Oceanologia No. 67 (4) / 25


Original Research Articles


Original Research Articles



Impact of climate change on the coastal water temperature of lagoons in the southern Baltic Sea in the period 1951–2020
Oceanologia, 67 (4)/2025, 67401, 18 pp.
https://doi.org/10.5697/WECV1208

Bożena Pius
Faculty of Earth Sciences and Spatial Management, Department of Hydrology, Cryology and Water Management, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland;
e-mail: bpius@umk.pl (B. Pius)

Keywords: Lagoons of the southern Baltic Sea; Water surface temperature (WST); Climate warming; Trend analysis; Warming of the lagoons

Received: 28 October 2024; revised: 19 August 2025; accepted: 16 September 2025

Highlights

Abstract

The study examines long-term trends in water surface temperature (WST) in the Vistula and Szczecin Lagoons within the southern Baltic Sea from 1951 to 2020. Based on in situ data, temperature variability was assessed using both parametric linear regression and the non-parametric Mann-Kendall test. The results reveal a statistically significant increase in water temperatures, particularly during spring and winter. The average warming rate reached 0.23°C and 0.26°C per decade in the Vistula and Szczecin Lagoons, respectively. A strong correlation (r𝑟 = 0.60–0.93) was observed between air and surface water temperature. Extreme temperature events are becoming more frequent, with the lowest percentile values rising markedly over time. Winter temperatures exceeding 3°C are now common, and ice cover has diminished or disappeared. These trends highlight the regional impacts of climate change on coastal lagoon ecosystems and their seasonal dynamics. The findings provide valuable insights for future monitoring and management of vulnerable brackish water environments.

  References   ref

Al-Shehhi, M. R., 2022. Uncertainty in satellite sea surface temperature with respect to air temperature, dust level, wind speed and solar position, Reg. Stud. Mar. Sci. 53, 102385. https://doi.org/10.1016/j.rsma.2022.102385

Amos, C.L., Umgiesser, G., Ghezzo, M., Kassem, H., Ferrarin, C., 2017. Sea surface temperature trends in Venice Lagoon and the adjacent waters. J. Coast. Res. 33(2), 385-395. https://doi.org/10.2112/JCOASTRES-D-16-00017.1

BACC I., Team A. (Eds.), 2015. Second assessment of climate change for the Baltic Sea basin, Springer Open.

Bertolini, C. and Pastres, R., 2021. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: Using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, p.107284. https://doi.org/10.1016/j.ecss.2021.107284

Bamber, J. L., Oppenheimer, M., Kopp, R. E., et al., 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Nat. Acad. Sci. 116(23), 11195-11200. https://doi.org/10.1073/pnas.1817205116

Brennan, C. E., Blanchard, H., Fennel, K., 2016. Putting temperature and oxygen thresholds of marine animals in context of environmental change: a regional perspective for the Scotian Shelf and Gulf of St. Lawrence, PLoS One 11(12), e0167411. https://doi.org/10.1371/journal.pone.0167411

Brierley, A. S., Kingsford, M. J., 2009. Impacts of climate change on marine organisms and ecosystems, Curr. Biol. 19(14), R602-R614. https://doi.org/10.1016/j.cub.2009.05.046

Cai, R. S., Tan, H. J., Kontoyiannis, H., 2017. Robust surface warming in offshore China seas and its relationship to the East Asian Monsoon wind field and ocean forcing on inter-decadal time scales, J. Clim. 30(22), 8987-9005. https://doi.org/10.1175/JCLI-D-16-0016.1

Calvo, E., Simó, R., Coma, R., et al., 2011. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea, Clim. Res. 50(1), 1-29. https://doi.org/10.3354/cr01040

Cieśliński, R., Chlost, I., Szydłowski, M., 2024. Impact of new, navigable canal through the Vistula Spit on the hydrologic balance of the Vistula Lagoon (Baltic Sea), J. Mar. Syst. 241, 103908. https://doi.org/10.1016/j.jmarsys.2023.103908

Curiel, D., Rismondo, A., Bellemo, G., et al., 2004. Macroalgal biomass and species variations in the Lagoon of Venice (Northern Adriatic Sea, Italy): 1981-1998, Sci. Mar. 68(1), 57-67. https://doi.org/10.3989/scimar.2004.68n157

Čerkasova, N., Mėžinė, J., Idzelytė, R., et al., 2024. Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: coupled SWAT and SHYFEM modeling approach, Ocean Sci. 20(5), 1123-1147. https://doi.org/10.5194/os-20-1123-2024

Dailidienė, I., Baudler, H., Chubarenko, B., Navrotskaya, S., 2011. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic, Oceanologia 53(1-TI), 293-308. https://doi.org/10.5697/oc.53-1-TI.293

Dailidienė, I., Davuliene, L., 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984-2005. J. Marine Syst. 74, S20-S29. https://doi.org/10.1016/j.jmarsys.2008.01.014

Dutheil, C., Meier, H. E. M., Gröger, M., et al., 2022. Understanding past and future sea surface temperature trends in the Baltic Sea, Clim. Dynam. 58(11), 3021-3039. https://doi.org/10.1007/s00382-021-06084-1

Fernández-Nóvoa, D., Costoya, X., DeCastro, M., et al., 2021. Influence of the mightiest rivers worldwide on coastal sea surface temperature warming, Sci. Total Environ. 768, 144915. https://doi.org/10.1016/j.scitotenv.2020.144915

Gaertner-Mazouni, N., De Wit, R., 2012. Exploring new issues for coastal lagoons monitoring and management, Estuar. Coast. Shelf Sci. 114, 1-6. https://doi.org/10.1016/j.ecss.2012.07.008

Galbraith, P. S., Larouche, P., 2013. Trends and variability in air and sea surface temperatures in eastern Canada, [in:] Aspects of Climate Change in the Northwest Atlantic off Canada, Can. Tech. Rep. Fish. Aquat. Sci. 3045, 1-18.

Garbrecht, J., Fernandez, G. P., 1994. Visualization of trends and fluctuations in climatic records, Water Resour. Bull. 30(2), 297-306. https://doi.org/10.1111/j.1752-1688.1994.tb03292.x

Goebeler, N., Norkko, A., Norkko, J., 2022. Ninety years of coastal monitoring reveals baseline and extreme ocean temperatures are increasing off the Finnish coast, Commun. Earth Environ. 3, 215. https://doi.org/10.1038/s43247-022-00545-z

Goikoetxea, N., Borja, Á., Fontán, A., et al., 2009. Trends and anomalies in sea-surface temperature, observed over the last 60 years, within the southeastern Bay of Biscay, Cont. Shelf Res. 29(8), 1060-1069. https://doi.org/10.1016/j.csr.2008.11.014

Graf, R., Vyshnevskyi, V., 2023. Thermal regime of the Vistula River mouth and the Gdańsk Bay, Geogr. Pol. 96(4), 459-471. https://doi.org/10.7163/GPol.0264

Graf, R., Wrzesiński, D., 2020. Detecting patterns of changes in river water temperature in Poland, Water 12(5), 1442. https://doi.org/10.3390/w12051327

Grebmeier, J. M., 2012. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas, Annu. Rev. Mar. Sci. 4, 63-78. https://doi.org/10.1146/annurev-marine-120710-100926

Gröger, J. P., Hinrichsen, H.-H., Polte, P., 2014. Broad-scale climate influences on spring-spawning herring (Clupea harengus L.) recruitment in the Western Baltic Sea, PLoS One 9, e87525. https://doi.org/10.1371/journal.pone.0087525

Haase, P., Bowler, D. E., Baker, N. J., et al., 2023. The recovery of European freshwater biodiversity has come to a halt, Nature 620(7974), 582-588. https://doi.org/10.1038/s41586-023-06400-1

Hannah, D. M., Garner, G., 2015. River water temperature in the United Kingdom: changes over the 20th century and possible changes over the 21st century, Prog. Phys. Geogr. 39(1), 68-92. https://doi.org/10.1177/0309133314550669

Hansen, J., Sato, M., 2020. Global warming acceleration, Earth Inst., Columbia Univ., 14 pp.

Harley, C. D., Hughes, A. R., Hultgren, K. M., et al., 2006. The impacts of climate change in coastal marine systems, Ecol. Lett. 9(2), 228-241. https://doi.org/10.1111/j.1461-0248.2005.00871.x

Hoegh-Guldberg, O., Bruno, J. F., 2010. The impact of climate change on the world's marine ecosystems, Science 328(5985), 1523-1528. https://doi.org/10.1126/science.1189930

Huang, B., Thorne, P., Smith, T., et al., 2015a. Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4(v4), J. Climate 29, 3119-3142. https://doi.org/10.1175/JCLI-D-15-0430.1

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., et al. (eds.)], Cambridge Univ. Press, Cambridge, UK; New York, NY, USA. https://doi.org/10.1017/9781009157896

IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee, H., Romero, J. (eds.)], IPCC, Geneva, Switzerland, 184 pp. https://doi.org/10.59327/IPCC/AR6-9789291691647

Jane, S. F., Hansen, G. J. A., Kraemer, B. M. et al., 2021. Widespread deoxygenation of temperate lakes. Nature 594(7861), 66-70. https://doi.org/10.1038/s41586-021-03550-y

Jaswal, A. K., Singh, V., Bhambak, S. R., 2012. Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean, J. Indian Geophys. Union 16(2), 41-53.

Kędra, M., Wiejaczka, Ł., 2018. Climatic and dam-induced impacts on river water temperature: assessment and management implications, Sci. Total Environ. 626, 1474-1483. https://doi.org/10.1016/j.scitotenv.2017.10.044

Kejna, M., Rudzki, M., 2021. Spatial diversity of air temperature changes in Poland in 1961-2018, Theor. Appl. Climatol. 143(3-4), 1361-1379. https://doi.org/10.1007/s00704-020-03487-8

Kennedy, J. J., Rayner, N. A., Atkinson, C. P., 2019. An ensemble data set of sea-surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set, J. Geophys. Res. Atmos. 124(14), 7719-7763. https://doi.org/10.1029/2018JD029867

Kniebusch, M., Meier, H. M., Neumann, T., Börgel, F., 2019. Temperature variability of the Baltic Sea since 1850 and attribution to atmospheric forcing variables, J. Geophys. Res. Oceans 124(6), 4168-4187. https://doi.org/10.1029/2018JC013948

Kozlov, I., Dailidienė, I., Korosov, A., Klemas, V., Mingėlaitė, T., 2014. MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon, J. Mar. Syst. 129, 157-165. https://doi.org/10.1016/j.jmarsys.2012.05.011

Kundzewicz, Z. W., Matczak, P., 2012. Climate change regional review: Poland. WIREs Climate Change, 3(4), 297-311. https://doi.org/10.1002/wcc.179

Kundzewicz, Z. W., Robson, A. J., 2004. Change detection in hydrological records — a review of the methodology. Hydrol. Sci. J. 49(1), 7-19. https://doi.org/10.1623/hysj.49.1.7.53993

Laakso, L., Mikkonen, S., Drebs, A., et al., 2018. 100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea, Ocean Sci. 14(4), 617-632. https://doi.org/10.5194/os-14-617-2018

Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.H., Hüssy, K., Liblik, T., Meier, H.M., Lips, U., Bukanova, T., 2022. Salinity dynamics of the Baltic Sea. Earth Syst. Dynamk. 13(1), 373-392. https://doi.org/10.5194/esd-13-373-2022

López Garcı́a, M. J., 2020. SST Comparison of AVHRR and MODIS Time Series in the Western Mediterranean Sea, Remote Sens. 12(14), 2241. https://doi.org/10.3390/rs12142241

Łomniewski, K., 1958. Zalew Wiślany, PWN, Warszawa, 117 pp. Marszelewski, W., Pius, B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers, Hydrol. Sci. J. 61(8), 1430-1442. https://doi.org/10.1080/02626667.2015.1040800

Meier, H. M., Dieterich, C., Eilola, K., et al., 2019. Future projections of record-breaking sea surface temperature and cyanobacteria bloom events in the Baltic Sea. Ambio 48, 1362-1376. https://doi.org/10.1007/s13280-019-01235-5

Meier M., Kjellström E., Graham P., 2006. Estimating uncertainties of projected Baltic sea salinity in the late 21st century. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026488

Mohseni, O., Stefan, H. G., 1999. Stream temperature/air temperature relationship: a physical interpretation, J. Hydrol. 218(3-4), 128-141. https://doi.org/10.1016/S0022-1694(99)00034-7

Morrill, J. C., Bales, R. C., Conklin, M. H., 2005. Estimating stream temperature from air temperature: implications for future water quality, J. Environ. Eng. 131(1), 139-146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

Neumann, T., Eilola, K., Gustafsson, B., et al., 2012. Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate, Ambio 41, 574-585. https://doi.org/10.1007/s13280-012-0321-2

O’carroll, A.G., Armstrong, E.M., Beggs, H.M., et al., 2019. Observational needs of sea surface temperature. Front. Mar. Sci. 6, p. 420. https://doi.org/10.3389/fmars.2019.00420

Occhipinti-Ambrogi, A., 2007. Global change and marine communities: alien species and climate change, Mar. Pollut. Bull. 55(7-9), 342-352. https://doi.org/10.1016/j.marpolbul.2006.11.014

Oliver, E. C. J., Donat, M. G., Burrows, M. T., et al., 2018. Longer and more frequent marine heatwaves over the past century, Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9

O’Reilly, C. M., Sharma, S., Gray, D. K., et al., 2015. Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett. 42(24), 10773-10781. https://doi.org/10.1002/2015GL066235

Pérez-Ruzafa A., Marcos C., Pérez-Ruzafa I.M., Barcala E., Hegazi M.I., Quispe J., 2007. Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: spatial and temporal scales of variability in coastal lagoons. Estuar. Coast. Shelf Sci. 75, 175-188. https://doi.org/10.1016/j.ecss.2007.04.030

Pérez-Ruzafa A., Marcos C., 2012. Fisheries in coastal lagoons: An assumed but poorly researched aspect of the ecology and functioning of coastal lagoons. Estuar. Coast. Shelf Sci. 110, 15-31. https://doi.org/10.1016/j.ecss.2012.05.025

Pilgrim J.M., Fang X., Stefan H.G., 1998. Stream temperature correlations with air temperatures in Minnesota: implications for climate warming. J. Am. Water Resour. Assoc. 34(5), 1109-1121. https://doi.org/10.1111/j.1752-1688.1998.tb04158.x

Polte P., Kotterba P., Hammer C., Gröhsler T., 2014. Survival bottlenecks in the early ontogenesis of Atlantic herring (Clupea harengus, L.) in coastal lagoon spawning areas of the western Baltic Sea. ICES J. Mar. Sci. 71, 982-990. https://doi.org/10.1093/icesjms/fst050

Ptak, M., Sojka, M., Nowak, B., 2019. Characteristics of daily water temperature fluctuations in Lake Kierskie (West Poland). Quaestiones Geographicae 38(2), 97-107. https://doi.org/10.2478/quageo-2019-0017

Ridgway K.R., Ling S.D., 2023. Three decades of variability and warming of nearshore waters around Tasmania. Prog. Oceanogr. 215, 102902. https://doi.org/10.1016/j.pocean.2023.103046

Rijnsdorp A.D., Peck M.A., Engelhard G.H., Möllmann C., Pinnegar J.K., 2009. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66(7), 1570-1583. https://doi.org/10.1093/icesjms/fsp056

Smit A.J., Roberts M., Anderson R.J., Dufois F., Dudley S.F., Bornman T.G., Olbers J., Bolton J.J., 2013. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One 8(12), e81944. https://doi.org/10.1371/journal.pone.0081944

Smol, J. P., Wolfe, A. P., Birks, H. J. B., et al., 2005. Climatedriven regime shifts in the biological communities of arctic lakes. Proc. Nat. Acad. Sci. 102(12), 4397-4402. https://doi.org/10.1073/pnas.0500245102

Stockmayer, V., Lehmann, A., 2023. Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020. Oceanologia 65(3), 466-483. https://doi.org/10.1016/j.oceano.2023.02.002

Stramska M., Białogrodzka J., 2015. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32 years (1982-2013) of satellite data. Oceanologia 57(3), 223-235. https://doi.org/10.1016/j.oceano.2015.04.004

Şen Z., 2017. Innovative trend methodologies in science and engineering. Springer Int. Publ., New York, 349 pp. https://doi.org/10.1007/978-3-319-52338-5

Van Vliet M.T.H., Ludwig F., Zwolsman J.J.G., Weedon G.P., Kabat P., 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 47(2), W02544. https://doi.org/10.1029/2010WR009198

Van Wynsberge S., Menkes C., Le Gendre R., Passfield T., Andréfouët S., 2017. Are sea surface temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific? Estuar. Coast. Shelf Sci. 199, 117-124. https://doi.org/10.1016/j.ecss.2017.09.033

Venegas-Cordero N., Kundzewicz Z.W., Jamro S., et. al., 2022. Detection of trends in observed river floods in Poland. J. Hydrol. Reg. Stud. 41, 101098. https: //doi.org/10.1016/j.ejrh.2022.101098

Wang J., Xu C., Hu M., Li Q., Yan Z., Jones P., 2018. Global land surface air temperature dynamics since 1880. Int. J. Climatol. 38(S1), e466-e474. https://doi.org/10.1002/joc.5384

Webb B.W., Nobilis F., 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 52(1), 74-85. https://doi.org/10.1623/hysj.52.1.74

Wolf M.A., Sfriso A., Moro I., 2014. Thermal pollution and settlement of new tropical alien species: the case of Grateloupia yinggehaiensis (Rhodophyta) in the Venice Lagoon. Estuar. Coast. Shelf Sci. 147, 11-16. https://doi.org/10.1016/j.ecss.2014.05.020

Zalewska T., Wilman B., Łapeta B., Marosz M., Biernacik D., Wochna A., Iwaniak M., 2023. Seawater temperature changes in the southern Baltic Sea (1959-2019) forced by climate change. Oceanologia 66(1), 37-55. https://doi.org/10.1016/j.oceano.2023.08.001

full, complete article - PDF


Mutual influence of wind-driven flow and the wave bed boundary layer in the remote foreshore of a non-tidal sea
Oceanologia, 67 (4)/2025, 67402, 11 pp.
https://doi.org/10.5697/SUEC1393

Magdalena Stella-Bogusz1,*, Rafał Ostrowski1, Grzegorz R. Cerkowniak1,2
1Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Kościerska 7, 80–328 Gdańsk, Poland;
e-mail: m.stella@ibwpan.gda.pl (M. Stella-Bogusz)
2University of Gdańsk, Marszałka Piłsudskiego 46, 81–378 Gdynia, Poland
*corresponding author

Keywords: Modified logarithmic velocity distribution; Bed shear stresses; Wave and wave-current bed boundary layers; Wind-driven current

Received: 15 July 2024; revised: 8 September 2025; accepted: 15 September 2025

Highlights

Abstract

A new model of the wind-driven current is presented. The solution comprises the stationary flow and wave-driven nearbed oscillatory velocities. The wave-related bed boundary layer causes additional shear stresses that affect the wind-driven current. Both the wave boundary layer (WBL) and the wave–current boundary layer (WCBL) are considered. The bed boundary layer produces a modified logarithmic velocity distribution in the wind-driven current model. The results of modelled profiles are verified by measurement data of wind, wave and current characteristics. All measurements are conducted in the vicinity of the Coastal Research Station (CRS) in Lubiatowo, where wave and current data were collected approximately 2.8 km (1.5 NM) from the coastline, at depth ca. 17 m, whereas the wind parameters were measured on land near the Station. The investigation area hydrodynamics is typical of the south Baltic Sea coast. Reduction of flow velocities near the seabed, particularly distinct under the wave-dominated regime, is the main feature of the new model. The new modified logarithmic profile defining velocity vertical distributions shows good agreement with the measurements. Furthermore, it is confirmed that the wave-induced nearbed turbulence strongly affects the wind-driven current, while the wind-driven current has an insignificant influence on the bed boundary layer.

  References   ref

Baas, J., Malarkey, J., Lichtman, I., Amoudry, L., Thorne, P., Hope, J., Peakall, J., Paterson, D., Bass, S., Cooke, R., Manning, A., Parsons, D., Ye, L., 2021. Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential. Front. Earth Sci. 9. https://doi.org/10.3389/feart.2021.747567

Brevik, I., 1981. Oscillatory rough turbulent boundary layers. J. Waterw. Port Coast. Ocean Div. 107 (3), 175–188. https://doi.org/10.1061/JWPCDX.0000261

Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015a. Depth of closure in the multi-bar non-tidal nearshore zone of the Baltic Sea: Lubiatowo (Poland) case study. Bull. Maritime Inst. Gdańsk, 30 (1), 180–188. http://doi.org/10.5604/12307424.1185577

Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015b. Wave-Induced Sediment Motion Beyond the Surf Zone: Case Study of Lubiatowo (Poland). Arch. Hydro-Eng. Environ. Mech. 62 (1–2), 27–39.

Cerkowniak, G.R., Ostrowski, R., Pruszak, Z., 2017. Application of Dean’s curve to the investigation of the long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia 59 (1), 18–27. http://dx.doi.org/10.1016/j.oceano.2016.06.001

Chen, X., Hu, X., 2020. Explicit approximation for velocity and sediment flux above mobile sediment bed beneath current and asymmetric wave. Coastal Eng. 157. https://doi.org/10.1016/j.coastaleng.2020.103635

Dean, R.G., 2002. Beach Nourishment. Theory and Practice. Advanced Series on Ocean Engineering Vol. 18. World Sci. Publ. Co. Pte. Ltd., 399 pp. https://doi.org/10.1142/2160

Egan, G., Cowherd, M., Fringer, O., Monismith, S., 2019. Observations of near-bed shear stress in a shallow, waveand current-driven flow. J. Geophys. Res. 124, 6323–6344. https://doi.org/10.1029/2019JC015165

Fredsøe, J., 1984. Turbulent boundary layer in combined wave-current motion. J. Hydraulic Eng. 110 (HY8), 1103–1120. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103)

Grant, W.D., Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res. 84 (C4), 1797–1808. https://doi.org/10.1029/JC084iC04p01797

Kemp, P., Simons, R., 1982. The interaction between waves and a turbulent current: Waves propagating with the current. J. Fluid Mech. 116, 227–250. https://doi.org/10.1017/S0022112082000445

Kondo, J., Sato, T., 1982. The Determination of the von Kármán Constant. J. Meteorol. Soc. Japan, 60 (1), 461–471. Krauss, W., 2001. Chapter: Baltic sea circulation. [In:] Encyclopedia of Ocean Sciences. https://doi.org/10.1006/rwos.2001.0381

Lacy, J.R., Rubin, D.M., Ikeda, H., Mokudai, K., Hanes, D.M., 2007. Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018. https://doi.org/10.1029/2006JC003942

Lim, K.Y., Madsen, O.S., 2016. An experimental study on near-orthogonal wave–current interaction over smooth and uniform fixed roughness beds. Coast. Eng. 116, 258–274. https://doi.org/10.1016/j.coastaleng.2016.05.005

Malarkey, J., Davies, A.G., 1998. Modelling wave–current interactions in rough turbulent bottom boundary layers. Ocean Eng. 25, 119–141. https://doi.org/10.1016/S0029-8018(96)00062-5

Meyer, Z., 2009. Modified Logarithmic Tachoida Applied to Sediment Transport in a River. Acta Geophysica 57 (3), 743–759. https://doi:10.2478/s11600-009-0010-0

Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanc. Ser. Ocean Eng., Vol 4, World Sci. Publ. Co. Pte. Ltd., 340 pp. https://doi.org/10.1142/1269

Nielsen, P., 2009. Coastal and Estuarine Processes. Advanc. Ser. Ocean Eng., Vol 29, World Sci. Publ. Co. Pte. Ltd., 343 pp. https://doi.org/10.1142/7114

Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland. J. Marine Syst. 162, 89–97. https://doi. org/10.1016/j.jmarsys.2015.10.006

Ostrowski, R., Stella, M., 2020. Potential dynamics of nontidal sea bed in remote foreshore under waves and currents. Elsevier Science B.V., 207 pp. https://doi.org/10.1016/j.oceaneng.2020.107398

Ostrowski, R., Stella-Bogusz, M., 2023. Modified logarithmic distribution of wind-driven flow velocity in remote foreshore of the non-tidal sea. Oceanologia, 65 (4), 556–563. https://doi.org/10.1016/j.oceano.2023.06.003

Ostrowski, R., Stella, M., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2018. Coastal hydrodynamics beyond the surf zone of the south Baltic Sea. Oceanologia, 60 (3), 264–276. https://doi.org/10.1016/j.oceano.2017.11.007

Overes, P.H.P., Borsje, B.W., Luijendijk, A.P., Hulscher, S.J.M.H., 2024. The importance of time-varying, nontidal currents in modelling in-situ sand wave dynamics. Coast. Eng. 189, 104480. https://doi.org/10.1016/j.coastaleng.2024.104480

Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia, 50 (1), 43–58.

Reyes-Hernández, C., Valle-Levinson, A.. 2010. Wind Modifications to Density-Driven Flows in Semienclosed, Rotating Basins. J. Phys. Oceanogr. 40, 1473–1487. https://doi.org/10.1175/2010JPO4230.1

Stella, M., 2021. Morphodynamics of the south Baltic seabed in the remote nearshore zone in the light of field measurements. Mar. Geol. https://doi.org/10.1016/j.margeo.2021.106546

Stella, M., Ostrowski, R., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2019. Driving forces of sandy sediment transport beyond the surf zone. Oceanologia, 61 (1), 50–59. https://doi.org/10.1016/j.oceano.2018.06.003

Trzeciak, S., 2000. Marine Meteorology with Oceanography. Wyd. Nauk. PWN, 249 pp., (in Polish).

van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Vol. 1006. Aqua Publ., Amsterdam.

Wiberg, P.L., 2005. Wave-Current Interaction. [In:] Encyclopedia of Coastal Science, Schwartz, M.L. (Ed.), Encyclopedia Earth Sci. Ser., Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_343

Zuo, L.Q., Roelvink, D., Lu, Y.J., 2019. The mean suspended sediment concentration profile of silty sediments under wave-dominant conditions. Cont. Shelf Res. 186, 111–126. https://doi.org/10.1016/j.csr.2019.07.016

full, complete article - PDF


Diel patterns of fish activity in the Vistula Lagoon’s littoral zone: integrating acoustic and net fishing methods
Oceanologia, 67 (4)/2025, 67403, 9 pp.
https://doi.org/10.5697/FOBG2231

Beata Schmidt*, Ryszard Kornijów
Department of Fisheries, Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland;
e-mail: bschmidt@mir.gdynia.pl (Beata Schmidt)
*corresponding author

Keywords: Vistula Lagoon; Sonar ARIS; Horizontal fish migrations

Received: 28 October 2024; revised: 19 August 2025; accepted: 16 September 2025

Highlights

Abstract

The study investigated summer diel variability in fish abundance and movement within a highly eutrophic Baltic lagoon, with a focus on horizontal migrations between reed beds and open water. A combination of multibeam ARIS sonar and traditional net fishing was employed, allowing for continuous, non-invasive monitoring of fish behaviour alongside assessments of species composition and size structure. The dominant species caught included roach, bleak, silver bream, and juvenile perch. Acoustic recordings revealed consistently higher fish activity during the day compared to the night, with activity elevated during the full moon relative to the new moon. Morning migrations to open water were observed, whereas mass evening migrations back to the reed beds occurred only once. The study suggests the presence of reverse migration patterns, potentially driven by improved visibility at night and predation pressure from sander.

  References   ref

Appelberg, M., Berger, H.M., Hesthagen, T., Kleiven, E., Kurkilahti, M., Raitaniemi, J., Rask, M., 1995. Development and intercalibration of methods in Nordic freshwater fish monitoring. Water Air Soil Pollut. 85, 401–406. https://doi.org/10.1007/BF00476862

Benndorf, J., 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201, 187–203. https://doi.org/10.1007/BF02530339

Bollens, S.M., Frost, B.W., Thoreson, D.S., Watts, S.J., 1992. Diel vertical migration in zooplankton: field evidence in support of the predator avoidance hypothesis. Hydrobiologia 234, 33–39.

Brabrand, Å., Faafeng, B., 1993. Habitat shift in roach (Rutilus rutilus) induced by pikeperch (Stizostedion lucioperca) introduction: predation risk versus pelagic behaviour. Oecologia 95, 38–46. https://doi.org/10.1007/BF00649504

Cervetto, G., Pagano, M., Gaudy, R., 1995. Feeding behaviour and migrations in a natural population of the copepod Acartia tonsa. Hydrobiologia 300, 237–248. https://doi.org/10.1007/BF00024464

Gaudreau, N., Boisclair, D., 2000. Influence of moon phase on acoustic estimates of the abundance of fish performing daily horizontal migration in a small oligotrophic lake. Can. J. Fish. Aquat. Sci. 57, 581–590. https://doi.org/10.1139/f99-277

Gliwicz, Z.M., Jachner, A., 1992. Diel migrations of juvenile fish – a ghost of predation past or present. Arch. Hydrobiol. 124, 385–410. https://doi.org/10.1127/archiv-hydrobiol/124/199 2/385

Gliwicz, Z.M., Slon, J., Szynkarczyk, I., 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Fresh. Biol. 51, 823–839. https://doi.org/10.1111/j.1365-2427.2006.01530.x

Horppila, J., Liljendahl, A., Estlander, S., Nurminen, L., 2018. The role of visual and physiological refuges in humic lakes: Effects of oxygen, light quantity, and spectral composition on daytime depth of chaoborids. Int. Rev. Hydrobiol. 103, 63–70. https://doi.org/10.1002/iroh.201801933

Hӧlker, F., Haertel, S. S., Steiner, S., Mehner, T., 2002. Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: an individual-based modelling approach. Freshw. Biol. 47, 2345–2358. https://doi.org/10.1046/j.1365-2427.2002.01002.x

Imbrock, F., Appenzeller, A., Eckmann, R., 1996. Diel and seasonal distribution of perch in Lake Constance: A hydroacoustic study and in situ observations. J. Fish Biol. 49, 1–13. https://doi.org/10.1111/j.1095-8649.1996.tb00001.x

Jacobsen, L., Berg, S., Jepsen, N., Skov, C., 2004. Does roach behaviour differ between shallow lakes of different environmental state? J. Fish Biol. 65, 135–147. https://doi.org/10.1111/j.0022-1112.2004.00436.x

Järvalt, A., Krause, T., Palm, A., 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologi 547, 197–203. https://doi.org/10.1007/s10750-005-4160-z

Jeppesen, E., Pekcan-Hekim, Z., Lauridsen, T.L., Søndergaard, M., Jensen, J.P., 2006. Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes. Ecol. Freshw. Fish 15, 180–190. https://doi.org/10.1111/j.1600-0633.2006.00142.x

Karpowicz, M., Kornijów, R., Ejsmont-Karabin, J., 2023. Not a good place to live for most, excellent for a few - diversity of zooplankton in a shallow coastal ecosystem. Sustainability 15(3), 2345. https://doi.org/10.3390/su15032345

Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60(3), 390–404. https://doi.org/10.1016/j.oceano.2018.02.004

Kornijów, R., Karpowicz, M., Ejsmont-Karabin, J., Nawrocka, L., de Eyto, E., Grzonkowski, K., Magnuszewski, A., Jakubowska, A., Wodzinowski, T., Woźniczka, A., 2020. Patchy distribution of phyto- and zooplankton in large and shallow lagoon under ice cover and resulting trophic interactions. Mar. Freshwater Res. 71, 1327–1341. https://doi.org/10.1071/MF19259

Martignac, F., Daroux, A., Bagliniere, J.L., Ombredane, D., Guillard, J., 2015. The use of acoustic cameras in shallow waters: New hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish Fish. 16, 486–510. https://doi.org/10.1111/faf.12071

Moss, B., 1994. Brackish and freshwater shallow lakes – different systems or variations on the same theme? Hydrobiologia 275, 1–14. https://doi.org/10.1007/BF00026695

Moursund R.A., Carlson T.J., Peters R.D., 2003. A fisheries application of dual-frequency identification sonar acoustic camera, ICES J. Mar. Sci. 60, 678–683. https://doi.org/10.1016/S1054-3139(03)00036-5

Muška, M., Tušer, M., Frouzová, J. Drastı́k, V., Cech, M., Juza, T., Kratochvı́l, M., Mrkvicka, T., Peterka, J., Prchalová, M., Rı́ha, M., Vasek, M., Kubecka, J., 2013. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia 707, 17–28. https://doi.org/10.1007/s10750-012-1401-9

Olin, M., Kurkilahti, M., Peitola, P., Ruuhijärvi, J., 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fish. Res. 68: 135–147. https://doi.org/10.1016/j.fishres.2004.01.005

Pawlikowski, K., Kornijów, R., 2019. Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (southern Baltic Sea). Oceanologia 61(1), 26–37. https://doi.org/10.1016/j.oceano.2018.05.003

Pekcan-Hekim, Z., Nurminen, L., Ojala, T., Olin, M., Ruuhijärvi, J., Horppila, J., 2010. Reversed Diel HorizontalMigration of Fish: Turbidity Versus Plant Structural Complexity as Refuge. J. Freshw. Ecol., 25(4), 649–656. https://doi.org/10.1080/02705060.2010.9664414

Psuty-Lipska, I., Borowski, W., 2003. Factors affecting fish assemblages in the Vistula Lagoon. Arch. Fish. Mar. Res. 50(3), 253–270.

Psuty, I., Wilkońska, H., 2009. The stability of fish assemblages under unstable conditions: A ten-year series from the Polish part of the Vistula Lagoon. Arch. Pol. Fisheries 17. https://doi.org/10.2478/v10086-009-0004-1

Ravn, H.D., Lauridsen, T.L., Jepsen, N., Jeppesen, E., Hansen, P.G., Hansen, J.G., Berg, S., 2019. A comparative study of three different methods for assessing fish communities in a small eutrophic lake. Ecol. Freshw. Fish 28, 341–352. https://doi.org/10.1111/eff.12457

Vasek, M., Kubecka, J., 2004. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool. 53, 203–214.

Wasserman, R.J., Vink, T.J.F., Kramer, R., Froneman, P.W., 2014. Hyperbenthic and pelagic predators regulate alternate key planktonic copepods in shallow temperate estuaries. Mar. Freshw. Res. 65, 791–801. https://doi.org/10.1071/MF13233

Wolter C., Freyhof J., 2004. Diel distribution patterns of fishes in a temperate large lowland river. J. Fish Biol. 64, 632–642. https://doi.org/10.1111/j.1095-8649.2004.00327.x

full, complete article - PDF


Dynamics of ice phenomena on the lake shores based on ice scars method – study from the Southern Baltic Sea coast
Oceanologia, 67 (4)/2025, 67404, 16 pp.
https://doi.org/10.5697/ZVAO7632

Józef P. Girjatowicz, Tomasz A. Łabuz*, Małgorzata Świątek
Institute of Marine and Environmental Science, University of Szczecin, Mickiewicza 16, 70–383 Szczecin, Poland;
e-mail: tomasz.labuz@usz.edu.pl (Tomasz A. Łabuz)
*corresponding author

Keywords: Piled ice; Ice scars; Coastal lakes; Shore erosion; Baltic Sea’s coast

Received: 22 October 2024; revised: 2 September 2025; accepted: 3 September 2025

Highlights

Abstract

This paper analyses how ice pile-ups affect lake shores, how far ice thrusts reach and the height of ice pilings, while also determining the regions that are most vulnerable to the destructive impact of ice on reservoirs located in a coastal zone. This was achieved by a field survey examining ice scars on trees growing along the lakes of the southern Baltic Sea. The ice scars were mainly measured in terms of elevation and length, the distance of the damaged trees from the shore, geographic coordinates, the geographic direction the scars were facing and the elevation of the ground above the water level. A t-test was used to determine whether the tree scars on the individual lakes varied from the average in elevation or distance from the shore.
The furthest traces of ice pile-ups observed on trees were 38 m inland, while the maximum height of the ice piles was 3.8 m. These maximum scores were found at lakes located further east, on their northeastern shores, probably because the most frequent and strongest winds tend to be westerly. Based on the research findings, some conclusions can be drawn about the dynamics of ice phenomena, especially in areas where systematic observations of this type were not carried out. The results can be used to design shore protection and may be relevant for investment plans for municipal housing, transport and recreational infrastructure

  References   ref

Alestalo, J., Häikiö, J., 1976. Forms created by the thermal movement of lake ice in Finland in winter 1972–1973. Fenia 157 (2), 51–92.

Banzhaf, W., 1931. Ice pileups on the Szczecin Lagoon. Nature und Museum 61 (12), 491–494 (in German).

Baranowski, D., Chlost, I., 2009. Hydro-meteorological conditions in the catchment of the Łebsko Lake. Baltic Coastal Zone 13, 109–119.

Barnes, P.W., Kempema., E.W., Reimnitz, E., McCormick M., 1994. The influence of ice on southern Lake Michigan coastal erosion. J. Great Lakes Res. 20 (1), 179–195. https://doi.org/10.1016/S0380-1330(94)71139-4

Bégin, Y., Payette, S., 1991. Population structure of lakeshores willows and ice-push events in subarctic Québec, Canada. Holarctic Ecol. 14, 9–17.

Beltaos, S., Prowse, T.D., Carter, T., 2006. Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca Delta. Hydrol. Process. 20 (19), 4009–4029. https://doi.org/10.1002/hyp.6417

Correns, M., 1973. Eisverhältnisse des Peenestrom – Haffgebietes – ein Beitrag zur Hydrogrphie der Gewässer an der Sűdlichen Ostseekűstr. Petermanus Geographischen Mitteilungen 174, 4 (in German).

Cieśliński, R., 2011. Geographical conditions of hydrochemical variability of lakes on the southern Baltic coast. Gdańsk Univ. Publ., Gdańsk (in Polish).

Cieśliński, R., Drwal, J., Chlost, I., 2009. Sea water intrusions to the lake Gardno. Baltic Coastal Zone 13, 85–95.
Choiński, A., 1995. Outline of physical limnology of Poland. Wyd. Nauk. Uniw. Adama Mickiewicza (in Polish).

Choiński, A., Ptak, M., Skowron, R., Strzelczak, A., 2015. Changes in ice phenology on Polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 53, 42–49. https://doi.org/10.1016/j.limno.2015.05.005

Christensen, F.T., 1994. Ice ridge-up and pile-up on shores and coastal structures. J. Coast Res. 10 (3), 681–701.

Cyberski, J., Grześ, M., Gutry-Korycka, M., Nachlik, E., Kundzewicz, Z.W., 2006. History of floods on the River Vistula. Hydrolog. Sci. J. 51 (5), 799–817. https://doi.org/10.1623/hysj.51.5.799

Dione, J.C., 1979. Ice action in the lacustrine environment – A review with particular reference to subarctic Quebec, Canada. Earth Sci. Rev. 15 (3), 185–212.

Duguay, C.R., Prowse, T.D., Bonsal, B.R., Lacroix, M.P., Mé- nard, P., 2006. Recent trends in Canadian lakes ice cover. Hydrolog. Process. 20, 781–801. https://doi.org/10.1002/hyp.6131

Engström, J., Jansson, R., Nilsson, C., Weber, C., 2011. Effects of river ice on riparian vegetation. Freshwater Biol. 56, 1095–1195. https://doi.org/10.1111/j.1365-2427.2010.02553.

Gatto, L.W., 1984. Reservoir Bank erosion caused by ice. Cold Reg. Sci. Techn. 9, 203–214.

Girjatowicz, J.P., 2011. Effects of the North Atlantic Oscillation on water temperature in southern Baltic coastal lakes. Annales Limnol. – Int. J. Lim. 47, 73–84. https://doi.org/1051/Limn/2010031

Girjatowicz, J.P., 2014. Ice thrusting and hummocking on the shores of the Southern Baltic Sea’s coastal lagoons. J. Coast. Res. 30 (3), 456–464. https://doi.org/10.2112/JCOASTRES-D-12-00032.1

Girjatowicz, J.P., 2015. Forms of onshore ice thrusting in coastal lagoons of the Southern Baltic Sea. J. Cold Reg. Eng. 29 (1), 1–17. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000069

Girjatowicz, J.P., Łabuz, T. A., 2020. Forms of piled ice at the southern coast of the Baltic Sea. Est. Coast. Shelf Sci. 239. https://doi.org/10.1016/j.ecss.2020.106746

Girjatowicz, J.P., Świątek, M., Kowalewska-Kalkowska, H., 2022. Relationships between air temperature and conditions on the southern Baltic coastal lakes in the context of climate change. J. Limn. 81, 2060. https://doi.org/10.4081/jlimnol.2022.2060

Girjatowicz, J.P., Świątek, M., Łabuz, T.A., 2024. The range of sliding and piling ice on the basis of ice scars on trees in coast of the coastal lagoons on the example of the Szczecin Lagoon. Quaest. Geogr. 43 (1), 93–110. https://doi.org/10.14746/quageo-2024-0006

Haapala, J., Ronkainen, I., Schmelzer, N., Sztobryn, M., 2015. Recent change – sea ice. [In:] The BACC II Author Team (Eds.), Second assessment of climate change for the Baltic Sea basin, International Baltic Sea Secretariat, Springer, Geesthacht, 145–153.

Jańczak, J., 1997. Atlas of Polish Lakes. Wyd. Inst. Meteorol. Gosp. Wod., Poznań (in Polish).

Jevrejeva, S., Drabkin, V.V., Kostjukov, J., Lebedev, A.A., Lepparänta, M., Mironov, Y.U., Schmelzer, N., Sztobryn, M., 2004. Baltic Sea season in the twentieth century. Climate Res. 25 (23), 217–227. https://doi.org/10.3354/cr025217

Kaptein, M., van den Heuvel, E., 2022. Statistics for data scientists: an introduction to probability, statistics and data analysis. Springer, Berlin, Heidelberg, New York.

Kozlov, I.E., Krek, E.V., Kostianoy, A.G., Dailidienė, I., 2020. Remote sensing of ice conditions in the southeastern Baltic Sea and in the Curonian Lagoon and validation of SAR-based ice thickness products. Remote Sens. 12(20), 3754, 20 pp. https://doi.org/10.3390/rs12223754

Kraus, E., 1930. Over ice pileups. III Hydrological Conference of the Baltic Countries, Warsaw, Poland, 1–44 (in German).

Leckebusch, G.C., Ulbrich, W., 2004. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet. Change 44, 181–193. https://doi.org/10.1016/j.gloplacha.2004.06.011

Lederer, J.R., Garver, J.I., 1996. Ice jams inferred from tree scars made during the 1996 mid-winter flood on the Mohawk River. Geology Department Union College, New York, USA.

Lederer, J.R., Garver, J.I., 2000. Ice jams on the lower Mohawk River (Crescent, NY) formed during the 2000 mindwinter flood. Geology Department Union College, New York, USA.

Lemay, M., Bégin, Y., 2012. Using ice-scars as indicators of exposure to physical lakeshore disturbances, Corvette Lake, northern Quebec, Canada. Earth Surface Processes and Landforms 37 (13), 1353–1361. https://doi.org/10.1002/esp.3244

Leppäranta, M., 2010. Modelling of formation and decay of lake ice. [In:] George, G., (Ed.), The impact of climate change on European lakes, Springer, 63–83. https://doi.org/10.1007/978-90-481-2945-4_5

Leppäranta, M., 2013. Land-ice interaction in the Baltic Sea. Estonian J. Earth Sci. 62 (1), 2–14. https://doi.org/10.3176/earth.2013.01

Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer. https://doi.org/10.1007/978-3-540-79703-6

Lind, L.C., Nilsson, C., Povli, L.E., Weber, C., 2014. The role of ice dynamics in shaping vegetation in flowing waters. Biolog. Rev. 89, 791–804. https://doi.org/10.1111/brv.12077

Livingstone, D.M., Adrian, R., Blenckner, T., George. G., Weyhenmeyer, G.A., 2009. Lake ice phenology. [In:] George, G. (Ed.), The impact of climate change on European lakes. Aquat. Ecol. Ser. Vol. 4, Springer, Dordrecht, 51–61. https://doi.org/10.1007/978-90-481-2945-4_4

Łabuz, T.A., 2019. Storm surges in the 21st century (2000–2019) and their impact on the erosion of the dune coast in Poland, 28–29. [In:] Abstracts of 2nd Scientific Conference of Polish Sea Researchers: State and trends in seas and oceans, Gdynia (Poland) 24-25.09.2019.

Orviku, K., Jaagus, J., Tõnisson, H., 2011. Sea ice shaping the shores. J. Coast. Res. 64 (Sp. Iss.), 681–685. https://www.jstor.org/stable/26482258

Pawłowski, B., 2019. Ice jams: causes and effects. [In:] Maurice, P.A. (Ed.), Encyclopedia of water: science, technology and society. John Willey & Sons Inc. https://doi.org/10.1002/9781119300762

Pyökäri, M., 2011. Ice action on lake shores near Schefferville, central Quebec – Labrador, Canada. Can. J Earth Sci. 18 (10), 1629–1634. https://doi.org/10.1139/e81-149

Reinhard, H., 1955. Eispressungen an der Kũste. Weissenschaftliche Zeitschrift der Ernst Moritz Arndt Universität Greifswald, Jahr. 4, 6/7 (in German). Saart, P., 2022. Peipus Lake. https://www.youtube.com/watch?v=SYIrxoY08zs

Schönwiese, Ch., Rapp, J., 1997. Climate trend atlas of Europe based on observations 1891–1990. Kluwer Acad. Publ.

Sepp, M., Post, P., Jaagus, J., 2005. Long-term changes in the frequency of cyclones and their trajectories in Central and Northern Europe. Nordic Hydrol. 36, 297–309. https://doi.org/10.2166/nh.2005.0023

Skowron, R., 2009. Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. Bull. Geogr. Phys., Geogr. Ser. 1 (1), 103–124. https://doi.org/10.2478/bgeo-2009-0007

Smith, D.G., Reynolds, D.M., 1983. Trees scars to determine the frequency and stage of high magnitude river ice drives and jams, Red Deer, Alberta. Can. Water Res. J. 8 (3), 77–94.

Sui, J., Karney, B.W., Fang, D., 2005. Variation in water level under ice-jammed conditions – field investigation and experimental study. Nordic Hydrol. 36, 65–84.

Sztobryn, M., Wójcik, R., Miętus, M., 2012. Ice cover in the Baltic Sea – current status and expected changes in the future. [In:] Climatic and oceanographic conditions in Poland and the Southern Baltic Sea. Expected changes and guidelines for the development of adaptation strategies in the national economy, Monograph Ser., IMGW-PIB Publ., 189–215.

Tarnowska, K., 2011. Strong winds on the Polish coast of the Baltic Sea, Prac. Stud. Geogr. WGiSR UW 47, 197–204 (in Polish).

Tomczyk, A., Bednorz, E., (Ed.), 2022. Climate atlas of Poland (1991–2020). Bogucki Sci. Publ. (in Polish).

Uunila, R., Church, M., 2014. Ice on Peace River: Effects on Bank Morphology and Riparian Vegetation. [In:] Church, M. (Ed.), The regulation of Peace River: a case study for river management. Willey & Sons Inc., 391–420. https://doi.org/10.1002/9781118906170.ch6

Vandermause, R., Harvey, M., Zevenbergen, L., Ettema, R., 2021. River-ice effects on bank erosion along the middle segment of the Susitna River, Alaska. Cold. Reg. Sci. Techn. 185, 103239. https://doi.org/10.1016/j.coldregions.2021.103239

Wibig, J., 2021. Change of wind. [In:] Falarz, M., (Ed.), Climate change in Poland. Past, present, future. Springer, 391–420. https://doi.org/10.1007/978-3-030-70328-8

Wiśniewski, B., Wolski, T., 2011. Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 53 (1 TI), 373–390. https://doi.org/10.5697/oc.53-1-TI.373.

Wrzesiński, D., Choiński, A., Ptak, M., Skowron, R., 2015. Effect of the North Atlantic Oscillation on the pattern of lake ice Phenology in Poland. Acta Geophys. 63, 1664–1684. https://doi.org/10.1515/acgeo-2015-0055

full, complete article - PDF


Decadal change of benthic macroinvertebrates driven by multiple stresses in the Changjiang Estuary in summer
Oceanologia, 67 (4)/2025, 67405, 15 pp.
https://doi.org/10.5697/KFHM6788

Yanbin Tang1,2,4, Bin Wang1,2, Dewang Li1,2, Xiao Ma2,3, Zhibing Jiang1,2, Yibo Liao1,2, Qinghe Liu1,2, Rongliang Zhang1,2, Jiangning Zeng1,2, Jianfang Chen1,2,3, Chenghua Li4,*, Lu Shou1,2,*
1Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China;
e-mail: shoulu981@sio.org.cn (L. Shou), lichenghua@nbu.edu.cn (Ch. Li)
2Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan 316022, P. R. China
3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
4School of Marine Sciences, Ningbo University, Ningbo 315211, P. R. China
*corresponding author

Keywords: Benthic macroinvertebrate; Large estuary; Diluted water; Anthropogenic activity; El Niño

Received: 26 November 2024; revised: 16 September 2025; accepted: 23 September 2025

Highlights

Abstract

Both human activities and climate change have influenced benthic macroinvertebrates in the Changjiang Estuary since the Anthropocene. As a result, we investigated long-term variations in benthic macroinvertebrates and related them to changes in depth, salinity, temperature, pH and dissolved oxygen in bottom water off the Changjiang Estuary from 10 summer cruises during 2006–2021. The bi-monthly multivariate ENSO index and summer runoff rate of Changjiang were used to estimate the climate change during this period. The abundance and biomass of benthic macroinvertebrates increased significantly from 2006 to 2014 owing to a series of environmental protection measures. An intensive El Niño event, coupled with Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), promoted diluted water discharge and hypoxia in summer in the Changjiang Estuary since 2015. We noted changes in the macrobenthic community following these events, including a dramatic decrease in abundance and biomass, alterations in dominant species and a decline in benthic diversity. Correlation analysis, canonical correspondence and redundancy analysis revealed that depth, salinity and dissolved oxygen were the main factors influencing the distribution of benthic macroinvertebrates. Owing to the ubiquitous pressure caused by human activities and climate change in estuaries, we make an appeal that international cooperation is required to protect estuarine ecosystems under the scenario of global climate change.

  References   ref

Abele, D., Großpietsch, H., Pörtner, H.O., 1998. Temporal fluctuations and spatial gradients of environmental P(O2), temperature, H2O2 and H2S in its intertidal habitat trigger enzymatic antioxidant protection in the capitellid worm Heteromastus filiformis. Mar. Ecol. Prog. Ser. 163, 179–191. https://doi.org/10.3354/meps163179

Adeleye, A.O., Jin, H., Di, Y., Li, D., Chen, J., Ye, Y., 2016. Distribution and ecological risk of organic pollutants in the sediments and seafood of Yangtze Estuary and Hangzhou Bay, East China Sea. Sci. Total Environ. 541, 1540–1548. https://doi.org/10.1016/j.scitotenv.2015.09.124

Aller, J.Y., Aller, R.C., 1986. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6, 291–310. https://doi.org/10.1016/0278-4343(86)90065-8

Arntz, W.E., Gallardo, V.A., Gutiérrez, D., Isla, E., Levin, L.A., Mendo, J., Neira, C., Rowe, G.T., Tarazona, J., Wolff, M., 2006. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Adv. Geosci. 6, 243–265. https://doi.org/10.5194/adgeo-6-243-2006

Bett, P.E., Scaife, A.A., Li, C., Hewitt, C., Golding, N., Zhang, P., Dunstone, N., Smith, D.M., Thornton, H.E., Lu, R., Ren, H.L., 2018. Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci. 35, 918–926. https://doi.org/10.1007/s00376-018-7210-y

Bouloubassi, I., Fillaux, J., Saliot, A., 2001. Hydrocarbons in surface sediments from there Changjiang (Yangtze River) Estuary, East China Sea. Mar. Pollut. Bull. 42, 1335–1346. https://doi.org/10.1016/S0025-326X(01)00149-7

Chao, M., Shi, Y., Quan, W., Shen, X., An, C., Yuan, Q., Huang, H., 2012. Distribution of benthic macroinvertebrates in relation to environmental variables across the Yangtze River Estuary, China. J. Coast. Res. 28, 1008–1019. https://doi.org/10.2112/JCOASTRES-D-11-00194.1

Chen, T., Wang, Y., Gardner, C., Wu, F., 2020. Threats and protection policies of the aquatic biodiversity in the Yangtze River. J. Nat. Conserv. 58, 125931. https://doi.org/10.1016/j.jnc.2020.125931

Cheung, R.C.W., Yasuhara, M., Iwatani, H., Wei, C.L., Dong, Y.W., 2019. Benthic community history in the Changjiang (Yangtze River) mega-delta: Damming, urbanization, and environmental control. Paleobiology 45, 469–483. https://doi.org/10.1017/pab.2019.21

Currie, D.R., Small, K.J., 2005. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar. Coast. Shelf Sci. 63, 315–331. https://doi.org/10.1016/j.ecss.2004.11.023

Dafforn, K.A., Kelaher, B.P., Simpson, S.L., Coleman, M.A., Hutchings, P.A., Clark, G.F., Knott, N.A., Doblin, M.A., Johnston, E.L., 2013. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants. PLoS One 8, e77018. https://doi.org/10.1371/journal.pone.0077018

Dai, S.B., Lu, X.X., 2014. Sediment load change in the Yangtze River (Changjiang): A review. Geomorphology 215, 60–73. https://doi.org/10.1016/j.geomorph.2013.05.027

Dauvin, J.C., 2007. Paradox of estuarine quality: Benthic indicators and indices, consensus or debate for the future. Mar. Pollut. Bull. 55, 271–281. https://doi.org/10.1016/j.marpolbul.2006.08.017

de-la-Ossa-Carretero, J.A., Del-Pilar-Ruso, Y., Loya-Fernández, A., Ferrero-Vicente, L.M., Marco-Méndez, C., Martinez-Garcia, E., Giménez-Casalduero, F., Sánchez-Lizaso, J.L., 2016. Bioindicators as metrics for environmental monitoring of desalination plant discharges. Mar. Pollut. Bull. 103, 313–318. https://doi.org/10.1016/j.marpolbul.2015.12.023

de Lima, T.M., Nery, L.E.M., Maciel, F.E., Ngo-Vu, H., Kozma, M.T., Derby, C.D., 2021. Oxygen sensing in crustaceans: functions and mechanisms. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 207, 1–15. https://doi.org/10.1007/s00359-020-01457-z

Diaz, R.J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303.

Dolbeth, M., Cardoso, P.G., Grilo, T.F., Bordalo, M.D., Raffaelli, D., Pardal, M.A., 2011. Long-term changes in the production by estuarine macrobenthos affected by multiple stressors. Estuar. Coast. Shelf Sci. 92, 10–18. https://doi.org/10.1016/j.ecss.2010.12.006

Dong, A., Zhai, S., Matthias, Z., Yu, Z., Zhang, H., Liu, F., 2012. Heavy metals in Changjiang estuarine and offshore sediments: Responding to human activities. Acta Oceanol. Sin. 31, 88–101. https://doi.org/10.1007/s13131-012-0195-y

Douglas, E.J., Bulmer, R.H., MacDonald, I.T., Lohrer, A.M., 2022. Estuaries as coastal reactors: importance of shallow seafloor habitats for primary productivity and nutrient transformation, and impacts of sea level rise. New Zeal. J. Mar. Freshw. Res. 56 (3), 553–569. https://doi.org/10.1080/00288330.2022.2107027

Duan, X., Liu, J., Zhang, D., Yin, P., Li, Y., Li, X., 2015. An assessment of human influences on sources of polycyclic aromatic hydrocarbons in the estuarine and coastal sediments of China. Mar. Pollut. Bull. 97, 309–318. https://doi.org/10.1016/j.marpolbul.2015.05.071

Elliott, M., Quintino, V., 2007. The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Pollut. Bull. 54, 640–645. https://doi.org/10.1016/j.marpolbul.2007.02.003

Fang, C., Liu, Y., Cai, Q., Song, H., 2021. Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño? Adv. Atmos. Sci. 8, 2067–2081. https://doi.org/10.1007/s00376-021-1009-y

Gammal, J., Norkko, J., Pilditch, C.A., Norkko, A., 2017. Coastal hypoxia and the importance of benthic macrofauna communities for ecosystem functioning. Estuar. Coast. 40, 457–468. https://doi.org/10.1007/s12237-016-0152-7

Ge, Y., Miao, J., Lang, X., Si, D., Jiang, D., 2023. Combined impacts of the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation on summer precipitation in Eastern China during the Medieval Climate Anomaly and Little Ice Age. J. Geophys. Res. Atmos. 128. https://doi.org/10.1029/2023JD038920

Ghribi, R., Correia, A.T., Elleuch, B., Nunes, B., 2019. Toxicity assessment of impacted sediments from southeast coast of Tunisia using a biomarker approach with the polychaete Hediste diversicolor. Arch. Environ. Contam. Toxicol. 76, 678–691. https://doi.org/10.1007/s00244-019-00611-2

Grothe, P.R., Cobb, K.M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., Cheng, H., Edwards, R.L., Southon, J.R., Santos, G.M., Deocampo, D.M., Lynch-Stieglitz, J., Chen, T., Sayani, H.R., Thompson, D.M., Conroy, J.L., Moore, A.L., Townsend, K., Hagos, M., O’Connor, G., Toth, L.T., 2020. Enhanced El Niño–Southern Oscillation variability in recent decades. Geophys. Res. Lett. 47, 1–8. https://doi.org/10.1029/2019GL083906

Herman, P.M.J., Middelburg, J.J., van de Koppel, J., Heip, C.H.R., 1999. Ecology of estuarine macrobenthos. Adv. Ecol. Res. 29, 195–240. https://doi.org/10.1016/S0065-2504(08)60194-4

Jiang, Z., Liu, J., Chen, J., Chen, Q., Yan, X., Xuan, J., Zeng, J., 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 54, 1–11. https://doi.org/10.1016/j.watres.2014.01.032

Li, F., Ma, Y., Song, X., Li, S., Zhang, X., Wang, X., Wang, T., Sun, Z., 2022. Community structure and ecological quality assessment of macrobenthos in the coastal sea areas of Northern Yantai, China. Front. Mar. Sci. 9, 1–14. https://doi.org/10.3389/fmars.2022.989034

Li, H.M., Tang, H.J., Shi, X.Y., Zhang, C.S., Wang, X.L., 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased Harmful Algal Blooms. Harmful Algae 39, 92–101. https://doi.org/10.1016/j.hal.2014.07.002

Liao, Y., Shou, L., Jiang, Z., Tang, Y., Du, P., Zeng, J., Chen, Q., Yan, X., Chen, J., 2019. Effects of fish cage culture and suspended oyster culture on macrobenthic communities in Xiangshan Bay, a semi-enclosed subtropical bay in eastern China. Mar. Pollut. Bull. 142, 475–483. https://doi.org/10.1016/j.marpolbul.2019.03.065

Liao, Y., Shou, L., Tang, Y., Zeng, J., Gao, A., Chen, Q., Yan, X., 2017. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia. Chinese J. Oceanol. Limnol. 35, 481–488. https://doi.org/10.1007/s00343-017-5285-4

Llansó, R.J., 1991. Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete Streblospio benedicti (Webster). J. Exp. Mar. Bio. Ecol. 153, 165–178. https://doi.org/10.1016/0022-0981(91)90223-J

Luo, B., Shen, H., 1994. Three Gorges Project and Estuarine Ecological Environment. Science Press, Beijing. Lv, W., Zhou, W., Zhao, Y., 2018. Macrobenthos functional groups as indicators of ecological restoration in reclaimed intertidal wetlands of China’s Yangtze Estuary. Reg. Stud. Mar. Sci. 22, 93–100. https://doi.org/10.1016/j.rsma.2018.06.003

Ma, X., Liu, A., Zhao, Q., Wang, B., Tian, D., Meng, Q., Zeng, D., Li, J., Huang, D., Zhou, F., 2022. Temporal variation of summer hypoxia off Changjiang Estuary during 1997–2014 and its association with ENSO. Front. Mar. Sci. 9, 1–14. https://doi.org/10.3389/fmars.2022.897063

Meng, W., Liu, L., Zheng, B., Li, X., Li, Z., 2007. Macrobenthic community structure in the Changjiang Estuary and its adjacent waters in summer. Acta Oceanol. Sin. 26, 62–71.

Milliman, J.D., Huang-ting, S., Zuo-sheng, Y., H. Mead, R., 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont. Shelf Res. 4, 37–45. https://doi.org/10.1016/0278-4343(85)90020-2

Ni, G., Kern, E., Dong, Y.W., Li, Q., Park, J.K., 2017. More than meets the eye: The barrier effect of the Yangtze River outflow. Mol. Ecol. 26, 4591–4602. https://doi.org/10.1111/mec.14235

Pak, S. Il, Oh, T.H., 2010. Correlation and simple linear regression. J. Vet. Clin. 27, 427–434. https://doi.org/10.4324/9781003442011-24

Peng, S., Li, X., Wang, H., Zhang, B., 2014. Macrobenthic community structure and species composition in the Yellow Sea and East China Sea in jellyfish bloom. Chinese J. Oceanol. Limnol. 32, 576–594. https://doi.org/10.1007/s00343-014-3068-8

Pinto, I., Rodrigues, S., Antunes, S.C., 2021. Assessment of the benthic macroinvertebrate communities in the evaluation of the water quality of portuguese reservoirs: An experimental approach. Water (Switzerland) 13. https://doi.org/10.3390/w13233391

Qi, W., Wang, X., Kang, J., Bai, Y., Bian, R., Xue, H., Chen, L., Guan, A., Pan, Y.-R., Liu, H., Qu, J., 2022. Improvement of the Yangtze River’s water quality with substantial implementation of wastewater services infrastructure since 2013. Engineering, 21, 135–142. https://doi.org/10.1016/j.eng.2022.03.014

Rakocinski, C.F., Menke, D.P., 2016. Seasonal hypoxia regulates macrobenthic function and structure in the Mississippi Bight. Mar. Pollut. Bull. 105, 299–309. https://doi.org/10.1016/j.marpolbul.2016.02.006

Rhoads, D.C., Boesch, D.F., Zhican, T., Fengshan, X., Liqiang, H., Nilsen, K.J., 1985. Macrobenthos and sedimentary facies on the Changjiang delta platform and adjacent continental shelf, East China Sea. Cont. Shelf Res. 4, 189–213. https://doi.org/10.1016/0278-4343(85)90029-9

Rouse, G.W., Pleijel, F., 2001. Polychaetes. Oxford University Press, Oxford.

Salmi, T., Maatta, A., Anttila, P., Ruoho-Airola, T., Amnell, T., 2002. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Solpe Estimates the Excel Template Application MAKESENS. Air Quality Research, Finnish Meteorological Institute, Helsinki.

Sang, Y.F., Fu, Q., Singh, V.P., Sivakumar, B., Zhu, Y., Li, X., 2020. Does summer precipitation in China exhibit significant periodicities? J. Hydrol. 581, 124289. https://doi.org/10.1016/j.jhydrol.2019.124289

Shi, Y., Zhang, Guicheng, Zhang, Guodong, Wen, Y., Guo, Y., Peng, L., Xu, W., Sun, J., 2022. Species and functional diversity of marine macrobenthic community and benthic habitat quality assessment in semi-enclosed waters upon recovering from eutrophication, Bohai Bay, China. Mar. Pollut. Bull. 181. https://doi.org/10.1016/j.marpolbul.2022.113918

Shou, L., Zeng, J., Liao, Y., Xu, T., Gao, A., Chen, Z., Chen, Q., Yang, J., 2013. Temporal and spatial variability of benthic macrofauna communities in the Yangtze River estuary and adjacent area. Aquat. Ecosyst. Heal. Manag. 16, 31–39. https://doi.org/10.1080/14634988.2013.759497

Silva, R.F., Rosa Filho, J.S., Souza, S.R., Souza-Filho, P.W., 2011. Spatial and temporal changes in the structure of soft-bottom benthic communities in an Amazon estuary (Caeté estuary, Brazil). J. Coast. Res. 440–444. https://doi.org/10.1007/s13131-024-0001-9

Su, J., Yuan, Y., 2005. Coastal Hydrology of China. Ocean Press, Beijing.

Sugni, M., Mozzi, D., Barbaglio, A., Bonasoro, F., Candia Carnevali, M.D., 2007. Endocrine disrupting compounds and echinoderms: New ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16, 95–108. https://doi.org/10.1007/s10646-006-0119-8

Sun, X., Fan, D., Liu, M., Liao, H., Tian, Y., 2019. Persistent impact of human activities on trace metals in the Yangtze River Estuary and the East China Sea: Evidence from sedimentary records of the last 60 years. Sci. Total Environ. 654, 878–889. https://doi.org/10.1016/j.scitotenv.2018.10.439

Tang, Y., Liu, Q., Liao, Y., Zhou, K., Shou, L., 2021. Responses of macrobenthic communities to patchy distributions of heavy metals and petroleum hydrocarbons in sediments: A study in China’s Zhoushan Archipelago. Acta Oceanol. Sin. 40, 117–125. https://doi.org/10.1007/s13131-021-1892-1

Teh, L.S.L., Cashion, T., Cheung, W.W.L., Sumaila, U.R., 2020. Taking stock: a Large Marine Ecosystem perspective of socio-economic and ecological trends in East China Sea fisheries. Rev. Fish Biol. Fish. 30, 269–292. https://doi.org/10.1007/s11160-020-09599-8

Tian, J., Zhang, W., Wu, J., Chen, Q., Huang, J., 2025. Effects of hypoxia on community structure of macrobenthos in the Pearl River Estuary. Acta Oceanol. Sin. 44, 1–10. https://doi.org/10.1007/s13131-024-0001-9

Wang, B., Chen, J., Jin, H., Li, H., Huang, D., Cai, W.J., 2017. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence. Limnol. Oceanogr. 62, 1552–1569. https://doi.org/10.1002/lno.10517

Wang, K., Cai, W.J., Chen, J., Kirchman, D., Wang, B., Fan, W., Huang, D., 2021. Climate and human-driven variability of summer hypoxia on a large river-dominated shelf as revealed by a hypoxia index. Front. Mar. Sci. 8, 1–12. https://doi.org/10.3389/fmars.2021.634184

Wang, Z., Leung, K.M.Y., Sung, Y.H., Dudgeon, D., Qiu, J.W., 2021. Recovery of tropical marine benthos after a trawl ban demonstrates linkage between abiotic and biotic changes. Commun. Biol. 4, 1–8. https://doi.org/10.1038/s42003-021-01732-y

Warren, L.M., 1981. Respiratory adaptations to temporary hypoxia by the polychaete Cirriformia tentaculata. Comp. Biochem. Physiol. Pt. A, 69, 321–324. https://doi.org/10.1016/0300-9629(81)90300-5

Xu, L., Song, P., Wang, Y., Xie, B., Huang, L., Li, Y., Zheng, X., Lin, L., 2022. Estimating the impact of a seasonal fishing moratorium on the East China Sea ecosystem from 1997 to 2018. Front. Mar. Sci. 9, 1–15. https://doi.org/10.3389/fmars.2022.865645

Xu, P., Peng, G., Su, L., Gao, Y., Gao, L., Li, D., 2018. Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Mar. Pollut. Bull. 133, 647–654. https://doi.org/10.1016/j.marpolbul.2018.06.020

Xu, Y., Ma, L., Sui, J., Li, X., Wang, H., Zhang, B., 2022. Potential effects of climate change on the habitat suitability of macrobenthos in the Yellow Sea and East China Sea. Mar. Pollut. Bull. 174, 113238. https://doi.org/10.1016/j.marpolbul.2021.113238

Xu, Z.X., Li, J.Y., Takeuchi, K., Ishidaira, H., 2007. Long-term trend of precipitation in China and its association with the El Niño-southern oscillation. Hydrol. Process. 21, 61–71. https://doi.org/10.1002/hyp.6180

Xuan, F., Guan, W., Bao, C., Tang, F., Tang, B., Zhou, C., 2014. Current fishing practices may induce low risk of sperm limitation in female swimming crab Portunus trituberculatus in the East China Sea. Aquat. Biol. 20, 145–153. https://doi.org/10.3354/ab00555

Yan, J., Sui, J., Xu, Y., Li, X., Wang, H., Zhang, B., 2020. Assessment of the benthic ecological status in adjacent areas of the Yangtze River Estuary, China, using AMBI, M-AMBI and BOPA biotic indices. Mar. Pollut. Bull. 153, 111020. https://doi.org/10.1016/j.marpolbul.2020.111020

Yan, J., Xu, Y., Sui, J., Li, X., Wang, H., Zhang, B., 2017. Longterm variation of the macrobenthic community and its relationship with environmental factors in the Yangtze River estuary and its adjacent area. Mar. Pollut. Bull. 123, 339–348. https://doi.org/10.1016/j.marpolbul.2017.09.023

Yang, H.F., Yang, S.L., Xu, K.H., Milliman, J.D., Wang, H., Yang, Z., Chen, Z., Zhang, C.Y., 2018. Human impacts on sediment in the Yangtze River: A review and new perspectives. Glob. Planet. Change 162, 8–17. https://doi.org/10.1016/j.gloplacha.2018.01.001

Yu, W., Wen, J., Chen, X., Li, G., Li, Y., Zhang, Z., 2021. Effects of climate variability on habitat range and distribution of chub mackerel in the East China Sea. J. Ocean Univ. China 20, 1483–1494. https://doi.org/10.1007/s11802-021-4760-x

Zhang, J., Pei, Z., He, P., Shi, J., 2021. Effect of escape vents on retention and size selectivity of crab pots for swimming crab Portunus trituberculatus in the East China Sea. Aquac. Fish. 6, 340–347. https://doi.org/10.1016/j.aaf.2020.04.008

Zhang, W., Dong, X., Liu, Z., Lin, R., Luo, H., 2021. Influence of decadal ocean signals on meteorological conditions associated with the winter haze over Eastern China. Front. Environ. Sci. 9, 1–13. https://doi.org/10.3389/fenvs.2021.727180

Zhao, H., Cao, Z., Liu, X., Zhan, Y., Zhang, J., Xiao, X., Yang, Y., Zhou, J., Xu, J., 2017. Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. Mar. Pollut. Bull. 125, 208–215. https://doi.org/10.1016/j.marpolbul.2017.08.034

Zheng, W., Song, M., Wang, L., Zhang, W., Li, Z., Zhu, L., Xie, W., Liang, Z., Jiang, Z., 2025. Improving costal marine habitats in the northern yellow sea: The role of artificial reefs on macrobenthic communities and eco-exergy. Sci. Total Environ. 971, 179027. https://doi.org/10.1016/j.scitotenv.2025.179027

Zhu, J., Wu, H., Li, L., Qiu, C., 2018. 4 Changjiang Estuary. [In:] Wang, X. (Ed.), Sediment Dynamics of Chinese Muddy Coasts and Estuaries: Physics, Biology and Their Interactions. Acad. Press, London, 51–75. https://doi.org/10.1016/B978-0-12-811977-8.00004-2

Zhu, Z.Y., Wu, Y., Zhang, J., Du, J.Z., Zhang, G. Sen, 2014. Reconstruction of anthropogenic eutrophication in the region off the Changjiang Estuary and central Yellow Sea: From decades to centuries. Cont. Shelf Res. 72, 152–162. https://doi.org/10.1016/j.csr.2013.10.018

full, complete article - PDF


Long-term variability of sound speed conditions in Hornsund fjord, Svalbard, between 2001 and 2019
Oceanologia, 67 (4)/2025, 67406, 18 pp.
https://doi.org/10.5697/GRSC5449

Pavani Vithana Madugeta Vidanamesthrige*,1, Natalia Gorska1, Oskar Głowacki2
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: pavani@iopan.pl (P. V. Madugeta Vidanamesthrige)
2Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa, Poland
*corresponding author

Keywords: Hornsund; Glacier melting; Shelf-fjord water exchange; Underwater sound; Marine mammals

Received: 28 October 2024; revised: 19 August 2025; accepted: 16 September 2025

Highlights

Abstract

The glacierised Arctic fjords are particularly sensitive to oceanic and atmospheric warming caused by climate shifts; the melting of glaciers and icebergs is one of the major indicators of this sensitivity. The meltwater delivery to the ocean changes the thermohaline structure of the water column, which not only affects water mixing but also controls the sound speed conditions; the latter is crucial for the variability of underwater sound propagation. Finally, changes in sound propagation conditions affect marine animals that rely on sound for their key biological functions, such as communication, navigation, and mating. Here, we investigate the long-term variability of sound speed conditions in the Hornsund fjord, Svalbard, together with its governing factors. We calculated the vertical sound speed profiles using temperature and salinity data collected along the fjord centerline from 2001 to 2019. Spatial and temporal variability in sound speed conditions are observed. We identify two major types of sound channels: (i) near-surface sound channel and (ii) deep sound channel. Potential physical mechanisms that govern the presence and position of these sound channels are discussed, including glacier melting, shelf-fjord water exchange, and atmospheric heat flux. In recent years, the climate-driven transformation of Hornsund has led to the disappearance of deep sound channels due to the intensified inflow of Atlantic Water, and an increased presence and extent of near-surface sound channels resulting from elevated freshwater input from melting glaciers. We suggest that climate warming-induced changes in sound speed conditions in Hornsund are likely to have far-reaching consequences for underwater sound pollution, potentially impacting the well-being of marine animals

  References   ref

Affatati, A., Scaini, C., Salon, S., 2022. Ocean Sound Propagation in a Changing Climate: Global Sound Speed Changes and Identification of Acoustic Hotspots. Earth’s Future 10(3). https://doi.org/10.1029/2021ef002099

Alexander, P., Duncan, A., Bose, N., Williams, G., 2016. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters. Deep Sea Res. Pt. II. 131, 84–95. http://dx.doi.org/10.1016/j.dsr2.2016.04.026

Arntsen, M., Sundfjord, A., Skogseth, R., Błaszczyk, M., Promińska, A., 2019. Inflow of Warm Water to the Inner Hornsund Fjord, Svalbard: Exchange Mechanisms and Influence on Local Sea Ice Cover and Glacier Front Melting. J. Geophys. Res: Oceans. 124, 1915–1931. https://doi.org/10.1029/2018jc014315

Årthun, M., Eldevik, T., Smedsrud, L.H., 2019. The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss. J. Clim. 32, 3327–3341. https://doi.org/10.1175/jcli-d-18-0750.1

Bagočius, D., 2015. Potential Masking of the Baltic Grey Seal Vocalisations by Underwater Shipping Noise in the Lithuanian Area of the Baltic Sea. EREM 4(70), 66–72. https://doi.org/10.5755/j01.erem.70.4.6913

Baggeroer, A. B., Collis, J. M., 2022. Transmission loss for the Beaufort Lens and the critica frequency for mode propagation during ICEX-18. J. Acoust. Soc. Am. 151(4), 2760–2772. https://doi.org/10.1121/10.0010049

Ballard, M. S., 2019. Three-dimensional acoustic propagation effects induced by the sea ice canopy. J. Acoust. Soc. Am. 146(4), EL364–EL368. https://doi.org/10.1121/1.5129554

Ballard, M. S., Badiey, M., Sagers, J. D., Colosi, J. A., Turgut, A., Pecknold, S., Lin, Y.-T., Proshutinsky, A., Krishfield, R., Worcester, P. F., 2020. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am. 148(3), 1663–1680. https://doi.org/10.1121/10.0001970

Bengtsson, O., Lydersen, C., Kovacs, K. M., 2022. Cetacean spatial trends from 2005 to 2019 in Svalbard, Norway. Polar Res. 41. http://dx.doi.org/10.33265/polar.v41.7773

Błaszczyk, M., Ignatiuk, D., Uszczyk, A., Cielecka-Nowak, K., Grabiec, M., Jania, J.A., Moskalik, M., Walczowski, W., 2019. Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Res. 38. https://doi.org/10.33265/polar.v38.3506

Błaszczyk, M., Jania, J.A., Kolondra, L., 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Pol. Polar Res. 34, 327–352. https://doi.org/10.2478/popore-2013-0024

Błaszczyk, M., Moskalik, M., Grabiec, M., Jania, J., Walczowski, W., Wawrzyniak, T., Strzelewicz, A., Malnes, E., Lauknes, T.R., Pfeffer, W.T., 2023. The Response of Tidewater Glacier Termini Positions in Hornsund (Svalbard) to Climate Forcing, 1992–2020. J. Geophys. Res. Earth Surf. 128. https://doi.org/10.1029/2022jf006911

Chauché, N., Hubbard, A., Gascard, J.C., Box, J.E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., Patton, H., 2014. Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere 8, 1457–1468. https://doi.org/10.5194/tc-8-1457-2014

Chen, C.-T., Millero, F.J., 1977. Sound speed in seawater at high pressures. J. Acoust. Soc. Am. 62, 1129–1135. https://doi.org/10.1121/1.381646

Chitre, M., Shahabudeen, S., Stojanovic, M., 2008. Underwater acoustic communications and networking: Recent advances and future challenges. Mar. Technol. Soc. J. 42, 103–116. https://doi.org/10.4031/002533208786861263

Cook, A.J., Copland, L., Noël, B.P., Stokes, C.R., Bentley, M.J., Sharp, M.J., Bingham, R.G., van den Broeke, M.R., 2019. Atmospheric forcing of rapid marine-terminating glacier retreat in the Canadian Arctic Archipelago. Sci. Adv. 5. https://doi.org/10.1126/sciadv.aau8507

Dahlke, S., Hughes, N.E., Wagner, P.M., Gerland, S., Wawrzyniak, T., Ivanov, B., Maturilli, M., 2020. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Int. J. Climatol. 40, 5246–5265. https://doi.org/10.1002/joc.6517

De Rovere, F., Langone, L., Schroeder, K., Miserocchi, S., Giglio, F., Aliani, S., Chiggiato, J., 2022. Water Masses Variability in Inner Kongsfjorden (Svalbard) During 2010–2020. Front. Mar. Sci. 9. https://doi.org/10.3389/fmars.2022.741075

Deane, G.B., Glowacki, O., Stokes, D., Pettit. E., 2019. The Underwater Sounds of Glaciers. Acoust. Today. 15, 12. https://doi.org/10.1121/at.2019.15.4.12

Deane, G.B., Glowacki, O., Tegowski, J., Moskalik, M., Blondel, P., 2014. Directionality of the ambient noise field in an Arctic, glacial bay. J. Acoust. Soc. Am. 136, EL350-6. https://doi.org/10.1121/1.4897354

Diachok, O. I., 1976. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59(5), 1110–1120. https://doi.org/10.1121/1.380965

Duarte, C.M., Chapuis, L., Collin, S.P., Costa, D.P., Devassy, R.P., Eguiluz, V.M., Erbe, C., Gordon, T.A.C., Halpern, B.S., Harding, H.R., Havlik, M.N., Meekan, M., Merchant, N.D., Miksis-Olds, J.L., Parsons, M., Predragovic, M., Radford, A.N., Radford, C.A., Simpson, S.D., Slabbekoorn, H., Staaterman, E., Van Opzeeland, I.C., Winderen, J., Zhang, X., Juanes, F., 2021. The soundscape of the Anthropocene ocean. Science 371. https://doi.org/10.1126/science.aba4658

Duda, T. F., 2017. Acoustic signal and noise changes in the Beaufort Sea Pacific Water duct under anticipated future acidification of Arctic Ocean waters. J. Acoust. Soc. Am. 142(4), 1926–1933. https://doi.org/10.1121/1.5006184

Duda, T. F., Zhang, W. G., Lin, Y. T., 2021. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am. 149(4), 2117–2136. https://doi.org/10.1121/10.0003929

Erbe, C., Dunlop, R., Dolman, S., 2018. Effects of Noise on Marine Mammals. [in:] Slabbekoorn, H., Dooling, R.J., Popper, A.N., Fay, R.R. (Eds.), Effects of Anthropogenic Noise on Animals. Springer Handbook of Auditory Research, 277–309. https://doi.org/10.1007/978-1-4939-8574-6

Erbe, C., Farmer, D. M., 2000. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. J. Acoust. Soc. Am. 108(3), 1332–1340. https://doi.org/10.1121/1.1288938

Erbe, C., Marley, S.A., Schoeman, R.P., Smith, J.N., Trigg, L.E., Embling, C.B., 2019. The Effects of Ship Noise on Marine Mammals — A Review. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00606

Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K., Dooling, R., 2016. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 103, 15–38. https://doi.org/10.1016/j.marpolbul.2015.12.007

Geyman, E.C., W, J.J.v.P., Maloof, A.C., Aas, H.F., Kohler, J., 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature. 601, 374–379. https://doi.org/10.1038/s41586-021-04314-4

Gjelten, H.M., Nordli, Ø., Isaksen, K., Førland, E.J., Sviashchennikov, P.N., Wyszynski, P., Prokhorova, U.V., Przybylak, R., Ivanov, B.V., Urazgildeeva, A.V., 2016. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res. 35, 29878. https://doi.org/10.3402/polar.v35.29878

Glowacki, O., 2020. Underwater noise from glacier calving: Field observations and pool experiment. J. Acoust. Soc. Am. 148, EL1–EL7. https://doi.org/10.1121/10.0001494

Glowacki, O., Deane, G.B., Moskalik, M., 2018. The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs. Geophys. Res. Lett. 45, 4105–4113. https://doi.org/10.1029/2018gl077632

Glowacki, O., Deane, G.B., Moskalik, M., Blondel, P., Tegowski, J., Blaszczyk, M., 2015. Underwater acoustic signatures of glacier calving. Geophys. Res. Lett. 42, 804–812. https://doi.org/10.1002/2014gl062859

Glowacki, O., Moskalik, M., Deane, G.B., 2016. The impact of glacier meltwater on the underwater noise field in a glacial bay. J. Geophys. Res: Oceans. 121, 8455–8470. https://doi.org/10.1002/2016jc012355

Glowacki, O., Moskalik, M., Prominska, A., 2013. Simulation of the sound propagation in an Arctic fjord: general patterns and variability. poster presented at Arctic Science Summit Week, Committee on Polar Research of the Polish Academy of Sciences, Cracow, Poland.

Halliday, W. D., Insley, S. J., Hilliard, R. C., de Jong, T. Pine, M. K., 2017. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar. Pollut. Bull. 123(1–2), 73–82. http://dx.doi.org/10.1016/j.marpolbul.2017.09.027

Halliday, W. D., Pine, M. K. Insley, S. J., 2020. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. 28(4), 438–448. https://doi.org/10.1139/er-2019-003

Halliday, W. D., Scharffenberg, K., MacPhee, S., Hilliard, R. C., Mouy, X., Whalen, D., Loseto, L. L. Insley, S. J., 2019. Beluga Vocalizations Decrease in Response to Vessel Traffic in the Mackenzie River Estuary. Arctic. 72(4), 337–346. https://doi.org/10.14430/arctic69294

Holmes, F.A., Kirchner, N., Kuttenkeuler, J., Krutzfeldt, J., Noormets, R., 2019. Relating ocean temperatures to frontal ablation rates at Svalbard tidewater glaciers: Insights from glacier proximal datasets. Sci. Rep. 9, 9442. https://doi.org/10.1038/s41598-019-45077-3

Hopkins, T.S., 1991. The GIN Sea—A synthesis of its physical oceanography and literature review 1972–1985. Earth-Sci. Rev. 30, 175–318. https://doi.org/10.1016/0012-8252(91)90001-V

IPCC 2021. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Jain, V., Korhonen, M., Głowacki, O. Moskalik, M., 2024. Hydrography of the Inner Basins in Hornsund (Svalbard): Heat Advection Near Tidewater Glaciers. J. Geophys. Res.: Oceans, 129(11). https://doi.org/10.1029/2024JC021273

Jakacki, J., Przyborska, A., Kosecki, S., Sundfjord, A., Albretsen, J., 2017. Modelling of the Svalbard fjord Hornsund. Oceanologia 59(4), 473–495. https://doi.org/10.1016/j.oceano.2017.04.004

Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., Tolstoy, A., 2011. Computational ocean acoustics. 2nd edn., Springer, New York.

Korhonen, M., Moskalik, M., Głowacki, O., Jain, V., 2024. Oceanographic monitoring in Hornsund fjord, Svalbard. Earth Syst. Sci. Data. 16(10), 4511–4527. https://doi.org/10.5194/essd-16-4511-2024

Kucukosmanoglu, M., Colosi, J. A., Worcester, P. F., Dzieciuch, M. A., Sagen, H., Duda, T. F., Zhang, W. G., Miller, C. W., Richards, E. L., 2023. Observations of the space/time scales of Beaufort sea acoustic duct variability and their impact on transmission loss via the mode interaction parameter. J. Acoust. Soc. Am. 153(5), 2659–2676. https://doi.org/10.1121/10.0019335

Kutschale, H., 1969. Arctic hydroacoustics. Arctic. 22, 169–364. https://doi.org/10.14430/arctic3218

Kystdatahuset, 2025. Tall og statistikk-Trafikk i område. https://kystdatahuset.no/tallogstatistikk/trafikkiom rade (Accessed 01.07.2025).

Lind, S., Ingvaldsen, R.B., Furevik, T., 2018. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change. 8, 634–639. https://doi.org/10.1038/s41558-018-0205-y

Luckman, A., Benn, D.I., Cottier, F., Bevan, S., Nilsen, F., Inall, M., 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat. Commun. 6, 8566. https://doi.org/10.1038/ncomms9566

Lyamin, O. I., Korneva, S. M., Rozhnov, V. V., Mukhametov, L. M., 2011. Cardiorespiratory changes in beluga in response to acoustic noise. Dokl. Biol. Sci. 440(5), 275–278. https://doi.org/10.1134/S0012496611050218

Lynch, J., Gawarkiewicz, G., Lin, Y.-T., Duda, T., Newhall, A., 2018. Impacts of Ocean Warming on Acoustic Propagation Over Continental Shelf and Slope Regions. Oceanography 31(2), 174–181. https://doi.org/10.5670/oceanog.2018.219

Marsz, A.A., Styszyńska, A., 2013. Climate and climate change at Hornsund, Svalbard. Gdynia Marit. Univ., Gdynia, ISBN: 978-83-7421-191-8.

Martin, M. J., Halliday, W. D., Storrie, L., Citta, J. J., Dawson, J., Hussey, N. E., Juanes, F., Loseto, L. L., MacPhee, S. A., Moore, L., Nicoll, A., O’Corry-Crowe, G., Insley, S. J., 2022. Exposure and behavioral responses of tagged beluga whales (Delphinapterus leucas) to ships in the Pacific Arctic. Mar. Mamm. Sci. 39(2), 387–421. https://doi.org/10.1111/mms.12978

Matsumoto, H., Bohnenstiehl, D.R., Tournadre, J., Dziak, R.P., Haxel, J.H., Lau, T.K.A., Fowler, M., Salo, S.A., 2014. Antarctic icebergs: A significant natural ocean sound source in the Southern Hemisphere. Geochem. Geophys. 15, 3448–3458. https://doi.org/10.1002/2014gc005454

McCammon, D. F., McDaniel, S. T., 1985. The influence of the physical properties of ice on reflectivity. J. Acoust. Soc. Am. 77(2), 499–507. https://doi.org/10.1121/1.391869

Medwin, H., Clay, C.S., 1998. Fundamentals of acoustical oceanography. Acad. Press, New York.

Meyer, A., Eliseev, D., Heinen, D., Linder, P., Scholz, F., Weinstock, L. S., Wiebusch, C., Zierke, S., 2019. Attenuation of sound in glacier ice from 2 to 35 kHz. The Cryosphere. 13(4), 1381–1394. https://doi.org/10.5194/tc-13-1381-2019

Moskalik, M., Grabowiecki, P., Tęgowski, J., Żulichowska, M., 2013. Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations. Pol. Polar Res. 34, 1–22. https://doi.org/10.2478/popore−2013−0001

Munk, W., Worcester, P., Wunsch, C., 1995. Ocean acoustic tomography. Cambridge Univ. Press, Cambridge, England.

Nilsen, F., Cottier, F., Skogseth, R., Mattsson, S., 2008. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 28, 1838–1853. https://doi.org/10.1016/j.csr.2008.04.015

Nilsen, F., Skogseth, R., Vaardal-Lunde, J., Inall, M., 2016. A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Phys. Oceanogr. 46, 1209–1230. https://doi.org/10.1175/jpo-d-15-0058.1

Overland, J.E., Wang, M., Walsh, J.E., Stroeve, J.C., 2013. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future. 2, 68–74. https://doi.org/10.1002/2013ef000162

PAME 2019. Underwater noise in the Arctic: A state of knowledge report. Protection of the Arctic Marine Environment (PAME) International Secretariat.

PAME, 2025. PAME, Arctic Shipping Status Rep.no 1. https://hdl.handle.net/11374/2733.3

Pettit, E.C., Lee, K.M., Brann, J.P., Nystuen, J.A., Wilson, P.S., O’Neel, S., 2015. Unusually loud ambient noise in tidewater glacier fjords: A signal of ice melt. Geophys. Res. Lett. 42, 2309–2316. https://doi.org/10.1002/2014GL062950

Podolskiy, E.A., Murai, Y., Kanna, N., Sugiyama, S., 2022. Glacial earthquake-generating iceberg calving in a narwhal summering ground: The loudest underwater sound in the Arctic? J. Acoust. Soc. Am. 151(1), 6–16. https://doi.org/10.1121/10.0009166

Polyakov, I.V., Pnyushkov, A.V., Alkire, M.B., Ashik, I.M., Baumann, T.M., Carmack, E.C., Goszczko, I., Guthrie, J., Ivanov, V.V., Kanzow, T., 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 356, 285–291. https://doi.org/10.1126/science.aai8204

Popov, V. V., Supin, A. Y., Rozhnov, V. V., Nechaev, D. I., Sysuyeva, E. V., Klishin, V. O., Pletenko, M. G., Tarakanov, M. B., 2013. Hearing threshold shifts and recovery after noise exposure in beluga whales, Delphinapterus leucas. J. Exp. Biol. 216(9), 1587–1596. https://doi.org/1587-1596,10.1242/jeb.078345

Possenti, L., Reichart, G. J., de Nooijer, L., Lam, F. P., de Jong, C., Colin, M., Binnerts, B., Boot, A., von der Heydt, A., 2023. Predicting the contribution of climate change on North Atlantic underwater sound propagation. PeerJ, 11 pp . https://doi.org/10.7717/peerj.16208

Promińska, A., Cisek, M., Walczowski, W., 2017. Kongsfjorden and Hornsund hydrography – comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59(4), 397–412. https://doi.org/10.1016/j.oceano.2017.07.003

Promińska, A., Falck, E., Walczowski, W., 2018. Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard. Polar Res. 37, 1495546. https://doi.org/10.1080/17518369.2018.1495546

Rodriguez, J. P., Klemm, K., Duarte, C. M., Eguiluz, V. M., 2024. Shipping traffic through the Arctic Ocean: Spatial distribution, seasonal variation, and its dependence on the sea ice extent. iScience 27(7), 110236. https://doi.org/10.1016/j.isci.2024.110236

Shu, Q., Wang, Q., Årthun, M., Wang, S., Song, Z., Zhang, M., Qiao, F., 2022. Arctic Ocean Amplification in a warming climate in CMIP6 models. Sci. Adv. 8(30). https://doi.org/10.1126/sciadv.abn9755

Skogseth, R., Olivier, L.L.A., Nilsen, F., Falck, E., Fraser, N., Tverberg, V., Ledang, A.B., Vader, A., Jonassen, M.O., Søreide, J., Cottier, F., Berge, J., Ivanov, B.V., Falk-Petersen, S., 2020. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – An indicator for climate change in the European Arctic. Prog. Oceanogr. 187. https://doi.org/10.1016/j.pocean.2020.102394

Slater, D.A., Straneo, F., 2022. Submarine melting of glaciers in Greenland amplified by atmospheric warming. Nat. Geosci. 15, 794–799. https://doi.org/10.1038/s41561-022-01035-9

Storheim, E., Sagen, H., Dzieciuch, M. A., Worcester, P. F., 2022. Modelling of sound propagation across the Arctic Ocean using oceanographic fields and oceanographic data. J. Acoust. Soc. Am. 152(4). https://doi.org/10.1121/10.0010047

Straneo, F., Curry, R.G., Sutherland, D.A., Hamilton, G.S., Cenedese, C., Våge, K., Stearns, L.A., 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322–327. https://doi.org/10.1038/ngeo1109

Strzelewicz, A., Przyborska, A., Walczowski, W., 2022. Increased presence of Atlantic Water on the shelf southwest of Spitsbergen with implications for the Arctic fjord Hornsund. Prog. Oceanogr. 200, 102714. https://doi.org/10.1016/j.pocean.2021.102714

Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M.E., Falck, E., Pavlova, O., Nilsen, F., 2019. The Kongsfjorden transect: seasonal and interannual variability in hydrography. [in:] Haakon, H., Christian, W. (Eds.), The Ecosystem of Kongsfjorden, Svalbard. Springer, Cham. 2, 49–104. https://doi.org/10.1007/978-3-319-46425-1_3

Urick, R.J., 1971. The noise of melting icebergs. J. Acoust. Soc. Am. 50, 337–341. https://doi.org/10.1121/1.1912637

Urick, R.J., 1979. Sound propagation in the sea. Defence Adv. Res. Project Agency, Washington, D. C. van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J.O., Schuler, T.V., Dunse, T., Noël, B., Reijmer, C., 2019. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere. 13, 2259-02280. https://doi.org/10.5194/tc-13-2259-2019

van Pelt, W.J.J., Schuler, T.V., Pohjola, V.A., Pettersson, R., 2021. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 67, 485–0499. https://doi.org/10.1017/jog.2021.2

Vishnu, H., Deane, G.B., Chitre, M., Glowacki, O., Stokes, D., Moskalik, M., 2020. Vertical directionality and spatial coherence of the sound field in glacial bays in Hornsund Fjord. J. Acoust. Soc. Am. 148, 3849–3862. https://doi.org/10.1121/10.0002868

Vishnu, H., Deane, G.B., Glowacki, O., Chitre, M., Johnson, H., Moskalik, M., Stokes, D., 2023. Depth-dependence of the underwater noise emission from melting glacier ice. JASA Express Lett. 3, 020801-1-020801-7. https://doi.org/10.1121/10.0017348

Walczowski, W., Piechura, J., 2011. Influence of the West Spitsbergen Current on the local climate. Int. J. Climatol. 31, 1088–1093. https://doi.org/10.1002/joc.2338

Wang, Q., Wekerle, C., Wang, X., Danilov, S., Koldunov, N., Sein, D., Sidorenko, D., von Appen, W.J., Jung, T., 2020. Intensification of the Atlantic Water Supply to the Arctic Ocean Through the Fram Strait Induced by Arctic Sea Ice Decline. Geophys. Res. Lett. 47(3), e2019GL086682. https://doi.org/10.1029/2019gl086682

Wawrzyniak, T., Osuch, M., 2020. A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth Syst. Sci. Data. 12, 805–815. https://doi.org/10.5194/essd-12-805-2020

Worcester, P. F., Badiey, M., Sagen, H., 2022. Introduction to the special issue on ocean acoustics in the changing Arctic. J. Acoust. Soc. Am. 151(4), 2787–2790. https://doi.org/10.1121/10.0010308

Worcester, P. F., Dzieciuch, M. A., Sagen, H., 2020. Ocean Acoustics in the Rapidly Changing Arctic. Acoust. Today. 16(1), 55–64. https://doi.org/10.1121/AT.2020.16.1.55

Zeh, M. C., Ballard, M. S., Glowacki, O., Deane, G. B., Wilson, P. S., 2022. Model-data comparison of sound propagation in a glacierised fjord with a simulated brash ice surface. J. Acoust. Soc. Am. 151(4), 2367–2377. https://doi.org/10.1121/10.0010046

full, complete article - PDF


Perspectives of seasonal hydrography and water masses in Saudi waters of the Arabian Gulf
Oceanologia, 67 (4)/2025, 67407, 16 pp.
https://doi.org/10.5697/KPCV6249

Mohamed Asharaf1, V.M. Aboobacker2,*, C.P. Abdulla2, Thadickal V. Joydas1, Karuppasamy P. Manikandan1, M. Rafeeq1, Abdulaziz Al-Suwailem1, P. Vethamony2
1Applied Research Center for Environment and Marine Studies, Research & Innovation, King Fahd University of Petroleum and Minerals, P. B. No. 391, Dhahran 31261, Saudi Arabia;
2Environmental Science Center, Qatar University, P.B. No. 2713, Doha, Qatar
e-mail: vmaboobacker@qu.edu.qa (V.M. Aboobacker)
*corresponding author

Keywords: Seasonal hydrography; Intrusion of IOSW; Stratification; Vertical homogeneity; Arabian Gulf

Received: 2 June 2025; revised: 4 September 2025; accepted: 30 September 2025

Highlights

Abstract

The hydrographic characteristics and water mass features of the Saudi waters of the Arabian Gulf (Persian Gulf) are less documented compared to neighboring regions. This study analyzed vertical profiles of temperature, salinity, and density collected from five transects with 555 stations in Saudi waters during five seasons. Although the data were collected during 2002–2003, they reveal notable hydrographic variability and features associated with Saudi waters. The sea surface temperature during late autumn and winter shows strong horizontal fluctuations between the northern and southern belts of the Saudi coast, while a high temperature plume is formed in the central coast during early summer. The central and northern coasts of Saudi Arabia have high concentrations of salinity induced by shallow embayments, while the impact of brine is limited to small areas in the vicinity of the outfalls. The presence of three water masses, namely, Indian Ocean Surface Water (IOSW), Arabian Gulf Water (AGW), and Bay Systems-induced Water (BSW), has been evident in this region; however, they co-occur only during spring, early summer, and summer in central and northern transects. The autumn and winter are characterized by the presence of AGW and BSW in all transects, while the IOSW was absent due to the mixing and by the opposing effects of shamal winds, which diminishes the inflow of IOSW. Nonetheless, the early summer and summer, with strong thermal stratification, exhibit the progression of IOSW up to the northern end of the Saudi waters.

  References   ref

Aboobacker, V.M., Hasna, V.M., Al-Ansari, E.M.A.S., Vethamony, P., 2024. Nearshore hydrography along the coast of Doha, central Arabian Gulf. Coastal Res. 113 (Sp. Iss.), 422–426.

Aboobacker, V.M., Samiksha, S.V., Veerasingam, S., Al-Ansari, E.M.A.S., Vethamony, P., 2021c. Role of shamal and easterly winds on the wave characteristics off Qatar, Central Arabian Gulf. Ocean Eng. 236, 109457.

Aboobacker, V.M., Shanas, P.R., Al-Ansari, E.M.A.S., Sanil Kumar, V., Vethamony, P., 2021b. The maxima in northerly wind speeds and wave heights over the Arabian Sea, the Arabian/Persian Gulf and the Red Sea derived from 40 years of ERA5 data. Climate Dynam. 56, 1037–1052.

Aboobacker, V.M., Shanas, R.P, Veerasingam, S., Al-Ansari E.M.A.S., Sadooni, F.N., Vethamony, P., 2021a. Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar. Energies 14, 1178–1178.

Al-Abdulkader, K.A., Loughland, R.A., Qurban, M.A., 2019. Ecosystems and biodiversity of the Arabian Gulf. Saudi Arabian waters. In: Fifty Years of Scientific Research. Publi. Saudi Aramco and King Fahd Univ. Petrol. Min., Dhahran, Saudi Arabia, 624 pp.

Al-Ansari, E.M., Husrevoglu, Y.S., Yigiterhan, O., Youssef, N., Al-Maslamani, I.A., Abdel-Moati, M.A. Vethamony, P., 2022. Seasonal variability of hydrography off the east coast of Qatar, central Arabian Gulf. Arabian J. Geosci. 15 (22), 1659. https://doi.org/10.1007/s12517-022-10927-4

Al-Ansari, E.M., Rowe, G., Abdel-Moati, M.A.R., Yigiterhan, O., Al-Maslamani, I., Al-Yafei, M.A., Al-Shaikh, I., Upstill- Goddard, R., 2015. Hypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season. Estuar. Coast. Shelf Sci. 159, 60–68.

Alosairi, Y., Al-Salem, S.M., Al Ragum, A., 2020. Threedimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/ Persian Gulf. Mar. Pollut. Bull. 161, 111723. https://doi.org/10.1016/j.marpolbul.2020.111723

Alosairi, Y., Pokavanich, T., 2017. Seasonal circulation assessments of the northern Arabian/Persian Gulf. Mar. Pollut. Bull. 116 (1–2), 270–290.

Asharaf, M., Aboobacker, V.M., Abdulla, C.P., Joydas, T.V., Manikandan, K., Rafeeq, M., Al-Suwailem, A., Vethamony, P., 2025. In situ Data of different seasons from the Saudi waters of the Arabian Gulf. Figshare, dataset. https://doi.org/10.6084/m9.figshare.29974675.v1

de Marez, C., L’Hégaret, P., Morvan, M., Carton, X., 2019. On the 3D structure of eddies in the Arabian Sea. Deep-Sea Res. Pt. I, 150, 103057.

Elobaid, E.A., Al-Ansari, E.M.A.S., Yigiterhan, O., Aboobacker, V.M., Vethamony, P., 2022. Spatial variability of summer hydrography in the central Arabian Gulf. Oceanologia, 64 (1), 75–87.

Ghaemi, M., Gholamreza, M., Samad, H., Sara, G., 2022. Spatial and temporal characterizations of seawater quality on marine waters area of the Persian Gulf. Reg. Stud. Mar. Sci. 53, 102407. https://doi.org/10.1016/j.rsma.2022.102407

Hanert, E., Aboobacker, V.M., Veerasingam, S., Dobbelaere, T., Vallaeys, V., Vethamony, P., 2023. Multiscale ocean modelling system for the central Arabian/Persian Gulf: From regional to structure scale circulation patterns. Estuar. Coast. Shelf Sci. 282, 108230. https://doi.org/10.1016/j.ecss.2023.108230

Hassanzadeh, S., Hosseinibalam, F., Rezaei-Latifi, A., 2011. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian Gulf. Appl. Math. Model. 35 (3), 1512–1537. https://doi.org/10.1016/j.apm.2010.09.029

Hunter, J.R., 1986. The physical oceanography of the Arabian Gulf: a review and theoretical interpretation of previous observations. [In:] First Gulf Conference on Environment and Pollution 7-9, February (1982), Kuwait, R. Halway (Ed).

Hunter, J.R., 1984. A review of the residual circulation and mixing process in the KAP region. [In:] Oceanographic modelling of the Kuwait Action Plan Region, M.I. El-Sabh (Ed.), UNESCO Rep. Mar. Sci., 28, 37–45.

Ibrahim, H.D., Xue, P., Eltahir, E.A., 2020. Multiple salinity equilibria and resilience of Persian/Arabian Gulf basin salinity to brine discharge. Front. Mar. Sci. 7, 573. https://doi.org/10.3389/fmars.2020.00573

Jain, V., Shankar, D., Vinayachandran, P. N., et al. 2017. Evidence for the existence of Persian Gulf water and Red Sea water in the Bay of Bengal. Clim. Dynam. 48, 3207–3226. https://doi.org/10.1007/s00382-016-3259-4

John, V.C., Coles, S.L., Abozed, A.I., 1990. Seasonal cycles of temperature, salinity and water masses of the western Arabian Gulf. Oceanologica Acta 13 (3), 273–281.

Johns, W.E, Jacob, G.A., Kindle, J.C., Murray, S.B., Carron, M., 1999. Arabian marginal seas and gulfs. Workshop Rep., Stennic Space Centre, University of Miami RSMAS Technical Report 2000-01, 11–13 May, Mississippi.

Johns, W.E., Yao, F., Olson, D.B., Josey, S.A., Grist, J.P., Smeed, D.A., 2003. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. 108(C12).

Joydas, T.V., Krishnakumar, P.K., Qurban, M.A., Ali S.M., Al- Suwailem, A., Al-Abdulkader, K., 2011. Status of macrobenthic community of Manifa–Tanajib Bay System of Saudi Arabia based on a once-off sampling event. Mar. Pollut. Bull. 62, 1249–1260.

Joydas, T.V., Qurban M.A., Borja, A., Manokaran, S., Manikandan, K.P., Lotfi, J.R., Garmendia J.M., Asharaf T.T.M., Ayranci, K., Shemsi, A.M, Mohammed, S., Basali, A.U., Panickan, P., Nazeer, Z., Lyla, P.S., Khan, S.A., Krishnakumar, P.K., 2023. Ecological status of macrobenthic communities in the Saudi waters of the western Arabian Gulf. Reg. Stud. Mar. Sci. 57, 102751, 2352–4855. https://doi.org/10.1016/j.rsma.2022.102751

Joydas, T.V., Qurban, M.A., Manikandan, K.P., et al. 2015. Status of macrobenthic communities in the hypersaline waters of the Gulf of Salwa, Arabian Gulf. J. Sea Res. 99, 34–46. https://doi.org/10.1016/j.seares.2015.01.006

Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. 2 (1), 27–41. https://doi.org/10.5194/os-2-27-2006

KFUPM/RI., 1990a. Final Report: Aramco Sustaining Research Project – Environmental Studies, Vol. VI, Oceanographic Investigation – Coastal and Offshore Hydrography. Prepared for Saudi Aramco by the Water Resources and Environment Division, Research Institute, King Fahd University Petroleum and Minerals, Dhahran, Saudi Arabia, Report Project No. 24079.

KFUPM/RI., 1990b. Final Report: Aramco Sustaining Research Project – Environmental Studies, Vol. VII, Hydrodynamic Models for Wind-Driven and Tidal Circulation in the Arabian Gulf. Prepared for Saudi Aramco by the Water Resources and Environment Division, Research Institute, King Fahd University Petroleum and Minerals, Dhahran, Saudi Arabia, Report Project No. 24079.

KFUPM/RI., 1990c. Final Report: Aramco Sustaining Research Project – Environmental Studies, Vol. VIII, Simulation Models of Pollutant Fate and Transport in the Arabian Gulf. Prepared for Saudi Aramco by the Water Resources and Environment Division, Research Institute, King Fahd University Petroleum and Minerals, Dhahran, Saudi Arabia, Report Project No. 24079.

Le Provost, C., 1983. Models for tides in the KAP region. [In:] Oceanographic Modeling of the Kuwait Action Plan Region, M.I. El-Sabh (Ed), Vol. 28, UNESCO Rep. Mar. Sci., Paris, 37–45.

L’Hégaret, P., Marez, C.D., Morvan, M., Meunier, T., Carton, X., 2021. Spreading and vertical structure of the Persian Gulf and Red Sea outflows in the northwestern Indian Ocean. J. Geophys. Res. 126 (4), e2019JC015983. https://doi.org/10.1029/2019JC015983

Madah, F., Gharbi, S.H., 2022. Numerical simulation of tidal hydrodynamics in the Arabian Gulf. Oceanologia 64 (2), 327–345.

Marin, M., Bindoff, N.L., Feng, M., Phillips, H.E., 2021. Slower long-term coastal warming drives dampened trends in coastal marine heatwave exposure. J. Geophys. Res. 126, e2021JC017930. https://doi.org/10.1029/2021JC017930

Mussa, A.A., Aboobacker, V.M., Abdulla, C.P., Hasna, V.M., Al-Ansari, E.M., Vethamony, P., 2024. A climatological overview of surface currents in the Arabian Gulf with special reference to the Exclusive Economic Zone of Qatar. Int. J. Climatol. 44 (13), 4677–4693.

Prasad, T.G., Ikeda, M., Kumar, S.P., 2001. Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. J. Geophys. Res. 106 (C8), 17059–17071. https://doi.org/10.1029/2000JC000480

Pokavanich, T., Polikarpov, I., Lennox, A., et al. 2013. Comprehensive investigation of summer hydrodynamic and water quality characteristics of desertic shallow water body: Kuwait Bay. J. Coast. Dynam. 12 (2), 1253–1264.

Pous, S., Carton, X., Lazure, P., 2013. A process study of the wind-induced circulation in the Persian Gulf. Open J. Mar. Sci. 3 (1), 1–11.

Rakib, F., Al-Ansari, E.M., Husrevoglu, Y.S., Yigiterhan, O., Al- Maslamani, I., Aboobacker, V.M., Vethamony, P., 2021. Observed variability in physical and biogeochemical parameters in the central Arabian Gulf. Oceanologia 63 (2), 227–237. https://doi.org/10.1016/j.oceano.2020.12.003

Reynolds, R.M., 1993. Physical oceanography of the Gulf, Strait of Hormuz and the Gulf of Oman – Results from the Mt. Mitchell Expedition. Mar. Pollut. Bull. 27, 35–37.

Roy, P., Rao, I.N., Martha, T.R., Kumar, K.V., 2022. Discharge water temperature assessment of thermal power plant using remote sensing techniques. Energy Geosci. 3 (2), 172–181. https://doi.org/10.1016/j.engeos.2021.06.006

Schlitzer, R., 2003. Ocean Data View (ODV) mp-version 1.4 (odvmp_1.4_w32.zip).

Sheppard, C.R.C., 1993. Physical environment of the Gulf relevant of marine pollution: An over view. Mar. Pollut. Bull. 27, 3–8.

Siddig, N.A., Al-Subhi, A.M., Alsaafani, M.A., 2019. Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia 61 (4), 401–411.

Swift, S.A., Bower, A.S., 2003. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. 108 (1), 3004.

Thoppil, P.G., Hogan, P.J., 2010. A modeling study of circulation and eddies in the Persian Gulf. J. Phys. Oceanogr. 40 (9), 2122–2134.

Veerasingam, S., Al-Khayat, J.A., Aboobacker, V.M., Hamza, S., Vethamony, P., 2020a. Sources, spatial distribution and characteristics of marine litter along the west coast of Qatar. Mar. Pollut. Bull. 159, 111478. https://doi.org/10.1016/j.marpolbul.2020.111478

Veerasingam, S., Al-Khayat, J.A., Haseeba, K.P., Aboobacker, V.M., Hamza, S., Vethamony, P., 2020b. Spatial distribution, structural characterization and weathering of tarmats along the west coast of Qatar. Mar. Pollut. Bull. 159, 111486.

Veerasingam, S., Ranjani, M., Venkatachalapathy, R., Bagaev, A., Mukhanov, V., Litvinyuk, D., Mugilarasan, M., Gurumoorthi, K., Guganathan, L., Aboobacker, V.M., Vethamony, P., 2021a. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. Crit. Rev. Environ. Sci. Tech. 51 (22), 2681–2743. https://doi.org/10.1080/10643389.2020.1807450

Veerasingam, S., Vethamony, P., Aboobacker, V.M. Giraldes, A.E., Dib, S., Al-Khayat, J.A., 2021b. Factors influencing the vertical distribution of microplastics in the beach sediments around the Ras Rakan Island, Qatar. Environ. Sci. Pollut. Res. 28, 34259–34268. https://doi.org/10.1007/s11356-020-12100-4

Yao, F., Johns, W.E., 2010. A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res. 115, C11017. https://doi.org/10.1029/2009JC005781

Yoshida, J., Matsuyama, M., Senjyu, T., et al. 1998. Hydrography in the RSA during the RT/V Umitaka-Maru cruises. [In:] Offshore Environment of the ROPME Sea Area after the War-Related Oil Spill – Results of the 1993–94 Umitaka-Maru Cruise, Otsuki, A., Abdeulraheem, M., Reyolds, M. (Eds.), Terra Sci. Publ. Company, Tokyo, 1–22.

full, complete article - PDF


Statistical downscaling of global climate projections over the Egyptian Red Sea coast
Oceanologia, 67 (4)/2025, 67408, 21 pp.
https://doi.org/10.5697/DZVJ9279

Mohamed Shaltout1, Ahmed Abdelhamid1, Ahmed Adel1, Mohamed Gad1,2, Mohamed Elbessa*,1,3
1Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt;
e-mail: Mohamed.Abdelhameed_PG@alexu.edu.eg (M. Elbessa)
2National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
3College of Maritime Transport and Technology (CMTT), Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu-Qir, Alexandria, Egypt
*corresponding author

Keywords: Red Sea; Statistical downscaling; Ensemble mean; SSPs; Climate conditions

Received: 17 September 2024; revised: 17 September 2025; accepted: 25 September 2025

Highlights

Abstract

The long-term variability in atmospheric parameters plays a crucial role in shaping regional climate change. This study investigates the current and future characteristics of different surface atmospheric properties over the period 2011–2100 along the Egyptian Red Sea coast. First, the observed data were used to describe the short-term variability of weather conditions (2011–2021). Second, a bias correction statistical model based on the cumulative distribution functions (CDF) technique was developed by matching the four climate models [GFDL-ESM4; IPSL-CM6A-LR; MIROC6; MRI-ESM2-0] individually with daily observations over a 12-year overlapping period. Third, the resulting bias-correction models were applied to statistically downscale future projections of the studied atmospheric parameters under the Shared Socioeconomic Pathways (SSPs) scenarios. After bias correction, the outputs of each used climate model were averaged to calculate the ensemble mean for the period 2015–2100, improving accuracy and validity along ERSC at each of the five studied stations.
Our results indicate that, following bias correction the future scenarios of the Shared Socioeconomic Pathways (SSPs) show that the Egyptian Red Sea coast will experience significant changes with a wide range of uncertainty, with trends ranging from −0.14 to 2.91°C century−1, −0.021 to 0.069 m s−1 century−1, and −1.95 to 0.67 hPa century−1 for surface air temperature, wind speed, and sea level pressure, respectively.

Graphical Abstract

Statistical Downscaling of Global Climate Projections Over the Egyptian
Red Sea Coast

  References   ref

Abualnaja, Y., Papadopoulos, V.P., Josey, S.A., Hoteit, I., Kontoyiannis, H., Raitsos, D.E., 2015. Impacts of climate modes on air–sea heat exchange in the Red Sea. J. Climate 28 (7), 2665–2681. https://doi.org/10.1175/JCLI-D-14-00379.1

Acker, F., 2008. New findings on unconscious versus conscious thought in decision making: additional empirical data and meta-analysis. Judgment. Decis. Make. 3 (4), 292–303. https://doi.org/10.1017/S1930297500000863

Al-Barakati, A.M., James, A.E., Karakas, G., 2002. A threedimensional hydrodynamic model to predict the distribution of temperature, salinity, and water circulation of the Red Sea. J. King Abdulaziz Univ. Mar. Sci. 13 (1). 3–16. https://doi.org/10.4197/MAR.13-1.1

Al-Subhi, A.M., Al-Aqsum, M.M., 2008. Temporal and spatial variations of remotely sensed Sea surface temperature in the northern Red Sea. J. King Abdulaziz Univ. Mar. Sci. 19 (1), 61–74. https://doi.org/10.4197/mar.19-1.5

Ayman, M., Salah, Z., Tonbol, K., Shaltout, M., 2023. Evaluating ERA5 Weather Parameters Data Using Remote Sensing and in Situ Data Over the North Red Sea. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 48, 77–84. https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-77-2023

Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N., Shaltout, M., 2022. Recent atmospheric changes and future projections along the Saudi Arabian Red Sea Coast. Sci. Rep.12 (1), 160. https://doi.org/10.1038/s41598-021-04200-z

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.A., Meurdesoif, Y., Gastineau, G., 2018. IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/esgf/cmip6.1534

Bruckner, A., Rowlands, G., Riegl, B., Purkis, S., Williams, A., Renaud, P., 2012. Atlas of Saudi Arabian Red Sea Marine Habitats. Panoramic Press Phoenix. AZ, USA. Chaidez, V., Dreano, D., Agusti, S., Duarte, C.M., Hoteit, I., 2017. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 7:8144, 1–8. https://doi.org/10.1038/s41598-017-08146-z

Dawod, G., Amin, A., Haggag, G.G., 2022. Variations of sea levels and atmospheric parameters along the Egyptian coasts over 2008–2020. J. Sci. Eng. Res. 9 (5), 85–100.

Edwards, F.J., 1987. Climate and Oceanography, Key Environments: Red Sea. Pergamon Press, Oxford. 1, 45–68.

El Saman, M.I., Mahmoud, M.A., 2016. Factors Affecting the Weather and Oceanography Parameters in Different Structural Areas of the Red Sea, Egypt. Univ. J. Environ. Res. Technol. 6(2), 43–53.

Eladawy, A., Nadaoka, K., Negm, A., Abdel-Fattah, S., Hanafy, M., Shaltout, M., 2017. Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model. Oceanologia 59 (3), 213-237. https://doi.org/10.1016/j.oceano.2017.01.002

ElBessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2021. Dynamical downscaling of surface air temperature and wind field variabilities over the Southeastern Levantine basin, Mediterranean Sea. Climate 9 (10), 150. https://doi.org/10.3390/cli9100150

ElBessa, M., Shaltout, M., 2024. Statistical downscaling of global climate projections along the Egyptian Mediterranean coast. Oceanologia 66 (4), 66401, 25 pp. https://doi.org/10.5697/OBOE5006

Fowler, H.J., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modeling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Climatol. 27(12), 1547–1578. https://doi.org/10.1002/joc.1556

Fouda, M.M., Gerges, M.A., 1994. Implications of climate change in the Red Sea and Gulf of Aden region: an overview.

Gad, M., Eid, F., El-Din, S.S., Radwan, A., Soliman, G., 2019. Estimation of the Salt Storage and the Salt Content in the Gulf of Suez. J. King Abdulaziz Univ. Mar. Sci. 29 (1), 37–51. https://doi.org/10.4197/Mar.29-1.3

Hamed, M.M., Salehie, O., Nashwan, M.S., Shahid, S., 2023. Projection of temperature extremes of Egypt using CMIP6 GCMs under multiple shared socioeconomic pathways. Environ. Sci. Pollut. Res.30, 38063–38075. https://doi.org/10.1007/s11356-022-24985-4

Hochman, A., Marra, F., Messori, G., Pinto, J. G., Raveh-Rubin, S., Yosef, Y., Zittis, G., 2022. Extreme weather and societal impacts in the eastern Mediterranean. Earth Syst. Dynam. 13 (2), 749–777. https://doi.org/10.5194/esd-13-749-2022

Jiang, H., Farrar, J.T., Beardsley, R.C., Chen, R., Chen, C., 2009. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett. 36, L19605. https://doi.org/10.1029/2009GL040008

Kaunang, T., Medellu, C.S., 2013. Fluctuation of daytime air humidity in the mangrove forest edges. J. Biol. Agric. Healthc. 3 (13), 154–159.

Krasting, J.P., John, J.G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N.T., Balaji, V., Durachta, J., Dupuis, C., 2018. NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407

Langodan, S., Cavaleri, L., Vishwanadhapalli, Y., Pomaro, A., Bertotti, L., Hoteit, I., 2017. IPCC, 2023: The climatology of the Red Sea–part 1: the wind. Int. J. Climatol. 37, 4509–4517. https://doi.org/10.1002/joc.5103

Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W.W., 2023. Climate change 2023: synthesis report. IPCC, 2023: Contribution of working groups I, II, and III to the sixth assessment report of the Intergovernmental Panel on Climate Change. The Australian Nat. Univ.

Maraun, D., Wetterhall, F., Ireson, A.M., Chandler, R.E., Kendon, E.J., Widmann, M., Brienen, S., Rust, H.W., Sauter, T., Themeßl, M., Venema, V.K.C., 2010. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48(3). RG3003. https://doi.org/10.1029/2009RG000314

Menezes, V.V., Farrar, J.T., Bower, A.S., 2018. Westward mountain-gap wind jets of the northern Red Sea as seen by QuikSCAT. Remote Sens. Environ. 209, 677–699. https://doi.org/10.1016/j.rse.2018.02.075

Michel, D., Pandya, A., 2010. Coastal zones and climate change Henry L. Stimson Center, Washington, 106 pp.

Middleton, N.J., Thomas, D.S., 1992. World atlas of desertification.

Mohammed, T., Dar, M.A., El-Saman, M.I., 2010. Distribution patterns of hard and soft corals along the Egyptian Red Sea Coast. Egypt. J. Aquat. Res. 36, 543–555.

Patzert, W.C., 1974. Wind-induced reversal in Red Sea circulation. Deep-Sea Res. Oceanogr. Abstr. 21 (2), 109–121. https://doi.org/10.1016/0011-7471(74)90068-0

Pedgley, D., 1974. An outline of the weather and climate of the Red Sea. Océanogr. Phys. Mer Rouge Paris, France, UNESCO, 9–27.

Sherwood, S.C., Huber, M., 2010. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. 107 (21), 9552–9555. https://doi.org/10.1073/pnas.0913352107

Sofianos, S.S., Johns, W.E., 2007. Observations of the summer Red Sea circulation. J. Geophys. Res. 112, C06025. https://doi.org/10.1029/2006JC003886

Tatebe, H., Watanabe, M., 2018. MIROC MIROC6 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.881

Timbal, B., Fernandez, E., Li, Z., 2009. Generalization of a statistical downscaling model to provide local climate change projections for Australia, Environmental Modelling and Software. Environ. Model. Softw. 24 (3), 341–358. https://doi.org/10.1016/j.envsoft.2008.07.007

Tonbol, K.M., El-Geziry, T.M., Elbessa, M., 2019. Assessment of weather variability over Safaga harbor, Egypt. Arab. J. Geosci. 12, 805. https://doi.org/10.1007/s12517-019-4974-z

Tonbol, K., 2024. Climate change: interdisciplinary solutions for a global challenge. Multidisc. Adaptive Clim. Insights 1(1), 1–10. https://doi.org/10.21622/MACI.2024.01.1.907

Turki, J.A., Al-Subh, A.M., Madah, F., 2023. Influence of Tokar Gap wind jet on latent heat flux of Central Red Sea: empirical orthogonal function approach. Ocean Coast. Res. 71(13), e23029. https://doi.org/10.1590/2675-2824071.220103jat

United Nations Educational, Scientific, and Cultural Organization, 1979. Map of the world distribution of arid regions. MAB Tech. Notes 7, UNESCO, Paris, 54 pp.

Vaittinada, A.P., Vrac, M., Mailhot, A., 2021. Ensemble bias correction of climate simulations: preserving internal variability. Sci Rep. 11(1), 3098. https://doi.org/10.1038/s41598-02182715-1

Vigaud, N., Varc, M., Caballero, Y., 2013. Probabilistic downscaling of GCM senarios over southern India. Int. J. Climatol. 33 (5), 1248–1263. https://doi.org/10.1002/joc.3509

Viswanadhapalli, Y., Dasari, H.P., Langodan, S., Challa, V.S., Hoteit, I., 2017. Climatic features of the Red Sea from a regional assimilative model. Int. J. Climat. 37, 2563–2581. https://doi.org/10.1002/joc.4865

Wilby, R.L., Wigley, T.M.L., 1997. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 21(4), 530–548. https://doi.org/10.1177/030913339702100403

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., 2019. MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.621

full, complete article - PDF


Benthic diatom communities in deeper areas of the German Baltic Sea
Oceanologia, 67 (4)/2025, 67409, 13 pp.
https://doi.org/10.5697/CRPJ6914

Marjan Janßen1, Israel Barrantes2, Mirko Dressler3,4, Karin Glaser5, Ulf Karsten1,6,*
1Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, D–18051 Rostock, Germany;
e-mail: ulf.karsten@uni-rostock.de (U. Karsten)
2Institute for Biostatistic and Informatics in Medicine and Ageing Research, University of Rostock, Schillingallee 35, D–18057 Rostock, Germany
3Physical Geography, Institute for Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn Str. 16, 17487 Greifswald, Germany
4Institute for Biological Sciences, Department of Botany, University of Rostock, Wismarsche Straße 44/44, D–18051 Rostock, Germany
5Karin Glaser, Faculty for Chemistry, Physics and Biosciences, Institute for Biosciences, Department of Biology/Ecology, TU Bergakademie Freiberg, D–09599 Freiberg, Germany
6Interdisciplinary Faculty, Department of Maritime Systems, University of Rostock, D–18051, Rostock, Germany
*corresponding author

Keywords: Microphytobenthos; Diatoms; Baltic Sea

Received: 17 April 2025; revised: 26 September 2025; accepted: 2 October 2025

Highlights

Abstract

The Baltic Sea is a shallow, semi-enclosed brackish ecosystem in northern Europe, which is strongly affected by climate change and other anthropogenic disturbances such as mobile bottom trawling. The resulting drag forces exerted by such fishing practice physically disturb the sea bed and impact all benthic organisms such as microphytobenthic communities, which represent key primary producers in marine soft-bottom ecosystems. Despite their ecological importance, little is known about the composition and productivity of these benthic communities in deeper areas of the German Baltic Sea. Therefore, this study investigates the occurrence and diversity of benthic diatoms in such unstudied areas, focusing on the Baltic Sea regions Fehmarnbelt, Rönnebank, and Oderbank. Sediment cores were collected from depths down to 36 meters, processed ex-situ and the biodiversity of benthic diatoms evaluated using morphological traits via light microscopy and high-throughput sequencing. The data provide novel insights on the occurrence of benthic diatom communities in deeper areas of the Baltic Sea and these microalgae seem to be suitable bioindicators to document any sediment disturbance by natural or anthropogenic forces.

  References   ref

Antonelli, M., Wetzel, C. E., Ector, L., Teuling, A. J., Pfister, L., 2017. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecol. Indic. 75, 73–81. https://doi.org/10.1016/j.ecolind.2016.12.003

Ask, J., Rowe, O., Brugel, S., Strömgren, M., Byström, P., Andersson, A., 2016. Importance of coastal primary production in the northern Baltic Sea. Ambio 45, 635–648. https://doi.org/10.1007/s13280-016-0778-5

Barry, R. G., Hartigan, P. J., 1999. Vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al Ghalith, G. A., Caporaso, J. G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9

Bradley, I.M., Pinto, A.J., Guest, J.S., 2016. Design and evaluation of Illumina MiSeq-compatible, 18S rRNA genespecific primers for improved characterization of mixed phototrophic communities. Appl. Environ. Microbiol. 82. https://doi.org/10.1128/AEM.01630-16

Brown, M. R., GrDunstan, G. A., Norwood, S. J., Miller, K. A., 1969. Effects of harvest stage and light on the biochemical composition of the Diatom Thalassiosira pseudonana. J. Phycol. 32, 64–73. https://doi.org/10.1111/j.0022-3646.1996.00064.x

Cahoon, L. B., 1999. The role of benthic microalgae in neritic ecosystems. Oceanogr. Mar. Biol. 37, 40–86. https://doi.org/10.1201/9781482298550-4

Callahan, B.J., McMurdie, P.J., Han, A.W., Johnson, A.J., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869

Christianen, M. J., Middelburg, J. J., Holthuijsen, S. J., Jouta, J., Compton, T. J., van der Heide, T., Schouten, S., Olff, H., 2017. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale. Ecology 98, 1498–1512. https://doi.org/10.1002/ecy.1837

Collie, J.S., Hall, S.J., Kaiser, M.J., Poiner, I.R., 2000. A quantitative analysis of fishing impacts on shelf-sea benthos. J. Anim. Ecol. 69, 785–798. https://doi.org/10.1046/j.1365-2656.2000.00434.xx

de Groot, S., 1984. The impact of bottom trawling on benthic fauna of the North Sea. Ocean Manag. 9, 177–190. https://doi.org/10.1016/0302-184X(84)90002-7

Glud, R. N., Woelfel, J., Karsten, U., Kühl, M., Rysgaard, S., 2009. Benthic microalgal production in the Arctic: Applied methods and status of the current database. Bot. Mar. 52, 559–571. https://doi:10.1515/BOT.2009.074

Guiry, M.D., Guiry, G.M., 2025. AlgaeBase. World-wide electronic publication, University of Galway. https://www.algaebase.org

Hendey, N.I., 1965. An Introductory Account of the Smaller Algae of British Coastal Waters. Part V. Bacillariophyceae (Diatoms). J. Mar. Biol. Assoc. U.K. 45, 798. https://doi.org/10.1017/S0025315400016660

Hope, J. A., Paterson, D. M., Thrush, S. F., 2019. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J. Ecol. 108 (3). https://doi.org/10.1111/1365-2745.13322

Hoppe, C.J.M., Fuchs, N., Notz, D. et al., 2024. Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae. Nat. Commun. 15, 7385. https://doi.org/10.1038/s41467-024-51636-8

Karsten, U., Kuriyama, K., Hübener, T., Woelfel, J., 2021. Benthic Diatoms on Sheltered Coastal Soft Bottoms (Baltic Sea) – Seasonal Community Production and Respiration. J. Mar. Sci. Eng. 9, 949. https://doi.org/10.3390/jmse9090949

Kelly, M., Bennion, H., Burgess, A., Ellis, J., Juggins, S., Guthrie, R., Yallop, M., 2009. Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia, 627, 5–15. https://doi.org/10.1007/s10750-009-9872-z

Kirk, J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, 509 pp. https://doi.org/10.1017/CBO9780511623370

Kuriyama, K., Gründling-Pfaff, S., Diehl, N., Woelfel, J., Karsten, U., 2021. Microphytobenthic primary production on exposed coastal sandy sediments of the Southern Baltic Sea using ex situ sediment cores and oxygen optodes. Oceanologia 63, 247–260. https://doi.org/10.1016/j.oceano.2021.02.002

Kuriyama, K., Heesch, S., Karsten, U., Schumann, R., 2023. Benthic diatom diversity in a turbid brackish lagoon of the Baltic Sea. Phycologia, 62, 164–178. https://doi.org/10.1080/00318884.2022.2151288

Kwandrans, J., Eloranta, P., Kawecka, B., Wojtan, K., 1998. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. J. Appl. Phycol. 10, 193–201. https://doi.org/10.1023/A:1008087114256

Lindström, M., 2000. Seasonal Changes in the Underwater Light Milieu in a Finnish Baltic. Geophysica 236, 15–232.

Luhtala, H., Tolvanen, H., Kalliola, R., 2013. Annual spatiotemporal variation of the euphotic depth in the SWFinnish archipelago, Baltic Sea. Oceanologia 55, 359–373. https://doi.org/10.5697/oc.55-2.359

Lundkvist, M., Grue, M., Friend, P. L., Flindt, M. R., 2007. The relative contributions of physical and microbiological factors to cohesive sediment stability. Cont. Shelf Res. 27, 1143–1152. https://doi.org/10.1016/j.csr.2006.01.021

McGee, D., Laws, R.A., Cahoon, L.B., 2008. Live benthic diatoms from the upper continental slope: extending the limits of marine primary production. Mar. Ecol. Prog. Ser. 356, 103–112. https://doi.org/10.3354/meps07280

McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8 (4), e61217. https://doi.org/10.1371/journal.pone.0061217

Miller, D.C., Geider, R.J., MacIntyre, H.L., 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. role in sediment stability and shallow-water food webs. Estuaries Coast. 19, 202–212. https://doi.org/10.2307/1352224

Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A., Quéguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cy. 9, 359–372. https://doi.org/10.1029/95GB01070

Oberle, F.K., Storlazzi, C.D., Hanebuth, T.J., 2016. What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109–119. https://doi.org/10.1016/j.jmarsys.2015.12.007
O’Neill, F., Summerbell, K.D., 2016. The hydrodynamic drag and the mobilisation of sediment into the water column of towed fishing gear components. J. Mar. Syst. 164, 76–84. https://doi.org/10.1016/j.jmarsys.2016.08.008

Palanques, A., Guillén, J., Puig, P., 2001. Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol. Oceanogr. 46, 1100–1110. https://doi.org/10.4319/lo.2001.46.5.1100

Paterson, D.M., 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 34, 223–234. https://doi.org/10.4319/lo.1989.34.1.0223

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Cournapeau, D., 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830. https://doi.org/10.48550/arXiv.1201.0490

Prelle, L.R., Karsten, U., 2022. Photosynthesis, Respiration, and Growth of Five Benthic Diatom Strains as a Function of Intermixing Processes of Coastal Peatlands with the Baltic Sea. Microorganisms, 10, 749. https://doi.org/10.3390/microorganisms10040749

Prelle, L.R., Albrecht, M., Karsten, U., Damer, P., Giese, T., Jähns, J., Glaser, K., 2021. Ecophysiological and Cell Biological Traits of Benthic Diatoms from Coastal Wetlands of the Southern Baltic Sea. Front. Microbiol. 12, 642–811. https://doi.org/10.3389/fmicb.2021.642811

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Glöckner, F. O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596. https://doi.org/10.1093/nar/gks1219

Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., Moriceau, B., 2006. Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochem. Cy. 20, GB4S02. https://doi.org/10.1029/2006GB002688

Raven, J. A., Kübler, J. E., Beardall, J., 2000. Put out the light, and then put out the light. J. Mar. Biol. Assoc. UK. 80, 1–25. https://doi:10.1017/S0025315499001526

Robinson, D.H., Arrigo, K.R., Iturriaga, R., Sullivan, C.W., 1995. Microalgal light-harvesting in extreme low-light environments in McMurdo Sound, Antarctica. J. Phycol. 31, 508–520. https://doi.org/10.1111/j.1529-8817.1995.tb02544.x

Salonen, A., Salojärvi, J., Lahti, L., de Vos, W., 2012. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18, 16–20. https://doi.org/10.1111/j.1469-0691.2012.03855.x

Savchuk, O.P., 2018. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5, 95. https://doi.org/10.3389/fmars.2018.00095

Schubert, H., Sagert, S., Forster, R.M., 2001. Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Mar. Res. 55, 12–22. https://doi.org/10.1007/s101520000064

Schultz, K., Dreßler, M., Karsten, U., Mutinova, P.T., Prelle, L.R., 2024. Benthic diatom community response to the sudden rewetting of a coastal peatland. Sci. Total Environ. 955, 177053. https://doi.org/10.1016/j.scitotenv.2024.177053

Sciberras, M., Hiddink, J.G., Jennings, S., Szostek, C.L., Hughes, K.M., Kneafsey, B., Kaiser, M.J., 2018. Response of benthic fauna to experimental bottom fishing: A global meta-analysis. Fish. Aquat. Ecol. 19, 698–715. https://doi.org/10.1111/faf.12283

Serôdio, J., Paterson, D.M., 2022. Role of microphytobenthos in the functioning of estuarine and coastal ecosystems. [In:] Life below water, Springer International Publishing, Cham, 894–906.

Shetty, S.A., Hugenholtz, F., Lathi, L., Schmidt, H., de Vos, W.M., 2017. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 41, 182–199. https://doi.org/10.1093/femsre/fuw045

Stachura-Suchoples, K., 2001. Bioindicative values of dominant diatom species from the Gulf of Gdansk (Southern Baltic Sea). [In:] Studies on Diatoms. Jahn, R., Kociolek, J.P., Witkowski, A., Compére P. (Eds). Lange-Bertalot-Festschrift, Koeltz Scientific Books, Königstein, 477–490.

Tauber, F., Lemke, W., 1995. Map of sediment distribution in the Western Baltic Sea (1:100,000), Sheet “Darß”. Deutsche Hydrogr. Z. 47, 171–178. https://doi.org/10.1007/BF02736203

Tauber, F., Lemke, W., Endler, R., 1999. Map of sediment distribution in the Western Baltic Sea (1:100,000), Sheet Falster – Møn. Deutsche Hydrogr. Z. 51, 5–32. https://doi.org/10.1007/BF02763954

Underwood, G., Kromkamp, J., 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res. 29, 93–153. https://doi.org/10.1016/S0065-2504(08)60192-0

Urban-Malinga, B., Wiktor, J., 2003. Microphytobenthic primary production along a non-tidal sandy beach gradient: an annual study from the Baltic Sea. Oceanologia 45, 705–720.

Vilbaste, S., Sundbäck, K., Nilsson, C., Truu, J., 2000. Distribution of benthic diatoms in the littoral zone of the Gulf of Riga, the Baltic Sea. Eur. J. Phycol. 35, 373–385. https://doi.org/10.1080/09670260010001735981

Villanova, V., Fortunato, E.A., Singh, D., Dal Bo, D., Conte, M., Obata, T., … Finazzi, G., 2017. Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372 (1728), 20160404. https://doi.org/10.1098/rstb.2016.0404

Virta, L., Soininen, J., 2017. Distribution patterns of epilithic diatoms along climatic, spatial and physicochemical variables in the Baltic Sea. Helgoland Mar. Res. 71, 16. https://doi.org/10.1186/s10152-017-0496-9

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. Accessed at https://ggplot2.tidyverse.org

Witkowski, A., 1994. Recent and fossil diatom flora of the Gulf of Gdansk, Southern Baltic Sea. Bibliotheca Diatomologica 28, J. Cramer in der Gebrüder-Borntraeger-Verlags-Buchhandlung, Berlin, Stuttgart, 313 pp.

Witkowski, A., 2000. Diatom Flora of Marine Coasts I. Iconographia Diatomologica 7, Koeltz Scientific Books, Königstein, 925 pp.

Woelfel, J., Schoknecht, A., Schumann, R., Karsten, U., 2014. Growth and primary production characteristics of three benthic diatoms from the brackish Southern Baltic Sea in relation to varying environmental conditions. Phycologia 53, 639–651. https://doi.org/10.2216/14-019.1

Zimmermann, J., Jahn, R., Gemeinholzer, B., 2011. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192. https://doi.org/10.1007/s13127-011-0050-6

full, complete article - PDF


First record of Moerisia cf. inkermanica Paltschikowa-Ostroumowa, 1925 (Hydrozoa, Moerisiidae) in the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia, 67 (4)/2025, 67410, 8 pp.
https://doi.org/10.5697/IZOO2792

Michał Olenycz*, Marcin Kalarus
Gdynia Maritime University, Roberta de Plelo 20, 80-548, Gdańsk, Poland;
e-mail: molenycz@im.umg.edu.pl (M. Olenycz)
*corresponding author

Keywords: Hydromedusae; Non-native species; Species introduction; Ballast water

Received: 17 September 2024; revised: 17 September 2025; accepted: 25 September 2025

Highlights

Abstract

The hydromedusa Moerisia cf. inkermanica Paltschikowa-Ostroumowa, 1925, native to the Pontocaspian region, was recorded for the first time in the Gulf of Gdańsk, in the waters of the Port of Gdańsk. In August 2024, 78 specimens (2–12 mm) were collected at three research stations. This observation constitutes the second Baltic record of the species and the first in the southern Baltic Sea. While ballast water discharge is the most likely vector for the introduction of the species, the ban on untreated ballast water discharge, which came into effect in 2020, suggests an emerging local population that warrants further investigation.

  References   ref

Ahuatzin-Hernández, J.M., Ordóñez-López, U., Herrera-Rodrı́guez, M., Olvera-Novoa, M.A., 2024. Occurrence of the hydromedusa Moerisia cf. inkermanica (Hydrozoa, Moerisiidae) in the ballast water of oil tankers in the Gulf of Mexico. J. Mar. Biol. Assoc. U. K. 104 (60), 1—9. https://doi.org/10.1017/S002531542400050X

AquaNIS, 2025. Information system on Aquatic Non-Indigenous and Cryptogenic Species. https://aquanisresearch.com (accessed 12 April 2025)

Brulińska, D., Olenycz, M., Ziółkowska, M., Mudrak-Cegiołka, S., Wołowicz, M., 2016. Moon jellyfish, Aurelia aurita, in the Gulf of Gdansk: threatening predator or not? Boreal Environment Research 21, 528—540. http://hdl.handle.net/10138/225818

GDEP, 2018a. Neogobius melanostomus (Pallas, 1814). Species Information Card. General Directorate for Environmental Protection, 7 pp. https://www.gov.pl/web/gdos/neogobius-melanostomus---babka-bycza (accessed 12 April 2025)

GDEP, 2018b. Rhithropanopeus harrisii (Gould, 1841). Species Information Card. General Directorate for Environmental Protection, 7 pp. https://www.gov.pl/web/gdos/rhithropanopeus-harrisii---krabik-amerykanski (accessed 12 April 2025)

GDEP, 2018c. Mnemiopsis leidyi (L. Agassiz, 1865). Species Information Card. General Directorate for Environmental Protection, 7 pp. https://www.gov.pl/web/gdos/mnemiopsis-leidyi (accessed 12 April 2025)

Haslob, H., Clemmesen, C., Schaber, M., Hinrichsen, H.-H., Schmidt, J.O., Voss, R., Kraus, G., Köster, F.W., 2007. Invading Mnemiopsis leidyi as a potential threat to Baltic fish. Mar. Ecol. Prog. Ser. 349, 303—306. https://doi.org/10.3354/meps07283

HELCOM, 2013. HELCOM ALIENS 2 – Non-native species port survey protocols, target species selection and risk assessment tools for the Baltic Sea. Helsinki Commission, 34 pp.

HELCOM, 2014. HELCOM Guide to Alien Species and Ballast Water Management in the Baltic Sea, 40 pp.

Janas, U., Zgrudno, A., 2007. First record of Mnemiopsis leidyi A. Agassiz, 1865 in the Gulf of Gdańsk (southern Baltic Sea). Aquat. Invasions 2 (4), 450—454. https://doi.org/10.3391/ai.2007.2.4.18

Janecki, M., Dybowski, D., Jakacki, J., Nowicki, A., Dzierzbicka- Głowacka, L., 2021. The use of satellite data to determine the changes of hydrodynamic parameters in the Gulf of Gdańsk via EcoFish model. Remote Sens. 13 (18), 38 pp. https://doi.org/10.3390/rs13183572

Jasińska, E., Robakiewicz, M., Staskiewicz, A., 2003. Hydrodynamic modelling in the Polish zone of the Baltic Sea – an overview of Polish achievements. Oceanologia 45(1), 107—120. https://doi.org/10.1016/S0078-3234(03)00053-0

Kruk-Dowgiałło, L., Szaniawska, A., 2008. Gulf of Gdańsk and Puck Bay. [in:] Schiewer, U. (ed.), Ecology of Baltic Coastal Waters. Ecological Studies, Berlin, Heidelberg, 139—165. https://doi.org/10.1007/978-3-540-73524-3_7

Lehmann, A., Javidpour, J., 2010. Potential pathways of invasion and dispersal of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea. Hydrobiologia 649, 107—114. https://doi.org/10.1007/s10750-010-0233-8

Lehtiniemi, M., Gorokhova, E., Bolte, S., Haslob, H., Huwer, B., Katajisto, T., Lennuk, L., Markkula, S., Põllumäe, A., Schaber, M., Setälä, O., Reusch, T.B.H., Viitasalo-Frösén, S., Vuorinen, I., Välipakka, P., 2013. Distribution and reproduction of the Arctic ctenophore Mertensia ovum in the Baltic Sea. Mar. Ecol. Prog. Ser. 491, 111—124. https://doi.org/10.3354/meps10464

Leppäkoski, E., Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., Panov, V., 2002. The Baltic—a sea of invaders. Can. J. Fish. Aquat. Sci. 59, 1175—1188. https://doi.org/10.1139/f02-089

Liblik, T., Väli, G., Salm, K., Laanemets, J., Lilover, M.-J., Lips, U., 2022. Quasi-steady circulation regimes in the Baltic Sea. Ocean Sci. 18 (4), 857—879. https://doi.org/10.5194/os-18-857-2022

McKenzie, C., Behrens, J., Blakeslee, A., Canning-Clode, J., Chainho, P., Copp, G.H., Curd, A., Darling, J., Davison, P., Galil, B., Gislason, S., Gollasch, S., Hegele-Drywa, J., Heibeck, N., Howland, K., Jaspers, C., Jelmert, A., Jensen, K.R., Kakkonen, J., Kerckhof, F., Lehtiniemi, M., Marchini, A., Naddafi, R., Normant-Saremba, M., Occhipinti-Ambrogi, A., Olenin, S., Celmente, R.C., Simard, N., Smolders, S., Viard, F., Zabrocki, M., Zenetos, A., 2022. Working Group on Introductions and Transfers of Marine Organisms (WGITMO). International Council for the Exploration of the Sea (ICES). ICES Sci.Rep. 4 (84), 216 pp.

Myrberg, K., Lehmann, A., 2013. Topography, Hydrography, Circulation and Modelling of the Baltic Sea. [in:] Soomere, T., Quak, E. (eds.), Preventive Methods for Coastal Protection. Springer, Heidelberg, 31—64. https://doi.org/10.1007/978-3-319-00440-2_2

Nogueira Jr., M., de Oliveira, J.S., 2006. Moerisia inkermanica Paltschikowa-Ostroumova (Hydrozoa; Moerisidae) e Blackfordia virginica Mayer (Hydrozoa; Blackfordiidae) na Baía de Antonina, Paraná, Brasil. Pan-Am. J. Aquat. Sci. 1 (1), 35—42. https://doi.org/10.1111/maec.12119

Olenycz, M., 2015. Gelatinous zooplankton – a potential threat to the ecosystem of the Puck Bay (the southern Baltic Sea, Poland). Bull, Maritime Inst. Gdańsk 30 (1), 78—85. https://doi.org/10.5604/12307424.1172820

Restaino, D.J., Bologna, P.A., Gaynor, J.J., Buchanan, G.A., Bilinski, J.J., 2018. Who’s lurking in your lagoon? First occurrence of the invasive hydrozoan Moerisia sp. (Cnidaria: Hydrozoa) in New Jersey, USA. BioInvasions Rec. 7 (3), 223—228. https://doi.org/10.3391/bir.2018.7.3.02

Saraber, J.G.A.M., 1962. Ostroumovia inkermanica in the Netherlands. Beaufortia 9, 117—120.

Schuchert, P., 2010. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 2. Rev. Suisse Zool. 117 (3), 337—555. https://doi.org/10.5962/bhl.part.117793

Wintzer, A.P., Meek, M.H., Moyle, P.B., 2011. Life history and population dynamics of Moerisia sp., a non-native hydrozoan, in the upper San Francisco Estuary (U.S.A.). Estuarine, Estuar. Coast. Shelf Sci. 94, 48—55. https://doi.org/10.1016/j.ecss.2011.05.017

full, complete article - PDF


Does mesh size matter? Influence of mesh size on estimation of meiofauna abundance, biomass and on size spectra
Oceanologia, 67 (4)/2025, 67411, 10 pp.
https://doi.org/10.5697/RXWV1889

Barbara Górska1,*, Katarzyna Grzelak1, Bodil A. Bluhm2, Silvia Hess3, Maria Włodarska-Kowalczuk1
1Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: basia@iopan.pl (B. Górska)
2UiT The Arctic University of Norway, PO Box 6050 Stakkevollan, N–9037 Tromsø, Norway
3University of Oslo, PO Box 1047 Blindern, NO–0316 Oslo, Norway
*corresponding author

Keywords: Meiofauna; Biodiversity; Processing methods; Size spectra

Received: 29 May 2025; revised: 22 October 2025; accepted: 28 October 2025

Highlights

Abstract

For muddy-bottom meiofauna analyses, samples are typically sieved on 32 µm sieves for animal extraction. However, some studies use a 63 µm sieve to reduce fine sediment overload. Such variation in sieving protocols hampers comparisons across studies. We quantified and compared the effects of mesh size (63 versus 32 µm) on meiofauna abundance, biomass, community composition, and size spectra in muddy sediments. Between 8 and 21% of individuals (mostly nematodes) were missed in the 63 µm mesh-based analyses (compared to 32 µm). However, the larger mesh size did not affect biomass estimations or the construction of size spectra. For muddy sediments, a 63 µm sieve can be used interchangeably with a 32 µm sieve for meiofauna biomass estimation.

  References   ref

Aller, R.C., Aller, J.Y., 1992. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033. https://doi.org/10.4319/lo.1992.37.5.1018

Anderson, M.J., 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zeland.

Baguley, J.G., Hyde, L.J., Montagna, P.A., 2004. A semi-automated digital microphotographic approach to measure meiofaunal biomass. Limnol. Oceanogr. Methods 2, 181–190. https://doi.org/10.4319/lom.2004.2.181

Berkenbusch, K., Probert, P.K., Nodder, S.D., 2011. Comparative biomass of sediment benthos across a depth transect, Chatham Rise, Southwest Pacific Ocean. Mar. Ecol. Prog. Ser. 425, 79–90. https://doi.org/10.3354/meps09014

Bessière, A., Nozais, C., Brugel, S., Demers, S., Desrosiers, G., 2007. Metazoan meiofauna dynamics and pelagicbenthic coupling in the Southeastern Beaufort Sea, Arctic Ocean. Polar Biol. 30, 1123–1135. https://doi.org/10.1007/s00300-007-0270-6

Bonaglia, S., Nascimento, F.J.A., Bartoli, M., Klawonn, I., Brüchert, V., 2014. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133. https://doi.org/10.1038/ncomms6133

Brown, C.J., Lambshead, P.J.D., Smith, C.R., Hawkins, L.E., Farley, R., 2001. Phytodetritus and the abundance and biomass of abyssal nematodes in the central, equatorial Pacific. Deep Sea Res. Pt. I, 48, 555–565. https://doi.org/10.1016/S0967-0637(00)00049-2

Charrier, B.R., Ingels, J., Danielson, S.L., Mincks, S.L., 2023. Infaunal community structure, diversity, and function in Pacific-Arctic shelf sediments: a comparison of meiofaunaland macrofaunal-sized nematodes. Mar. Ecol. Prog. Ser. 720, 95–116. https://doi.org/10.3354/meps14397

Danovaro, R., Della Croce, N., Eleftheriou, A., Fabiano, M., Papadopoulou, N., Smith, C., Tselepides, A., 1995. Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Prog. Oceanogr. 36, 329–341.

Danovaro, R., Gambi, C., Della Croce, N., 2002. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep Sea Res. Pt. I, 49, 843–857. https://doi.org/10.1016/S0967-0637(01)00084-X

de Bovée, F., Soyer, J., Albert, P., 1974. The importance of the mesh size for the extraction of the muddy bottom meiofauna. Limnol. Oceanogr. 19, 350–354. https://doi.org/10.4319/lo.1974.19.2.0350

Elmgren, R., 1973. Methods of sampling sublittoral soft bottom meiofauna. OIKOS Suppl. 112–120.

Feller, R.J., Warwick, R.M., 1988. Energetics, [In:] Introduction to the Study of Meiofauna, Higgins, R.P., Thiel, H. (Eds.), Smithsonian Inst. Press, Washington D.C., 181–196.

Giere, O., 2009. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Berlin.

Gooday, A.J., Pfannkuche, O., Lambshead, P.J.D., 1996. An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-eastern Atlantic. J. Mar. Biol. Assoc. U.K. 76, 297–310.

Górska, B., Soltwedel, T., Schewe, I., Włodarska-Kowalczuk, M., 2020. Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76-5561 m, Fram Strait). Prog. Oceanogr. 186, 102370. https://doi.org/10.1016/j.pocean.2020.102370

Górska, B., Włodarska-Kowalczuk, M., 2017. Food and disturbance effects on Arctic benthic biomass and production size spectra. Prog. Oceanogr. 152, 50–61. https://doi.org/10.1016/j.pocean.2017.02.005

Grove, S.L., Probert, P.K., Berkenbusch, K., Nodder, S.D., 2006. Distribution of bathyal meiofauna in the region of the Subtropical Front, Chatham Rise, south-west Pacific. J. Exp. Mar. Biol. Ecol. 330, 342–355. https://doi.org/10.1016/j.jembe.2005.12.038

Grzelak, K., Gluchowska, M., Kędra, M., Błażewicz, M., 2020. Nematode responses to an Arctic sea-ice regime: morphometric characteristics and biomass size spectra. Mar. Environ. Res. 162. https://doi.org/10.1016/j.marenvres.2020.105181

Hughes, D.J., Gage, J.D., 2004. Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin. Prog. Oceanogr. 63, 29–55. https://doi.org/10.1016/j.pocean.2004.09.002

Ingole, B.S., Goltekar, R., Gonsalves, S., Ansari, Z.A., 2005. Recovery of deep-sea meiofauna after artificial disturbance in the central indian basin. Mar. Georesour. Geotec. 23, 253–266. https://doi.org/10.1080/10641190500446540

Kitahashi, T., Watanabe, H.K., Tsuchiya, M., Yamamoto, Hideyuki, Yamamoto, Hiroyuki, 2018. A new method for acquiring images of meiobenthic images using the FlowCAM. MethodsX 5, 1330–1335. https://doi.org/10.1016/j.mex.2018.10.012

Kotwicki, L., Szymelfenig, M., De Troch, M., Zajączkowski, M., 2004. Distribution of meiofauna in Kongsfjorden, Spitsbergen. Polar Biol. 27, 661–669. https://doi.org/10.1007/s00300-004-0625-1

Lampadariou, N., Eleftheriou, A., 2018. Seasonal dynamics of meiofauna from the oligotrophic continental shelf of Crete (Aegean Sea, eastern Mediterranean). J. Exp. Mar. Biol. Ecol. 502, 91–104. https://doi.org/10.1016/j.jembe.2017.12.014

Leduc, D., Probert, P.K., Nodder, S.D., 2010. Influence of mesh size and core penetration on estimates of deepsea nematode abundance, biomass, and diversity. Deep Sea Res. Pt. I, 57, 1354–1362. https://doi.org/10.1016/j.dsr.2010.06.005

Mazurkiewicz, M., Górska, B., Jankowska, E., Włodarska-Kowalczuk, M., 2016. Assessment of nematode biomass in marine sediments: A semi-automated image analysis method. Limnol. Oceanogr. Methods 14, 816–827. https://doi.org/10.1002/lom3.10128

Nascimento, F.J.A., Karlson, A.M.L., Näslund, J., Elmgren, R., 2011. Diversity of larger consumers enhances interference competition effects on smaller competitors. Oecologia 166, 337–347. https://doi.org/10.1007/s00442-010-1865-0

Peters, R., 1983. The ecological implications of body size. Cambridge Univ. Press, Cambridge.

Ricardo de Freitas, T., Hess, S., Renaud, P.E., Appleby, P., Alve, E., 2024. Drivers of organic carbon distribution and accumulation in the northern Barents Sea. Prog. Oceanogr. 225, 103286. https://doi.org/10.1016/j.pocean.2024.103286

Sautya, S., Gaikwad, S., Khokher, S., Pradhan, U.K., Chatterjee, S., Choudhury, A., Sahu, B., Attri, S., 2021. Distribution Pattern of the Benthic Meiofaunal Community Along the Depth Gradient of the Western Indian Continental Margin, Including the OMZ and Abyssal Plain. Front. Mar. Sci. 8, 1–17. https://doi.org/10.3389/fmars.2021.671444

Schewe, I., Soltwedel, T., 1999. Deep-sea meiobenthos of the central Arctic Ocean: distribution patterns and sizestructure under extreme oligotrophic conditions. Vie Milieu 49, 79–92.

Schwinghamer, P., 1983. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar. Ecol. Prog. Ser. 13, 151–166.

Sheldon, R.W., Prakash, A., Sutcliffe, H., 1972. The size distribution of particles in the Ocean. Limnol. Oceanogr. 17, 327–340.

Soltwedel, T., Miljutina, M., Mokievsky, V., Thistle, D., Vopel, K., 2003. The meiobenthos of the Molloy Deep (5 600 m), Fram Strait, Arctic Ocean. Vie Milieu 53, 1–13.

Tachibana, K., Shimanaga, M., Langlet, D., Seike, K., Miyazaki, M., Yoshida, M., Nunoura, T., Nomaki, H., 2023. Meiofauna in the southeastern Bering Sea: community composition and structuring environmental factors. Front. Mar. Sci. 10, 1–11. https://doi.org/10.3389/fmars.2023.996380

The Nansen Legacy, 2025. The Nansen Legacy Final Report. Nansen Leg. Rep. Ser. https://doi.org/10.7557/nlrs.8041

Tietjen, J.H., 1992. Abundance and biomass of metazoan meiobenthos in the deep sea. [In:] Deep-Sea Food Chains and the Global Carbon Cycle, Rowe, G.T., Pariente, V. (Eds.), Springer, College Station, 45–62. https://doi.org/10.1007/978-94-011-2452-2_4

Tong, S.J.W., Gan, B.Q., Tan, K.S., 2022. Community structure of deep-sea benthic metazoan meiofauna in the polymetallic nodule fields in the eastern Clarion-Clipperton Fracture Zone, Pacific Ocean. Deep Sea Res. Pt. I, 188. https://doi.org/10.1016/j.dsr.2022.103847

Tseitlin, V.B., Mokievsky, V.O., Azovsky, A.I., Soltwedel, T., 2001. The study of meiobenthos size structure with the sieving method (case study of the Arctic basin free-living Nematodes). Oceanology 41, 712–717.

Udalov, A.A., Azovsky, A.I., Mokievsky, V.O., 2005. Depthrelated pattern in nematode size: What does the depth itself really mean? Prog. Oceanogr. 67, 1–23. https://doi.org/10.1016/j.pocean.2005.02.020

Vanreusel, A., Clough, L., Jacobsen, K., Ambrose, W., Ryheul, V., Herman, R., Vincx, M., 2000. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. Pt. I, 47, 1855–1879. https://doi.org/10.1016/S0967-0637(00)00007-8

Vanreusel, A., Vincx, M., Bett, B.J., Rice, A.L., 1995. Nematode biomass spectra at two abyssal sites in the NE Atlantic with a contrasting food supply. Int. Rev. Hydrobiol. 80, 287–296.

Zeng, Q., Huang, D., Lin, R., Wang, J., 2017. Deep-sea metazoan meiofauna from a polymetallic nodule area in the central Indian Ocean basin. Mar. Biodivers. 48, 395–405. https://doi.org/10.1007/s12526-017-0778-0

Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P.M., Fontaneto, D., Fontanier, C., Gooday, A.J., Kristensen, R.M., Ivanenko, V.N., Sørensen, M. V., Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro, T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V., Fumeron, R., Hermabessiere, L., Hulot, V., James, T., Langonne-Augen, R., Le Bot, T., Long, M., Mahabror, D., Morel, Q., Pantalos, M., Pouplard, E., Raimondeau, L., Rio-Cabello, A., Seite, S., Traisnel, G., Urvoy, K., Van Der Stegen, T., Weyand, M., Fernandes, D., 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45, 505–535. https://doi.org/10.1007/s12526-015-0359-z

full, complete article - PDF