REPORT

GLAERE - WP 3 – Remote sensing & GIS

Jacek Urbański, Agnieszka Wochna, Katarzyna Dragańska

D_3.2 Completition of new field work data (from expedition to Spitsbergen in 2015)

January 2016

The new field data were collected during expedition to Svalbard in July / August 2015. The measurements were taken in two fjords Hornsund (25 July -1 August) and Kongsfjord (4 August -9 August). All water measurements were taken from Zodiac C5 inflatable boat. The collected field work data were delivered to data base (milestone M_3.2) which is described in details bellow.

The measurements taken during expeditions:

CTD profiles

CTD profiles were carried out using SD204 self-contained instrument manufactured by SAIV A/S that measures, calculates and records water salinity, temperature, pressure and turbidity. The turbidity were measured using backscatter sensor in FTU (Formazin Turbidity Units) units. The sensor was calibrated with particles of interest to measure suspended solids concentrations in mg 1^{-1} , density was calculated using standard salinity, temperature, presser formula. In Hornsund 36 profiles and in Kongsfiord 114 profiles were taken. The formula for conversion of FTU to mg 1^{-1} was derived from relation between turbidity and SPM measurements (with R²=0.82).

$$SPM - mgl^{-1} = 1.021 \times TUR - 4.908$$

Profiles were taken up to 20-40 meters.

SPM – suspended particulate matter

Field measurements of SPM were obtained at various locations from discrete water sampling. In Hornsund 35 water samples and in Kongsfjord 73 water samples were taken. Surface suspended particulate matter (SPM; mg/dm³) was assessed through vacuum-filtering of water samples onto pre-combusted (450° C, 24 h) pre-weighted MN GF-5 filters (0.4μ m pore size). The amount of filtered water was different depending on the suspended particulate matter concentration and was enough for distinct change in colour of filter. After filtration of sample, a filter was rinsed with distilled water to clear out salt. Large organisms visible to the naked eye were removed from the filters. Filters in Petri dish were stored in a refrigerator until analysis.Each filter was then air dried at 60 °C for 24 h and weighed to determine total suspension dry mass. Concentration was determined by dividing total suspension dry mass by the amount of filtered water.Some samples were analysed twice and mean value was calculated.

Sea surface temperature tracking

The HOBO temperature logger and GPS were used for creating time-position-temperature data file during Zodiac boat movement. In Hornsund 2 SST tracks and in Kongsfiord 5 SST tracks were registered.

SD – Secchi disk measurements

Secchi disk 20 cm in diameter was used to measure water transparency. In Hornsund 35 and in Kongsfjord 73 measurements were taken.

Water temperature time series

The HOBO temperature logger was used to register water temperature time series. Two temperature time series were recorded in Hornsund. First at 20 m depth and second in thermal spring at Gnaloden.

Localization of stations on fjords at 20 m depth:

Kongsfjord	N 78 53.128	E 12 25.852
Hornsund	N 77 0.552	E 16 28.952

Sea level time series

The HOBO sea level pressure logger was used to register water level changes from 27.7 to 1.8 at coast of Gnaloden.

C – carbon (Appendix D page 97)

Field measurements of carbon were obtained at various locations from discrete water sampling. For concentrations of non-purgable organic carbon, water from surface was collected in a plastic bottles, transferred to the laboratory within 2 days and filtered at low pressure through precombusted (450° C, 24 h) MN GF-5 filters (0.4 µm pore size). The samples were acidified to pH<2 with concentrated HCl and stored in a refrigerator until analysis. Concentration of non-purgable organic carbon (NPOC) was measured with the high temperature catalytic oxidation (HTCO) technique using Vario TOC Cube analyzer (Elementar Analysensysteme GmbH). Each sample was analysed twice and mean value was calculated.

Phytoplankton -

Field measurements of phytoplankton were obtained at various locations from discrete water sampling.

(Appendix D page 97)

Bathymetry survey

The depth measurements were carried out using Valeport Midas Surveyor Echo Sounder in area of experiment in Raudvika in Kongsfjord. The result is a file of contours.

Land cover training areas

The land cover training areas defined as homogeneous polygons were registered using GPS. Each polygon was documented using photo of the surrounding area.

Landsat 8 satellite images

Two cloudless satellite images covering the study area were acquired during the field measurements.

 Hornsund
 31 July 2015
 LC82090052015212LGN00

 Kongsfjord 8 August 2015
 LC82170032015220LGN00

Measurements in Hornsund 27 July - 1 August 2015

Measurements in Kongsfjord 4 – 9 August 2015

All results of expedition were delivered to geodatabase (in digital form) which is a part of this report:

🖃 🚞 HORNSUND
🗉 🚞 EXP_Hornsund_2015_csv
🛨 🚞 foto
🗉 🚞 Landsat8
🛨 🚞 std_profiles
🖃 🧊 EXP_Hornsund_2015.gdb
H15_26_7_temp_tracking
H15_31_7_temp_tracking
H15_points
H15_points_plus
H15_points_STDTur
Land_cover_training_fields_31_7
Level_Temp_time_series
Svalbard_maska_2015
Temp_20m_time_series
Temp_thermal_spring_Gnaloden_time_series
🕀 🧮 Exp_Kongsfjord_2015_csv
🗄 🧮 foto
🗄 🧮 Landsat8
Image: Std_profiles
Exp_Kongsfjord_2015.gdb
K15_5_8_temp_tracking
K15_6_8_temp_tracking
K15_7_8_temp_tracking
K15_8_8_temp_tracking
K15_9_8_temp_tracking
K15_points
K15_points_plus
K15_points_SIDTur
Raudvika_izobaty5
I Svalbard_maska_2015

Description of geodatabase:

HORNSUND

<subfolder> EXP_Hornsund_2015_csv

Layers from file geodatabase converted to text .csv files

H15_26_7_temp_tracking.csv
 H15_31_7_temp_tracking.csv
 H15_points.csv
 H15_points_STDTur.csv
 Level_Temp_time_series.csv
 Temp_20m_time_series.csv

Temp_thermal_spring_Gnaloden_time_series.csv

<subfolder> foto

Photographs of points of interest

<subfolder> Landsat8

Landsat 8 scene downloaded from Glovis (<u>http://glovis.usgs.gov/</u>)

<subfolder> std_profiles

All std Hornsund profiles figures - Appendix A

<ESRI file geodatabase> EXP_Hornsund_2015.gdb

Layers:

H15_26_7_temp_tracking (26 July 2015)

points

fields: Field1 – latitude DD

Field2 – longitude DD

Field3 - temperature

H15_31_7_temp_tracking (31 July 2015)

points

fields:

Field1 – latitude DD

Field2 – longitude DD

Field3 - temperature

H15_points (surface SD and SPM)

points

fields: POINT_ID – point number

	NNN – latitude DD
	EEE – longitude DD
	SD - Secchi disk depth [m]
	DAY – day
	MONTH – month
	HOUR – hour
	SPM_pom - suspended particulate matter [mg 1 ⁻¹] from water sampling
	SPM_pom_re – reliability of measured value (0-1)
H15_points_plus (surfa	ace carbon, phytoplankton, SPM) (Appendix D page 97)
points	
fields:	POINT_ID – point number
	NNN – latitude DD
	EEE – longitude DD
	DAY – day
	MONTH – month
	HOUR – hour
	SPM_pom - suspended particulate matter [mg 1 ⁻¹] from water sampling
	NPOC - concentrations of non-purgable organic carbon [mg/l]

SD_NPOC - standard deviation

Phytoplankton_code

Phytoplankton_description

H15_points_STDTur (temperature, salinity, density, turbidity - spm, records are sorted by points number and depth) Appendix A page 14

points

fields: POINT_ID - point number NNN - latitude DD EEE – longitude DD SD - Secchi disk depth [m] DAY - day

MONTH - month HOUR - hour NR STD - number in STD204 output text file DDD – depth [m] COD – 1 if in situ value TTT - temperature [°C]SSS – salinity [psu] TUR – turbidity [FTU] DDDminus – depth with minus sign [m] DENS – water density [kg m⁻³] SPM - suspended particulate matter [mg l⁻¹] from water sampling or calculated from turbidity (minimum value $= 1 [mg l^{-1}])$ SPM_pom - suspended particulate matter [mg l⁻¹] from water sampling (0 = lack of data)Land_cover_training_fields_31_7 polygons fields: Id – id of training polygon foto – name of photo presenting the land cover in folder foto Level_Temp_time_series Appendix B (page 33) table fields: nr - number of measurement Date_Time - time Temp – water temperature $[^{\circ}C]$ Sensor_Depth – relative sea level [m] Temp_thermal_spring_Gnaloden_time_series table fields: nr - number of measurement Date_Time - time Temp – water temperature $[^{\circ}C]$ Temp_20m_time_seriesK Appendix B (figure page) table fields: nr - number of measurement

Date_Time - time

Temp – water temperature [°C]

SVAL_mask2015 - Svalbard coastline 2015 (supplementary layer) polygons

KONGSFJORD

<subfolder> EXP_Kongsfjord_2015_csv

Layers from file geodatabase converted to text .csv files

K15_5_8_temp_tracking.csv
K15_6_8_temp_tracking.csv
K15_7_8_temp_tracking.csv
K15_8_8_temp_tracking.csv
K15_9_8_temp_tracking.csv
K15_points.csv
K15_points_csv
K15_points_plus.csv
K15_points_STDur.csv
Temp_20m_time_seriesK.csv

<subfolder> foto

Photographs of points of interest

<subfolder> Landsat8

Landsat 8 scene downloaded from Glovis (http://glovis.usgs.gov/)

<subfolder> std_profiles

All std Kongsfiord profiles figures – Appendix C

<ESRI file geodatabase> EXP_Kongsfjord_2015.gdb

Layers:

K15_5_8_temp_tracking (5 August 2015)

points

fields: Field1 – latitude DD

Field2 – longitude DD

Field3 - temperature

K15_6_8_temp_tracking (6 August 2015)

points

fields:	Field1 – latitude DD
	Field2 – longitude DD
	Field3 – temperature
K15_7_8_temp_tracking	ng (7 August 2015)
points	
fields:	Field1 – latitude DD
	Field2 – longitude DD
	Field3 - temperature
K15_8_8_temp_tracking	ng (8 August 2015)
points	
fields:	Field1 – latitude DD
	Field2 – longitude DD
	Field3 - temperature
K15_9_8_temp_tracking (9 August 2015)	
points	
fields:	Field1 – latitude DD
	Field2 – longitude DD
	Field3 - temperature

K15_points (surface SD and SPM)

points

fields:	POINT_ID – point number
	NNN – latitude DD
	EEE – longitude DD
	SD - Secchi disk depth [m]
	DAY – day
	MONTH – month
	HOUR – hour
	SPM_pom - suspended particulate matter [mg l ⁻¹] from water sampling
	SPM_pom_re – reliability of measured value (0-1)

K15_points_plus (surface carbon, phytoplankton, SPM) (Appendix D page 96)

points

fields:	POINT_ID – point number
	NNN – latitude DD
	EEE – longitude DD
	DAY – day
	MONTH – month
	HOUR – hour
	SPM_pom - suspended particulate matter [mg l ⁻¹] from water sampling
	NPOC - concentrations of non-purgable organic carbon [mg/l]
	SD_NPOC – standard deviation
	Phytoplankton_code
	Phytoplankton_description
K15_points_STDTur (t	emperature, salinity, density, turbidity – spm, records are sorted by points number and depth)
points	
fields:	POINT_ID – point number
	NNN – latitude DD
	EEE – longitude DD
	SD - Secchi disk depth [m]
	DAY – day
	MONTH – month
	HOUR – hour
	NR_STD – number in STD204 output text file
	DDD – depth [m]
	COD – 1 if in situ value
	TTT – temperature [°C]
	SSS – salinity [psu]
	TUR – turbidity [FTU]
	DDDminus – depth with minus sign [m]
	DENS – water density [kg m ⁻³]
	SPM - suspended particulate matter $[mg l^{-1}]$ from water sampling or calculated from turbidity (minimum value = 1 $[mg l^{-1}]$)

SPM_pom - suspended particulate matter [mg l^{-1}] from water sampling (0 = lack of data)

Raudvika_izobaty5 Appendix B (page 33)

lines

fields: Id - id of contour

CONTOUR – depth (5,10,15,20,25,30)

Level_Temp_time_series Appendix B (page 33)

table

fields: nr - number of measurement

Date_Time - time

Temp – water temperature [°C]

Sensor_Depth – relative sea level [m]

Temp_thermal_spring_Gnaloden_time_series

table

fields: nr - number of measurement

Date_Time - time

Temp – water temperature [°C]

SVAL_mask2015 - Svalbard coastline 2015 (supplementary layer)

polygons

APPENDIX B

Sea level at coast of Gnaloden in Hornsund

Temperature time series at 20m in Hornsund (Brepolen) [minutes x 2]

Raudvika contours (Kongsfjord)

Temperature time series at 20m in Kongsfjord (4 – 7 August) [minutes x 2]

APPENDIX C 1

APPENDIX C 2

APPENDIX C 3

APPENDIX C 4

APPENDIX C 5

Appendix D – phytoplankton , NPOC

Phytoplankton

Śliwińska Sylwia, Institute of Oceanography, University of Gdansk, 81-378 Gdynia, Poland

Material and methods

Samples were collected using the plastic bottles. The taxonomic composition and number of phytoplankton were analyzed under an Nikon eclipse 80i microscope at a magnification of 10 and 100x. Phytoplankton organisms were identified to the species level or, if this was impossible, they were only assigned to a genus. Taxons were identified using keys and world literature (Drebes, 1974; Cox, 1996; Huber-pestalozzi, 1950; Komarek and Anagnostidis, 1999; Komarek and Fott, 1983; Lind and Brook, 1980; Popovski and Pfiester, 1990; Hindák, 2001).

Results

Thirty six cyanobacteria and microalgae species belonging to 19 genera were distinguished during this study, but more than 80% of the total number of cyanobacterial and microalgal cells counted was contributed to by only the 11 most abundant taxa (9 genera) (Table 1). Some of the diatom and cyanobacteria specimens found present problems in their taxonomic identification (in particular forms belonging to *Navicula* and *Nitzschia* genera). In these cases, the dubious taxa are indicated by a "cf." or designated as "sp.1" and "sp.2" (if the specimen could not be matched with any described taxon), still each name stands for a single separate species. A more detailed taxonomic analysis of the material is in progress. Amongst the recorded taxa, two species exceeded 10% of the total count: *Porphyridium purpureum* (Bory) K.M.Drew & R.Ross (30.1%) and *Chlorella vulgaris* Beyerinck [Beijerinck] (16.2%). Another nineteen species counted for over 1%. Fifteen taxa were noted in less than 1% of samples.

Location of samples:

Hornsund:

1S	77.016177 N	15.849753 E
25	77.015431 N	15.873244 E
3S	77.0141161N	15.871974E
4S	77.07738N	15.77695E

Kongsfjord:

5S 78.921143N 12.605092E

Table 2. Summary of observations (photographs in data base catalogs foto)

Location	Photography	Description of place	Description of results
S1	photo. Hornsund_cgis_4	patch of snow or ice (2 km W from Gnaloden along the coast)	Bloom of a single-celled red algae organisms <i>Porphyridium purpureum</i> (Rhodophyta). These organisms constituted 79,9% of the sample and were not present in any other sample
S2	photo. Hornsund_cgis_5	spring on the coast of Gnaloden	There was not many of phytoplankton species but a lot of organic matter. Dominant species were diatoms of <i>Navicula</i> i <i>Nitzschia</i> (Chrysophyta)
S3	photo. Hornsund_cgis_6	tide pool at Gnaloden	Consisted the highest species diversity. Dominant species were picoplankton cyanobacteria (Cyanophyta) and diatoms, mainly of <i>Amphora</i> sp., that composed the sample in 19.3% and 11.1% respectively
S4	photo. Hornsund_cgis_1	water outflow from rocky wall at western coast of Vestre Burgerbukta	Single-celled chlorophytes - Chlorella (Chlorophyta) were dominant organisms contributing 77.9% of the sample. The second most abundant organisms were picoplankton cyanobacteria with 14.9%
S5	photo. Kongsfjord_cgis_2	solitary rock near ice face of Kongsbreen glacier in Raudvika	Dominant species were diatoms of <i>Licmophora</i> , composing 69.0% of the sample and were not present in any other sample

Table 2. List of taxa present in the studied samples, percentage of total abundance, percentage of samples in which taxa occurred, and sites where they were present.

Group	% of total	% of samples				locations	
Species	abundance	1s	2s	3s	4s	5s	
Cyanophyta							
Aphanocapsa cf. delicatissima	1.3	-	-	5.3	-	-	3s
Aphanothece sp.	1.9	-	-	7.9	-	-	3s
Chroococcus turgidus (Kützing) Nägeli	2.1	-	-	8.5	-	-	3s
Lyngbya limnetica Lemmermann	3.7	7.4	-	3.6	-	-	1s, 3s
Nostoc cf. microscopicum	0.4	-	-	1.6	-	-	3s
Phormidium splendidum (Greville ex Gomont) Anagnostidis & Komárek	0.6	-	-	1.0	1.3	-	3s, 4s
Planktolyngbya sp.	1.8	1.7	-	3.9	0.7	-	1s, 3s, 4s
Pseudanabaena limnetica (Lemmermann) Komárek	1.0	0.2	-	0.6	2.9	-	1s, 3s, 4s
Pseudanabaena sp.	0.2	0.5	-	-	-	-	1s
picocyanobactria	8.4	-	-	19.3	14.8	-	3s, 4s
Chlorophyta							
<i>Chlorella vulgaris</i> Beyerinck [Beijerinck]	16.2	0.8	-	3.6	61.2	-	1s, 3s, 4s
Chlorella minutissima Fott & Nováková	1.6	-	-	-	6.4	-	4s
Chlorella sp.	5.7	4.4	-	6.2	10.4	-	1s, 3s, 4s
Chlorococcum infusionum (Schrank) Meneghini	0.6	1.1	-	0.7	-	-	1s, 3s
Chlorococcum sp.	2.6	-	12.3	5.3	2.3	2.7	2s, 3s, 4s, 5s
<i>Coelastrum</i> sp.	0.2	-	-	1.0	-	-	3s
Chrysophyta							
Achnanthes cf. brevipes	0.3	-	7.0	-	-	-	2s
Amphora cf. coffeaeformis	1.5	-	-	6.2	-	-	3s

Amphora sp.	2.7	-	-	11.1	-	-	3s
Licmophora cf. abbreviata	0.8	-	-	-	-	9.6	5s
Licmophora cf. communis	4.5	-	-	-	-	49.6	5s
Licmophora cf. ehrenbergii	0.2	-	-	-	-	2.7	5s
Licmophora cf. gracilis	0.2	-	-	-	-	1.8	5s
Licmophora sp.	0.5	-	-	-	-	5.2	5s
Navicula cf. gelida	0.3	-	1.8	1.0	-	-	2s, 3s
Navicula cf. glaciei	0.6	-	3.5	2.3	-	-	2s, 3s
Navicula cf. goersii	0.2	-	-	-	-	2.7	5s
Navicula cf. perminuta	2.5	-	29.8	2.0	-	8.0	2s, 3s, 5s
Navicula sp.1	2.1	2.5	-	0.7	-	10.6	1s, 3s, 5s
Navicula sp.2	1.1	1.5	-	-	-	6.2	1s, 5s
Navicula sp.3	1.0	-	22.8	-	-	-	2s
Navicula sp.4	0.4	-	8.8	-	-	-	2s
Nitzschia cf. dissipata	1.4	-	-	5.6	-	-	3s
Nitzschia sp.1	1.0	-	14.0	1.3	-	-	2s, 3s
Unknown	0.3	-	-	1.3	-	0.9	3s, 5s
Rhodophyta							
Porphyridium purpureum (Bory) K.M.Drew & R.Ross	30.1	79.9	-	-	-	-	1s

Fig. 1. Dominant phytoplankton species from Hornsund and Kongsfjord, Svalbard: a) *Porphyridium purpureum*, b) *Planktolyngbya* sp., c) *Lyngbya limnetica*, d) *Nostoc* cf. *microscopicum*, e) *Aphanothece* sp., f) *Chlorella vulgaris*, g) *Chlorella minutissima*, h) *Nitzschia* cf. *dissipata*, i) *Licmophora* cf. *communis*, j) *Licmophora* sp., k) *Navicula* sp., l) *Amphora* sp. Scale bars = 10 μm.

References

- Cox E. J., 1996. Identification of Freshwater Diatoms from Live MaterialChapman and Hall, 158London.
- Drebes, G., 1974. Marines phytoplankton; eine Auswahl der Heigolaner Planktonalgen (Diatomen, Peridineen).

- Hindák, F., 2001. Fotograficky atlas mcrsocopickych sinic. VEDA, vydavatelstvo Slovenskey akademie vied, Bratislava (Blue-greens).
- Huber-pestalozzi G., 1950. Das Phytoplankton des Süsswassers, 3 Teil. Cryoptophyceen, Chloromonadien, Peridineen. In: A. Thienemann (Ed), Die Binnengewasser, E. Schweizerbart'sche Verlagsbuchhandlung, 310 p., Stuttgart.
- Komarek J., Anagnostidis K., 1999. Cyanoprokaryota 1. Teil: Chroococcales. In: H. Ettl, G. Gartner, H. Heynig, D. Mollenhauer (Eds), Süsswasserflora von Mitteleuropa, Spektrum Akademischer Verlag, 548Heidelberg.
- Komarek J., Fott B., 1983. Chlorococcales, 7. Teil. 1Halfte. In: J. Elster and W. Ohle (Eds), Das Phytoplankton des Süsswassers, E. Schweizerbart'sche Verlagsbuchhandlung, 1043Stuttgart.
- Lind M. E., Brook A. J., 1980. A key to the Commoner Desmids of the English Lake DistrictFreswater Biol. Assoc. Publ., 123, Cumbria.
- Popovski J., Pfiester L. A., 1990. Dinophyceae (Dinoflagellida), Band 6. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (Eds). Süsswasserflora von Mitteleuropa, Gustav Fishre Verlag, 243, Jena.

Non-purgable organic carbon

Łukawska-Matuszewska Katarzyna, Institute of Oceanography, University of Gdansk, 81-378 Gdynia, Poland

For concentrations of non-purgable organic carbon, water from surface was collected in a plastic bottles, transferred to the laboratory within 2 days and filtered at low pressure through pre-combusted (450°C, 24 h) MN GF-5 filters (0.4 μ m pore size). The samples were acidified to pH<2 with concentrated HCl and stored in a refrigerator until analysis. Concentration of non-

purgable organic carbon (NPOC) was measured with the high temperature catalytic oxidation (HTCO) technique using Vario TOC Cube analyzer (Elementar Analysensysteme GmbH). Each sample was analysed twice and mean value was calculated.

NPOC [mg/l]	All samples	Kongsfjord	Hornsund
Min. – Max.	<u>0.39 – 1.93</u>	<u>0.39 – 1.93</u>	0.57 - 1.21
Average ±SD	0.84 ± 0.34	0.81 ± 0.42	0.89 ± 0.20
Median	<u>0.76</u>	<u>0.69</u>	<u>0.91</u>
$Q_1 - Q_3$	0.66 - 0.95	0.62 - 0.85	0.81 – 0.98
n	19	11	8

Tab. 1. Concentration of non-purgable organic carbon (NPOC) [mg/l]

Fig. 1. Concentration of non-purgable organic carbon (NPOC) [mg/l] in Kogsfjord and Hornsund