, Mariusz Sapota*, Aleksandra Komur
Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81–378 Gdynia, Poland;
e-mail: mariusz.sapota@ug.edu.pl (M. Sapota) *corresponding author

Keywords: Atlantic cod; Otoliths; Stock; Słupsk Bank

Received: 5 April 2024; revised: 16 October 2024; accepted: 25 October 2024.

Highlights

Abstract

The observation concerns otoliths of Atlantic cod from the Słupsk Bank. A total of 100 pairs of otoliths were selected from 100 specimens, the total length of which ranged from 5.2 cm to 62 cm. It was found that the greater the length of the fish, the smaller the ratio of otolith length to width. Whether this is a regular trend that was observed for the first time, or a matter of analyzing otoliths from different populations, remains an unresolved question. No differences were found between males and females in the relationship between fish size and otolith size, or changes in the ratio of otolith length to width.

  References   ref

Andersson, L., André, C., Johannesson, K., Pettersson, M., 2023. Ecological adaptation in cod and herring and possible consequences of future climate change in the Baltic Sea. Front. Marine Sci. 10. https://doi.org/10.3389/fmars.2023.1101855

Birgersson, L, Söderström, S; Belhaj, M., 2022. The Decline of Cod in the Baltic Sea – A review of biology, fisheries and management, including recommendations for cod recovery. The Fisheries Secretariat, Stockholm, Sweden.

Campana, S.E., Casselman, J.M., 1993. Stock Discrimination Using Otolith Shape Analysis. Can. J. Fish Aquat. Sci. 50 (5), 1062–1083. https://doi.org/10.1139/f93-123

Cardinale, M., Doering-Arjes, P., Kastowsky, M., Mosegaard, H., 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish Aquat. Sci. 61 (2), 158–167. https://doi.org/10.1139/f03-15

Cohen, D.M., Inada, T., Iwamoto, T., Scialabba, N., 1990. Gadiform fishes of the world. FAO Fisheries, Synopsis 10, 125.

Folkvord, A., Johannessen, A., Moksness, E., 2004. Temperature-dependent otolith growth in Norwegian spring-spawning herring (Clupea harengus L.) larvae. Sarsia 89 (5), 297–310. https://doi.org/10.1080/00364820410002532

HELCOM Red List Fish and Lamprey Species Expert Group, 2013. https://helcom.fi/wp-content/uploads/2019/08/HELCOM-RedList-All-SIS_Fish.pdf

Hüssy, K., 2008. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Biol. Ecol. 364 (1), 35–41. https://doi.org/10.1016/j.jembe.2008.06.026

Hüssy, K., Mosegaard, H., Albertsen, C.M., Nielsen, E.Eg., Hemmer-Hansen, J., Eero, M., 2016. Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fish. Res. 174, 210–218. https://doi.org/10.1016/j.fishres.2015.10.010

Hüssy, K., 2011. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 68 (7), 1459–1471. https://doi.org/10.1093/icesjms/fsr088

Irgens C., 2018. Otolith structure as indicator of key life history events in Atlantic cod (Gadus morhua). https://doi.org/10.13140/RG.2.2.35023.74408

Keats, D., Steele, D.H., 1992. Diurnal Feeding of Juvenile Cod (Gadus morhua) which Migrate into Shallow Water at Night in Eastern Newfoundland. J. Northw. Atl. Fish. Sci. 13, 7–14. https://doi.org/10.2960/J.v13.a1

Mosegaard, H., Svedäng, H., Taberman, K., 1988. Uncoupling of Somatic and Otolith Growth Rates in Arctic Char (Salvelinus alpinus) as an Effect of Differences in Temperature Response. Can. J. Fish Aquat. Sci. 45 (9), 1514–1524. https://doi.org/10.1139/f88-180

Nelson, J.S., 2006. Fishes of the World. 4th edn., John Wiley & Sons, Hoboken, 601 pp.

Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K.H., Andersen, N.G., Niiranen, S., Bergström, U., Ustups, D., Kulatska, N., Casini, M., 2020. Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES J. Mar. Sci. 77 (2), 624–632. https://doi.org/10.1093/icesjms/fsz224

Niiranen, S., Orio, A., Bartolino, V., Bergström, U., Kallasvuo, M., Neuenfeldt, S., Ustups, D., Casini, M., 2019. Predator-prey body size relationships of cod in a lowdiversity marine system. Mar. Ecol. Prog. Ser. 627, 201–206. https://doi.org/10.3354/meps13098

Sapota, M.R., Dąbrowska, V., 2019. Shapes of otoliths in some Baltic fish and their proportions. Oceanol. Hydrobiol. St. 48 (3), 296–304. https://doi.org/10.2478/ohs-2019-0027

Schade, F.M., Weist, P., Dierking, J., Krumme, U., 2022. Living apart together: Long-term coexistence of Baltic cod stocks associated with depth-specific habitat use. PLoS ONE 17 (9), e0274476. https://doi.org/10.1371/journal.pone.0274476

full, complete article - PDF

Corrigendum



Corrigendum to "Bed forms under combined action of waves and wind-driven currents in the remote foreshore of the non-tidal sea" by Magdalena Stella-Bogusz [Oceanologia 65(3) 2023, 484–493. https://doi.org/10.1016/j.oceano.2023.03.001]
Oceanologia, 66 (4)/2024, 66411
https://doi.org/10.5697/BLPY4989

Magdalena Stella-Bogusz
Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland;
e-mail: m.stella@ibwpan.gda.pl
PDF