Oceanologia No. 51 (4) / 09
Contents
Papers
-
Computation of energy for diapycnal mixing in the Baltic
Sea due to internal wave drag acting on wind-driven barotropic currents: Christian Nohr, Bo G. Gustafsson
-
Distribution of phytoplankton along the thermohaline gradient in
the north-eastern Adriatic channel; winter aspect: Damir Viličić, Milivoj Kuzmić, Sunčica Bosak, Tina Šilović, Enis Hrustić, Zrinka Burić
-
Concentrations and profiles of brominated diphenyl ethers (BDEs) in Baltic and Atlantic herring: Ott Roots, Vladimir Zitko, Hannu Kiviranta, Panu Rantakokko,
Päivi Ruokojärvi
-
Purification and characterisation of ferritin from the Baltic blue mussel Mytilus trossulus: Joanna Potrykus, Alicja Kosakowska
-
Influence of the local abiotic environment, weather and regional nutrient loading on macrobenthic invertebrate feeding groups in a shallow brackish water ecosystem: Triin Veber, Jonne Kotta, Velda Lauringson, Ilmar Kotta
Communications
Chronicle
Papers
Computation of energy for diapycnal mixing in the Baltic Sea due to internal wave drag acting on wind-driven barotropic currents
Oceanologia 2009, 51(4), 461-494
http://dx.doi.org/10.5697/oc.51-4.461
Christian Nohr1, Bo G. Gustafsson2
1Department of Earth Science,
University of Gothenburg,
Box 460, SE-405 30 Göteborg, Sweden;
e-mail: chno@oce.gu.se
*corresponding author
2Baltic Nest Institute - Stockholm Resilience Centre,
Stockholm University,
SE-106 91 Stockholm, Sweden;
e-mail: bo.gustafsson@stockholmresilience.su.se
Keywords:
Baltic Sea, turbulent mixing, internal waves
Received 23 April 2009, revised 17 November 2009, accepted 24 November 2009.
This work was funded by the Swedish Research Council under contracts G 600-335/2001 and 621-2003-3425, and by the Swedish Foundation for Strategic Environmental Research via the MARE
program. This is publication No. 30 from Tellus - The Centre of Earth Systems Science at the University of Gothenburg.
Abstract
The pathways of energy supply for mixing the deep waters of the Baltic Sea is largely unknown. In this paper, a parameterization of the internal wave drag forces on barotropic motion is developed
and implemented into a two-dimensional shallow water model of the Baltic Sea. The model is validated against observed sea levels.
The dissipation of barotropic motion by internal wave drag that is quantified from the model results show that breaking internal waves generated by wind forced barotropic motions can contribute
significantly to diapycnal mixing in the deep water of the Baltic Sea.
References
Arakawa A., Lamb V. R., 1981, A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109 (1), 18–36.
http://dx.doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
Arbic B. K., Garner S. T., Hallberg R. W., Simmons H. L., 2004, The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep_Sea Res. Pt. II, 51 (25–26), 3069–3101.
Arneborg L., 2000, Oceanographic studies of internal waves and diapycnal mixing, Ph. D. thesis A59, Earth Sci. Cent., Univ. Gothenburg, Sweden.
Arneborg L., 2002, Mixing efficiencies in patchy turbulence, J. Phys. Oceaogr., 32 (5), 1496–1506.
http://dx.doi.org/10.1175/1520-0485(2002)032<1496:MEIPT>2.0.CO;2
Axell L. B., 1998, On the variability of Baltic Sea deepwater mixing, J. Geophys. Res., 103 (C10), 21 667–21 682.
Berntsen J., Xing J., Davies A. M., 2008, Numerical studies of internal waves at a sill: Sensitivity to horizontal grid size and subgrid scale closure, Cont.Shelf Res., 28 (10–11),
1376–1393.
Döös K., Nycander J., Sigray P., 2004, Slope-dependent friction in a barotropic model, J. Geophys. Res., 109 (C01008),
http://dx.doi.org/10.1029/2002JC001517
Dyer K. R., 1986, Coastal and estuarine sediment dynamics, Joh Wiley & Sons Ltd., Chichester, 358 pp.,
http://dx.doi.org/10.1029/2002JC001517
Egbert G. D.,
Ray R. D.,
Bills B. G.,
2004,
Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum, J. Geophys. Res., 109 (C03003),
http://dx.doi.org/10.1029/2003JC001973
Flather R. A., 1976, A tidal model of the northwest European continental shelf, Mem. Soc. Roy. Sci. Liege, Ser. 6th, Vol. 10, 141–160.
Gustafsson B. G., Andersson H. C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, J. Geophys. Res., 106 (C9), 19731–19744.
http://dx.doi.org/10.1029/2000JC000593
Gustafsson K. E., 2001, Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides, Deep-Sea Res. Pt. I, 48 (10), 2283–2295.
http://dx.doi.org/10.1016/S0967-0637(01)00008-5
Jakobsen F., Azam M. H., Mahboob-Ul-Kabir M., 2002, Residual flow in the Meghna Estuary on the coastline of Bangladesh, Estuar. Coast. Shelf Sci., 55 (4), 587–597,
http://dx.doi.org/10.1006/ecss.2001.0929
Jayne S. R., St.Laurent L. C., 2001, Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28 (5), 81-814,
http://dx.doi.org/10.1029/2000GL012044
Johnsson M., Green J. A. M., Stigebrandt A., 2007, Baroclinic wave drag from two closely spaced sills in a narrow fjord as inferred from basin water mixing, J. Geophys. Res., 112 (C11002),
http://dx.doi.org/10.1029/2006JC003694
Kuzmina N., Rudels B., Stipa T., Zhurbas V., 2005, The structure and driving mechanisms of the Baltic intrusions, J.Phys.Oceanogr., 35 (6), 1120–1137.
Liljebladh B., Stigebrandt A., 2000, The contribution of the surface layer via internal waves to the energetics of deepwater mixing in the baltic, Paper III, Ph. D. thesis A56, Earth Sci. Cent., Univ. Gothenburg, Sweden.
Martinsen E. A., Engedahl H., 1987, Implementation and testing of a lateral boundary scheme as an open boundary-condition in a barotropic ocean model, Coast. Eng., 11 (5–6), 603–627.
Meier H. E. M., 2005, Modeling the age of Baltic Sea water masses: Quantification and steady state sensitivity experiments, J. Geophys. Res., 110 (C02006), 1–14.
Meier H. E. M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V., Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V. T., Sellschopp J., Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water: a brief review of present knowledge from observations and models, Oceanologia, 48 (S), 133–164.
Merrifield M.A., Holloway P.E., 2002, Model estimates of M2 internal tide energetics at the Hawaiian Ridge, J. Geophys. Res., 107 (C8),
http://dx.doi.org/10.1029/2001JC000996
Niwa Y.,
Hibiya T., 2001, Numerical study of the spatial distribution of the M 2 internal tide in the Pacific Ocean, J. Geophys. Res., 106(C10), 22441–22449.
Nycander J., 2005, Generation of internal waves in the deep ocean by tides, J. Geophys. Res., 110 (C10028),
http://dx.doi.org/10.1029/2004JC002607.
Osborn T., 1980, Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10 (1), 83–89.
http://dx.doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
Press W. H., Teukolsky S.A., Vetterli g W.T., Flannery B.P., 1997, Numerical recipes, 2nd edn., Cambridge Univ. Press, Cambridge, 963 pp.
Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48 (5), 672-683,
http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x
Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea – revised edition, Proc.Baltic Sea Sci.Cong., 25–29 Nov. 2001, Stockholm, poster No 147.
Simmons H. L., Hallberg R. W., Arbic B. K., 2004, Internal wave generation in a global baroclinic tide model, Deep-Sea Res. Pt. II, 51 (25–26), 3043–3068.
Sjoberg B., Stigebrandt A., 1992, Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulationintheocean, Deep-Sea Res., 39 (2A), 269–291,
http://dx.doi.org/10.1016/0198-0149(92)90109-7
Smith S. D., 1980, Wind stress and heat flux over the ocean in gale force winds J. Phys. Oceanogr., 10 (5), 709–726,
http://dx.doi.org/10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2
Soulsby R., 1997, Dynamics of marine sands – A manual for practical applications, Thomas Telford, London, 249 pp.
St. Laurent L., Stringer S., Garrett C., Perrault-Joncas D., 2003, The generation of internal tides at abrupt topography, Deep-Sea Res.Pt. I, 50 (8), 987–1003,
http://dx.doi.org/10.1016/S0967-0637(03)00096-7
Stacey M. W., 1984, The interaction of tides with the sill of a tidally energetic inlet, J. Phys. Oceanogr., 14 (6), 1105–1117.
http://dx.doi.org/10.1175/1520-0485(1984)014<1105:TIOTWT>2.0.CO;2
Stigebrandt A., 1976, Vertical diffusion driven by internal waves in a sill fjord, J. Phys. Oceanogr., 6(4), 486–495,
http://dx.doi.org/10.1175/1520-0485(1976)006<0486:VDDBIW>2.0.CO;2
Stigebrandt A., 1980a, Barotropic and baroclinic response of a semi-enclosed basin to barotropic forcing from the sea, [in:] Fjord oceanography, H. J. Freeland, D. M. Farmer & C. D. Levings (eds.), Plenum, New York, 151–164.
Stigebrandt A., 1980b, Some aspects of tidal interactions with fjord constrictions, Estuar. Coast. Mar. Sci., 11 (2), 151-166,
http://dx.doi.org/10.1016/S0302-3524(80)80038-7
Stigebrandt A., 1999, Resistance to barotropic tidal ?ow in straits by baroclinic wave drag, J. Phys. Oceanogr., 29 (2), 191-197,
http://dx.doi.org/10.1175/1520-0485(1999)029<0191:RTBTFI>2.0.CO;2
Stigebrandt A., 2001, Physical oceanography of the Baltic Sea, [in:] Asystems analysis of the Baltic Sea F. Wulff, L. Rahm & P.Larsso (eds.), Springer Verlag, Heidelberg, 19–74.
Stigebrandt A., 2003, Regulation of vertical stratification, length of stagnation periods and oxygen conditions in the deeper deepwater of the Baltic proper, Meereswiss.Ber., 54, 69–80.
Stigebrandt A., Aure J., 1989, Vertical mixing in basin waters of fjords, J. Phys. Oceanogr., 19 (7), 917–926,
http://dx.doi.org/10.1175/1520-0485(1989)019<0917:VMIBWO>2.0.CO;2
Stigebrandt A., Lass H. U., Liljebladh B., Alenius P., Piechura J., Hietala R., Beszczyńska A., 2002, DIAMIX – an experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea, Boreal Environ. Res.,
7 (4), 363–369.
Svensson A., 2005, Observations of baroclinic eddies in the Baltic Sea, Tech. Rep. B472, Dept. Oceanogr., Univ. Gothenburg.
Tanaka Y., Hibiya T., Niwa Y., 2007, Estimates of tidal dissipation and diapycnal diffusivity in the Kuril Straits using TOPEX/POSEIDON altimeter data, J. Geophys. Res., 112 (C10021),
http://dx.doi.org/10.1029/2007JC004172
Tanaka Y., Hibiya T., Niwa Y., 2007, Estimates of tidal energy dissipation and diapycnal diffusivity in the Kuril Straits using topex/poseidon altimeter data, J. Geophys. Res., 112 (C10), 1–9.
Umgiesser G., 1997, Modelling the Venice Lagoon, It. J. Salt Lake Res., 6(2), 175–199.
Verboom G. K., de Ronde J. G., van Dijk R. P., 1992, A fine grid tidal flow and storm surge model of the North Sea, Cont. Shelf Res., 12 (2–3), 213–233.
Weis P., Thomas M., Sundermann J., 2008, Broad frequency tidal dynamics simulated by a high resolution global ocean tide model forced by ephemerides, J. Geophys. Res., 113 (C10029),
http://dx.doi.org/10.1029/2007JC004556
Williamson J., 1980, Low-storage Runge-Kutta schemes, J. Comput. Phys., 35(1), 48–56.
http://dx.doi.org/10.1016/0021-9991(80)90033-9
Distribution of phytoplankton along the thermohaline gradient in the north-eastern Adriatic channel; winter aspect:
Oceanologia 2009, 51(4), 495-513
http://dx.doi.org/10.5697/oc.51-4.495
Damir Viličić1,*, Milivoj Kuzmić2, Sunčica Bosak1, Tina Šilović3, Enis Hrustić4, Zrinka Burić1
1
Division of Biology, Faculty of Science,
University of Zagreb,
Rooseveltov trg 6, 10000 Zagreb, Croatia;
e-mail: dvilici@zg.biol.pmf.hr
*corresponding author
2
Division for Marine and Environmental Research,
Rudjer Bošković Institute,
Bijenička 54, 10002 Zagreb, Croatia
3
Center for Marine Research,
Rudjer Bošković Institute,
G. Paliaga 5, 52210 Rovinj, Croatia
4
University of Dubrovnik
Institute for Marine and Coastal Research,
Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia
Keywords:
Phytoplankton composition, chlorophyll, temperature, salinity, nutrients, Pag Channel, Velebit Channel, transition zone, Adriatic Sea
Received 27 February 2009, revised 4 September 2009, accepted 18 September 2009.
This research was supported by the Ministry of Science of Croatia (projects no. 119-1191189-1228, 098-0982705-2707, 098-2705-2729 and 275-0000000-3186).
Abstract
The distribution of phytoplankton and its relation to the hydrographic features in the north-eastern Adriatic was investigated in February 2008. The area of
interest included a thermohaline gradient in the channel situated between the coast and the islands lying parallel to the coast. The gradient is controlled
by the influx of oligotrophic karstic riverine water at the south-eastern end, submarine springs in the middle part, and warmer offshore waters at the
north-western end of the channel. The change of temperature and salinity in the estuarine transition zone was accompanied by abundant diatoms and
dinoflagellates below the halocline, with dominant chain-forming diatoms (Chaetoceros, Bacteriastrum) in abundances reaching 5 ×105
cells dm-3. The impact of coastal submarine springs detected by infrared remote sensing resulted in the growth of cyanobacteria in the
nitrogen-depleted surface waters. The greater contribution of picoplankton, as well as of nanoplanktonic coccolithophorids and cryptophytes, in the outer channel
system indicated their preference for oligotrophic conditions. Flow cytometric counts of nanophytoplankton were 10-30 times greater than inverted microscope
counts. Cyanobacteria were about five times more abundant than picoeukaryotes. The study demonstrates how different techniques (remote sensing and in situ
investigations) can be useful in understanding the biological and hydrographic set-up in the specific oligotrophic eastern Adriatic coastal environment.
References
Benac C., Rubinic J., Ozanic N., 2003, The origin and evolution of coastal and submarine springs in Bakar Acta Carsologica, 32 (1), 157–171.
Biondic B., Sarin A., Fritz F., 1996, Hydrogeological map of the Adriatic catchment, Inst.Geol.Res., Zagreb.
Bonacci O., Roje-Bonacci T., 2000, Interpretation of groundwater level monitoring results in karst aquifers: examples from the Dinaric, Hydrol.Processes, 14 (14), 2423–2438.
http://dx.doi.org/10.1002/1099-1085(20001015)14:14<2423::AID-HYP104>3.0.CO;2-2
Buric Z., Caput K., Vilicic D., 2004, Distribution of the diatom Cocconeis scutellum in the karstic estuary (Zrmanja, eastern Adriatic Biologia, 59 (1), 1–8.
Buric Z., Cetinic I., Vilicic D., Caput Mihalic K., Caric M., Olujic G., 2007a, Spatial and temporal distribution of phytoplankton in a highly stratified estuary
(Zrmanja, Adriatic Sea), Mar. Ecol., 28 (Suppl.1), 169–177,
http://dx.doi.org/10.1111/j.1439-0485.2007.00180.x
Buric Z., Kiss K. T.,´ Acs E., Vilicic D., Caput Mihalic K., Caric M., 2007b, The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana
Prasad in a Croatian Nova Hedwiga, 84 (1–2), 135–153.
Buric Z., Vilicic D., Caput Mihalic K., Caric M., Kralj K., Ljubsic N., 2008, Pseudo-nitzschia blooms in the Zrmanja River Estuary (eastern Adriatic
Diatom Res., 23 (1), 51–63.
Cortelezzi A., Capitulo A.R.,
Boccardi L.,
Arocena R.,
2007,
Benthic assemblages
of a temperate estuarine system in South America: transition from
a freshwater to an estuarine, J. Marine Syst.,
68 (3–4),
569-580,
http://dx.doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
Dorman C.E.,
Carniel S.,
Cavaleri L.,
Sclavo M.,
Chiggiato J.,
Doyle J.,
Haack T.,
Pullen J.,
Grbec B.,
Vilibic I.,
Janekovic I.,
Lee C.,
Malacic V.,
Orlić M.,
Paschini E.,
Russo A.,
Signell R.P.,
2006,
February 2003 marine
atmospheric conditions and the bora over the northern,
J. Geophys. Res.,
111 (C03S03),
http://dx.doi.org/10.1029/2005JC003134
Gacic M.,
Poulain P.-M.,
Zore-Armanda M.,
Barale V.,
2001,
Overview,
[in:]
Physical oceanography of the Adriatic,
B. Cushman-Roisin,
M. Gacic,
P.-M.Poulain &
A. Artegiani (ed.),
Kluwer, Dordrecht,
1–44.
Hasle G.R.,
1978a,Some specific preparations,
[in:]
Phytoplankton,
A. Sournia (ed.),
UNESCO,
Paris,
136–142.
Hasle G.R.,
1978b,
Using the inverted,
[in:]
Phytoplankton
A. Sournia (ed.),
UNESCO, Paris,
191–196.
Ivancic I.,
Degobbi D.,
1984,
An optimal manual procedure for ammonia analysis
in natural waters by the indophenol blue Water Res.,
18 (9),1143–1147,
http://dx.doi.org/10.1016/0043-1354(84)90230-6
Jay D. A.,
Orton P. M.,
Chiholm T.,
Wilon D. J.,
Fain A. M. V.,
2007,
Particle
trapping in stratified estuaries: consequences of mass Estuar.
Coast.,
30 (6),
1095–1105.
Knox G. A.,
1986,
Estuarine ecosystems: a systems CRC Press, Boca
Raton,
289 pp.
Kroeger K. D.,
Charette M. A.,
2008,
Nitrogen biogeochemistry of submarine
groundwater Limnol.Oceanogr.,
53 (3),
1025–1039,
http://dx.doi.org/10.4319/lo.2008.53.3.1025
Lee C. M.,
Jones B. H.,
Arnone R.,
Clive D.,
Gobat J.,
Marini M.,
Orlić M.,
Pasaric Z.,
Peters H.,
Poulain P.,
Thaler D.,
Vilicic D.,
2004,
Shallow water fronts,
river plumes and response to strong forcing – preliminary results from intensive
surveys of the northern Adriatic,
37 Rapp. Congr. CIESM,
p. 116.
Makjanic B.,
1976,
A short account of the climate of the town of Senj,
[in:]
Local
wind bora,
M. M. Yoshino (ed.),
Univ. Tokyo Press,
Tokyo,
145–152.
McLusky D.S.,
Elliott M.,
2004,
The estuarine ecosystem. Ecology, threats, and management,
Oxford Univ. Press,
Oxford,
214 pp.
Neill M.,
2005,
A method to determine which nutrient is limiting for plant growth
in estuarine waters – at any salinity,
Mar. Pollut. Bull.,
50 (9),
945–955,
http://dx.doi.org/10.1016/j.marpolbul.2005.04.002
Orlic M.,
Leder N.,
Pasaric M.,
Smircic A.,
2000,
Physical properties and currents
recorded during September and October 1998 in the Velebit Channel (east Adriatic),
Period. Biol.,
102 (Suppl.1),
31–37.
Paoli A.,
Celussi M.,
Valeri A.,
Larato C.,
Bussani A.,
Umani S. F.,
Vadrucci M. R.,
Mazziotti C.,
Del Negro P.,
2007,
Picocyanobacteria in Adriatic transitional
Estuar.Coast.Shelf Sci.,
75 (1–2),
13–20,
http://dx.doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
Peebles E. B., Burghart S. E., Hollander D. J., 2007, Causes of interestuarine
variability in bay anchovy (Anchoa mitchilli) salinity at capture, Estuar.
Coast., 30 (6), 1060–1074.
Penzar B., Penzar I., Orlic M., 2001, Weather and climate of the Croatian
Feletar, Zagreb, 258 pp.,(in Croatian).
Raicich F., 1996, On the fresh water balance of the Adriatic,
J. Marine Syst.,
9 (3–4), 305–319.
Reaugh M. L.,
Roman M. R.,
Stoecker D. K.,
2007,
Changes in plankton community
structure and function in response to variable freshwater flow in two tributaries
of the Chesapeake Estuar. Coast., 30 (3), 403–417.
Redfield A. C., Ketchum B. H., Richard F. A., 1963, The influence of organisms
on the composition of [in:]
The Sea, M. N. Hill (ed.), Wiley, New
York, 26–77.
Strickland J. D. H., Parson T. R., 1972, A practical handbook of seawater
Bull. Fish. Res. Board Can., 167, 1–310.
Svensen C., Vilicic D., Wassmann P., Arashkevich E., Ratkova T., 2007, Plank-ton
distribution and vertical flux of biogenic matter during high summer
stratification in the Krka estuary (Eastern Estuar. Coast. Shelf Sci.,
71 (3–4),381–390.
Tomazic I., 2006, Validation of remotely sensed Adriatic Sea surface
M. Sc. thesis, Univ. Zagreb, Zagreb, 170 pp., (in Croatian).
Utermohl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton
Mitt. Int. Verein. Theor. Angew. Limnol., 9, 1–38.
Venrick E. L., 1978, How many cells to [in:] Phytoplankton
A.Sournia (ed.), UNESCO, Paris, 167–180.
Vilicic D., Orlic M., Jasprica N., 2008a, The deep chlorophyll maximum in the
coastal north eastern Adriatic Sea, July 2007, Acta Bot. Croat., 67 (1), 33–43.
Vilicic D.,Terzic S., Ahel M., Buric Z., Jasprica N., Caric M., Caput-Mihalic
K., Olujic G., 2008b, Phytoplankton abundance and pigment biomarkers in
the oligotrophic, eastern Adriatic Environ. Monit. Assess., 142 (1–3),
199–218.
Vollenweider R. A., Giovanardi F., Montanari G., Rinaldi A., 1998, Characteriza-tion
of the trophic conditions of marine coastal waters with special reference
to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized
water quality Environmentrics, 9 (3), 329–357.
Concentrations and profiles of brominated diphenyl ethers (BDEs) in Baltic and Atlantic herring:
Oceanologia 2009, 51(4), 515-523
http://dx.doi.org/10.5697/oc.51-4.515
Ott Roots1,2,*, Vladimir Zitko3, Hannu Kiviranta4, Panu Rantakokko4, Päivi Ruokojärvi4
1
Estonian Environmental Research Institute
(under Estonian Environmental Research Centre),
Marja 4D, EE-10617 Tallinn, Estonia
2
Estonian Marine Institute,
University of Tartu,
Mäealuse 10A, EE-12618 Tallinn, Estonia;
e-mail: ott.roots@klab.ee
*corresponding author
3
Consultant,
114 Reed Ave, St. Andrews, NB, E5B 1A1, Canada
4
National Institute for Health and Welfare (THL),
Department of Environmental Health,
Neulaniementie 4, FI-70701 Kuopio, Finland
Keywords: BDE, aquatic biota, Baltic Sea herring, Atlantic herring
Received 15 June 2009, revised 31 August 2009, accepted 15 October 2009.
This project was supported financially by the Ministry of Agriculture of Estonia (sample collection), by the National Public Health Institute of Finland, Department of
Environmental Health, Laboratory of Chemistry (BDE analyses) and by the Ministry of Education and Research of Estonia (Project SF018104s08).
Abstract
The total concentrations of BDEs in Baltic herring, caught in different years (2002-08) from various areas of the Baltic, and in Atlantic herring (2006) can
be reasonably well described by a single concentration vs weight relationship.
Samples collected a few years earlier and analysed by others show a slightly different relationship. This indicates that the weight of the fish is an
important factor determining the level of contamination and that the contamination apparently did not increase between 1999 and 2008. However, two
Baltic herring samples collected in 2007 contained, for reasons unknown, very high concentrations of BDE 209. The BDE profiles (concentrations scaled to
a sum of 100) varied a great deal. It is impossible to determine how much of this variation is real and how much is caused by errors in the analyses. The
concentration of the BDE 75 was much higher in the Atlantic than in the Baltic herring. Even after taking this into consideration, however, the BDE profile
in Atlantic herring is different from the BDE profiles in Baltic herring.
References
Gioia R., Sweetman A. J., Jones K.C., 2007, Coupling passive air sampling
with emission estimates and chemical fate modeling for Persistent Organic
Pollutants (POPs): a feasibility study for Northern Europe, Environ. Sci.
Technol., 41 (7), 2165–2171,
http://dx.doi.org/10.1021/es0626739
HELCOM, 2007, Towards a Baltic Sea unaffected by hazardous substances,
HELCOM Ministeria Meeting, 15 November 2007, Kraków, Poland, 48 pp.,
www.helcom.fi/stc/files/Krakow2007/HazardousSubstances MM2007.pdf.
Jaward F. M., Farrar N. J., Harner T., Prevedouros C., Sweetman A. J., Jones
K. C., 2003, Atmospheric PBDEs and PCNs across Europe: results of a passive
sampling programme, Organohal.Comp., 61, 422–425,
http://dx.doi.org/10.1021/es034705n
Jaward F. M., Farrar N. J., Harner T., Sweetman A. J., Jones K. C., 2004, Passive
air sampling of PCBs, BDEs,and organochlorine pesticides across Europe,
Environ. Sci. Technol., 38 (1), 34–41.
Kiviranta H., Ovaskainen M.-L., Vartiainen T., 2004, Market asket study on
dietary intake of PCDD/Fs, PCBs, and BDEs in Finland, Environ. Int.,
30 (7), 923–932.
Koistinen J., Kiviranta H., Ruokojarvi P., Parmanne R., Verta M., Hallikainen A.,
Vartiainen T., 2008, Organohalogen pollutants in herring from the northern
Baltic Sea: concentrations,congener profiles and explanatory factors,
Environ. Pollut., 154(2), 172–183.
Kumar K. S., Priya M., Sajwan K. S., Koli R., Roots O., 2009, Residues of
persistent organic pollutants in Estonian soils (1964–2006), Est. J. Earth Sci.,
58 (2),109–123,
http://dx.doi.org/10.3176/earth.2009.2.02
Parmanne R., Hallikainen A., Isosaari P., Kiviranta H., Koistinen J., Laine O.,
Rantakokko P., Vuorinen P. J., Vartiainen T., 2006, The dependence
of organohalogen compound concentrations on herring age and size in the
Bothnian Sea, northern Baltic, Mar. Pollut. Bull., 52 (2), 149–161.
Roots O., Kiviranta H., Rantakokko P., 2007, BDE levels in Estonian foodstuffs,
Organohal. Comp., 69, 2339–2341.
Roots O., Sweetman A., 2007, Passive air sampling of persistent organic pollutants
in two Estonian air monitoring stations, Oil Shale, 24 (3), 483–494.
Roots O., Zitko V., Kiviranta H., Rantakokko P., 2008, Profiles of Polybrominated
diphenyl ethers in aquatic biota, Arch. Ind. Hygiene Toxicol., 59 (3), 153–159,
http://dx.doi.org/10.2478/10004-1254-59-2008-1875
Roots O., Zitko V., Kiviranta H., Rantakokko P., Ruokojarvi P., 2009,
Polybrominated diphenyl ethers (PBDEs)in Baltic herring from Estonian
waters, 2006–2008, J. Ecol. Chem., (submitted).
Purification and characterisation of ferritin from the Baltic blue mussel Mytilus trossulus
Oceanologia 2009, 51(4), 525-539
http://dx.doi.org/10.5697/oc.51-4.525
Joanna Potrykus*, Alicja Kosakowska
Marine Chemistry and Biochemistry Department,
Institute of Oceanology,
Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: potrykus@iopan.gda.pl
*corresponding author
Keywords: Baltic Sea, Mytilus trossulus, Ferritin
Received 23 July 2009, revised 19 October 2009, accepted 27 October 2009.
This work was supported financially by the Committee for Scientific Research, grant No. 3/P04E/035/22, and the Institute of Oceanology statutory research grant.
Abstract
Baltic blue mussels Mytilus trossulus were collected from the Gulf of Gdańsk (southern Baltic Sea) in order to isolate ferritin from its soft tissues, as well as to purify and characterise this protein.
Proteins were isolated from the inner organs of M. trossulus (hepatopancreas, gills and soft tissue residue) by thermal denaturation
(70°C) and acidification (pH 4.5) of the homogenates, followed by ammonium sulphate ((NH4)2SO4) fractionation.
The ferritin was then separated by ultracentrifugation (100 000 × g, 120 min.). The protein content in the
purified homogenates was determined by the Lowry method using bovine serum albumin
(BSA) and horse spleen ferritin (HSF) as standards. PAGE-SDS and Western blotting analysis permitted identification of ferritin
in the purified preparations. Additionally, the purified homogenates and mussel soft tissue were analysed for their heavy metal contents
(especially cadmium and iron) in a Video 11 E atomic absorption spectrophotometer, following wet digestion of the samples (HNO3/HClO4).
The electrophoregrams showed that the inner organs of M. trossulus contained ferritin, which, like plant ferritin, is characterised by the
presence of subunits in the electrophoregram in the 26.6-28.0 kDa range. The highest ferritin content was recorded in the hepatopancreas,
followed by the gills and the soft tissue residue. With regard to the sampling stations, the highest content of ferritin was
noted in the animals sampled off Sopot (station D3), and in those collected by a diver off Jastarnia (W1) and Gdynia (W4). Ferritin
isolated from the inner organs of mussels collected from these stations also contained the largest quantities of heavy metals
(Cd and Fe). Ferritin isolated from the inner organs of mussels collected by a diver from wrecks - sites where the concentrations
of iron and other trace metals in the sea water are high - contained higher quantities of heavy metals (Cd and Fe) than the ferritin
isolated from the inner organs of mussels collected with the drag. This confirms that ferritin is a protein able to store and transport not only iron, but also, though to a lesser extent, some other
heavy metals, including cadmium.
References
Aisen P., Listkowsky L., 1980, Iron transport and storage protein, Annu. Rev.
Biochem., 49, 357–393,
http://dx.doi.org/10.1146/annurev.bi.49.070180.002041
Bauchspieß K. R., St. Pierre T. G., Webb J., 1995, The effect of temperature of the
radial distribution function of iron in ative horse spleen ferritin, Physica B,
208/209, 545–546.
http://dx.doi.org/10.1016/0921-4526(94)00875-V
Briat J. F., Lobreaux S., 1997, Iron transport and storage in plants,
Trends Plant Sci., 2(5), 187–193,
http://dx.doi.org/10.1016/S1360-1385(97)85225-9
Chasteen N. D., 1998, Ferritin. Uptake, storage,and release of iron, [in:] Metal ions
in biological systems, A. Siegel & H. Siegel (eds.), Vol. 35, Marcel Dekker,Inc.,
New York, 479–514.
Chasteen N. D., Harrison P. M., 1999, Mineralization in ferriti :an efficient means
of iron storage, J. Struct. Biol., 126 (3), 182–194,
http://dx.doi.org/10.1006/jsbi.1999.4118
Choi J. K., Jo P. G., Choi C. Y., 2008, Cadmium affects the expression of heat shock
protein 90 and metallothionein mRNA in the Paciffc oyster, Crassostrea gigas,
Comp. Biochem. Phys., 147 (3), 286–292.
Fobis-Loisy I., Aussel L., Briat J.-F., 1996, Post-tra scriptional regulation of plant
ferriti accumulation in response to iron as observed in the maize mutant ys1,
FEBS Lett., 397 (2–3), 149–154,
http://dx.doi.org/10.1016/S0014-5793(96)01167-2
Frolow F., Kalb A. J., Yariv J., 1994, Structure of a unique twofold symmetric
haem-binding site, Nat.Struct.Biol., 1, 45–460,
http://dx.doi.org/10.1038/nsb0794-453
Geetha C., Deshpande V., 1999, Purification and characterization of fish liver
ferritins, Comp. Biochem. Phys. B, 123 (3), 285–294.
Geret F., Cosson R. P., 2002, Induction of specific isoforms of metallothionein in
mussel tissues after exposure to cadmium or mercury, Arch. Environ. Con.
Tox.,42 (1),36–42,
http://dx.doi.org/10.1007/s002440010289
<
Huang H.-Q., Xiao Z.-Q., Chen X., Lin Q.-M., Cai Z.-W., Chen P., 2004,
Characteristics of structure, composition, mass spectra, and iron release from
the ferriti of shark liver (Sphyr a zygaena), Biophys. Chem., 111 (3), 213–222.
Kakuta K., Orino K., Yamamoto S., Watanabe K., 1997, High levels of ferriti
and iron in fetal bovine serum – comparison by five methods, Comp.Biochem.
Phys. A, 118 (1),165–169,
http://dx.doi.org/10.1016/S0300-9629(96)00403-3
Kong B., Huang H.-Q., Lin Q.-M., Kim W.-S., Cai Z., Cao T.-M., Miao H., Luo
D.-M., 2003, Purification, electrophoretic behavior, and kinetics of iron release
of liver ferriti of Dasyatis akajei, J. Protein Chem., 22 (1),61–70.
Korcz A., Twardowski T., 1989, Mechanizmy regulacji biosyntezy białka a przykładzie ferrytyny,
Post. Biol. Komorki, 16 (2), 177–196.
Korcz A., Twardowski T., 1992a, Lupin ferritin: purification and characterization,
biosynthesis and regulation of in vitro synthesis in plants, J. Plant Physiol.,
141 (1), 75–81.
Korcz A., Twardowski T., 1992b, The effect of selected heavy metal ions on the in
vitro translation system of wheat germ – protective function of plant ferritin,
Acta Physiol. Plant., 14 (4), 185–190.
Kumar T. R., Prasad M. N. V., 1999, Metal binding properties of ferritin in Vigna
mungo (L.) Hepper (Black Gram): Possible role in heavy metal detoxification,
Bull. Environ. Contam. Tox., 62 (4), 502–507.
Lewin A., Moore G. R., Le Brun N. E., 2005, Formation of protein-coated iron
minerals, Dalton Trans., 22, 3597–3610,
http://dx.doi.org/10.1039/b506071k
Liu X., Theil E. C., 2005, Ferritins: dynamic management of biological iron and
oxygen chemistry, Accounts Chem. Res., 38 (3), 167–175.
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J., 1951,
Protein measurement with Folin phenol reagent, J. Biol. Chem., 193 (1), 265–275.
Nair P. S., Robinson W. E., 2000, Cadmium speciation and transport in the blood
of the bivalve Mytilus edulis, Mar. Environ. Res., 50 (1–5), 99–102.
Penfold C. N., Ringeling P. L., Davy S. L., Moore G. R., McEwan A. G., Spiro S.,
1996, Isolation,characterisation and expression of the bacterioferriti gene of
Rhodobacter capsulatus, FEMS Microbiol. Lett., 139 (2–3), 143–148.
Price D. J., Joshi J. G., 1982, Ferriti: a zinc detoxicant and a zinc ion donor,
Proc. Natl. Acad. Sci.(USA), 79, 3116–3119,
http://dx.doi.org/10.1073/pnas.79.10.3116
Price D. J., Joshi J. G., 1983, Ferriti: binding of beryllium and other divalent
metal ions, J. Biol. Chem., 258 (18), 10873–10880.
Ragland M., Theil E., 1993, Ferriti (mRNA,protein) and iron concentrations
during soybea odule development, Plant Mol. Biol., 21 (3),555–560,
http://dx.doi.org/10.1007/BF00028813
Rahman I. H. A., Chua-anusorn W., Webb J., Macey D. J., St.Pierre T. G., 1999,
Characterization of dugong liver ferritin, Anal. Chim. Acta, 393 (1–3), 235–243.
Sczekan S. R., Joshi J. G., 1989, Metal-binding properties of phytoferriti and
sy thetic ion cores, Biochim. Biophys. Acta, 990 (1),8–14.
Suryakala S., Deshpande V., 1999, Purification and characterization of liver
ferritins from different animal species, Vet. Res. Commun., 23 (3), 165–181.
Theil E. C., 1987, Ferritin: structure, gene regulation, and cellular function in
animals, plants, and microorganisms, Annu. Rev. Biochem., 56,289–319,
http://dx.doi.org/10.1007/s10534-006-9063-6
Theil E. C., 1998, The iron responsive element (IRE)family of mRNA regulators.
Regulation of iron transport and uptake compared in animals, plants, and
microorganisms, Met. Ions Biol. Syst., 35, A. Siegel & H. Siegel (eds.), Marcel
Dekker, Inc., New York, 403–434.
Theil E. C., 2007, Coordinating responses to iron and oxygen stress with DNA and
mRNA promoters: the ferriti story, Biometals, 20 (3–4), 513–521.
Theil E.., Sayers D., 1989, Iron core formatio in ferritin, Basic Life Sci., 51,
161–167.
Theil E. C., Takagi H., Small G. W., He L., Tipton A. R., Danger D., 2000, The
ferritin iron entry and exit problem, Inorg. Chim. Acta, 297 (1), 242–251.
Tosha T.,Hasan M.R.,Theil E..,2008,The ferriti Fe2 site at the diiro catalytic
center controls the reaction with O
2 in the rapid mineralization pathway,
PNAS, 105 (47), 18182–18187,
http://dx.doi.org/10.1073/pnas.0805083105
Treffry A., Zhao Z., Quail M. A., Guest J. R.,Harrison P. M., 1998, How the
presence of three iron binding sites affects the iron storage function of the
ferritin (EcFtnA) of Escherichia coli, FEBS Lett., 432 (3), 213–218.
Uchida T., 1995, Overview of iron metabolism, Int. J. Hematol., 62 (4), 19–202.
Ueno T., Abe M., Hirata K., Abe S., Suzuki M., Shimizu N., Yamamoto M., Takata
M., Watanabe Y., 2009, Process of accumulation of metal ions on the i terior
surface of apo-ferritin:crystal structures of a series of apo-ferritins containing
variable quantities of Pd(II)ions, J. Am. Chem. Soc., 131 (14), 5094–5100,
http://dx.doi.org/10.1021/ja806688s
Wardeska J. G., Viglione B., Chasteen N. D., 1986, Metal iron complexes of
apoferritin. Evidence for initial binding in the hydrophilic channels, J. Biol.
Chem., 261 (15), 667–6683.
Winzerling J. J., Nez P., Porath J., Law J. H., 1995, Rapid and efficient isolation
of transferri and ferritin from Manduca sexta, Insect Biochem. Molec. Biol.,
25 (2), 217–224.
http://dx.doi.org/10.1016/0965-1748(94)00058-P
Worwood M., 1997, The laboratory assessment of iron status – an update, Clin.
Chim. Acta, 259,3–23.
Zhang Y., Meng Q., Jiang T., Wang H., Xie L.,Zhang R., 2003, A ovel ferriti
subunit involved in shell formation from the pearl oyster (Pinctada fucata),
Comp. Biochem. Phys. B, 135 (1), 43–54.
Influence of the local abiotic environment, weather and regional nutrient loading on macrobenthic invertebrate feeding groups in a shallow brackish
water ecosystem
Oceanologia 2009, 51(4), 541-559
http://dx.doi.org/10.5697/oc.51-4.541
Triin Veber1, Jonne Kotta2,*, Velda Lauringson1,2, Ilmar Kotta2
1
Institute of Ecology and Earth Sciences,
University of Tartu,
Vanemuise 46, EE-51014 Tartu, Estonia
2
Estonian Marine Institute,
University of Tartu,
Mäealuse 10a, EE-12618 Tallinn, Estonia;
e-mail: jonne.kotta@sea.ee
*corresponding author
Keywords:
Baltic, benthic invertebrate functions, interactive effects, nutrient load, weather
Received 29 December 2008, revised 12 November 2009, accepted 23 November 2009.
Funding for this research was provided by target financed project SF0180013s08
of the Estonian Ministry of Education and Research and by the Estonian Science
Foundation grants 6015 and 7813.
Abstract
This study evaluated the extent to which depth, sediment type,
exposure to waves and coastal slope inclination modulate the relationships
between regional nutrient loading, weather patterns and the species
composition and dominance structure of macrobenthic invertebrate
feeding groups in a brackish water ecosystem of the Baltic Sea.
Irrespective of feeding function, the species composition and
dominance structure of benthic invertebrate communities were determined by
local abiotic variables such as exposure, depth and sediment
type. Regional weather variables (average southerly winds, salinity,
water temperature, ice conditions) either separately or interactively
contributed to the variability of benthic invertebrates. Nutrient
loading had significant effects on benthic invertebrates only
in interactions with local abiotic or regional weather variables.
Herbivores, deposit feeders and suspension feeders exhibited
a stronger response to the studied environmental variables than carnivores.
All this suggests that (1) the dynamic coastal habitats studied
in this work are not very sensitive to shifts in nutrient loading
and (2) local abiotic conditions and weather patterns largely
define the observed biotic patterns. We believe that the benthic
invertebrate time series will only be a better reflection of the nutrient
loading signal if more years covering extreme events are included.
References
ArcGIS 9, 2004, Getting started with ArcGIS, Esri Press, 272 pp.
Barnston A. G., Livezey R. E., 1987, Classiffication,seasonality and persistence of
low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115 (6), 1083–1126,
http://dx.doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
Berglund J., Mattila J., Ronnberg O., Heikkila J., Bonsdorff E., 2003, Seasonal
and inter-annual variation in occurrence and biomass of rooted macrophytes
and drift algae in shallow bays, Estuar. Coast. Shelf Sci., 56 (5–6), 1167–1175.,
http://dx.doi.org/10.1016/S0272-7714(02)00326-8
Bonsdor C. E., Pearson T. H., 1999, Variation in the sublittoral macrozoobenthos of
the Baltic Sea along environmental gradients:a functional group approach,
Aust. J. Ecol., 24 (4), 312–326,
http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x
Clarke K. R., Gorley R. N., 2006, Primer v6:user manual/tutorial, Primer-E, Plymouth, UK, 192 pp.
Clarke K. R., Somerfield P. J., Chapman M. G., 2006, On resemblance measures
for ecological studies,including taxonomic dissimilarities and a zero-adjusted
Bray-Curtis coeffcient for denuded assemblages, J. Exp. Mar. Biol. Ecol.,
330 (1), 55–80,
http://dx.doi.org/10.1016/j.jembe.2005.12.017
Cloern J. E., 2001, Our evolving conceptual model of the coastal eutrophication
problem, Mar.Ecol.-Prog. Ser., 210, 223–253,
http://dx.doi.org/10.3354/meps210223
Conners M. E., Hollowed A. B., Brown E., 2002, Retrospective analysis of Bering
Sea bottom trawl surveys:regime shift and ecosystem reorganization, Prog.
Oceanogr., 55 (1), 209–222,
http://dx.doi.org/10.1016/S0079-6611(02)00079-4
Edgar G. J., Barrett N. S., 2002, Benthic macrofauna in Tasmanian estuaries:
scales of distribution and relationships with environmental variables, J. Exp.
Mar. Biol. Ecol., 270 (1), 1–24,
http://dx.doi.org/10.1016/S0022-0981(02)00014-X
Edgar G. J., Shaw C., Watson G. F., Hammond L. S., 1994, Comparison of species
richness, size-structure and production of benthos in vegetated and unvegetated
habitats in Western Port, Victoria, J. Exp. Mar. Biol. Ecol., 176(2), 201–226,
http://dx.doi.org/10.1016/0022-0981(94)90185-6
Fonseca M. S., Kenworthy W. J., Colby D. R., Rittmaster K. A., Thayer G. W.,
1990, Comparisons of fauna among natural and transplanted eelgrass Zostera
marina meadows:criteria for mitigation, Mar. Ecol.-Prog. Ser., 65, 251–264,
http://dx.doi.org/10.3354/meps065251
Frechette M., Butman C. A., Geyer W. R., 1989, The importance of boundary-layer flows in
supplying phytoplankton to the benthic suspension feeder, Mytilus
edulis L., Limnol. Oceanogr., 34 (1), 19–36,
http://dx.doi.org/10.4319/lo.1989.34.1.0019
Grall J., Le Loch F., Guyonnet B., Riera P., 2006, Community structure and food
web based on stable isotopes (δ
15 N and δ
13C)analysis of a North Eastern
Atlantic maerl bed, J. Exp. Mar. Biol. Ecol., 338 (1), 1–15,
http://dx.doi.org/10.1016/j.jembe.2006.06.013
Gray J. S., Wu R. S.-S., Ying Y. O., 2002, Effects of hypoxia and organic enrichment
on the coastal marine environment, Mar. Ecol.-Prog. Ser., 238, 249–279,
http://dx.doi.org/10.3354/meps238249
Hanninen J., Vuorinen I., Hjelt P., 2000, Climatic factors in the Atlantic control
the oceanographic and ecological changes in the Baltic Sea, Limnol. Oceanogr.,
45 (3), 703–710,
http://dx.doi.org/10.4319/lo.2000.45.3.0703
Heine J. N., 1989, Effects of ice scour on the structure of sublittoral marine algal
assemblages of St. Lawrence and St. Matthew islands, Alaska, Mar. Ecol.-Prog. Ser., 52, 253–260,
http://dx.doi.org/10.3354/meps052253
Herkul K., Kotta J., Kotta I., Orav-Kotta H., 2006, Effects of physical disturbance,
isolation and key macrozoobenthic species on community development,
recolonisation and sedimentation processes, Oceanologia, 48 (S), 267–282.
Howarth R. W., Swaney D. P., Butler T. J., Marino R., 2000,Climatic control on
eutrophication of the Hudson River Estuary, Ecosystems, 3, 210–215,
http://dx.doi.org/10.1007/s100210000020
Isaus M., 2004, Factors structuring Fucus communities at open and complex
coastlines in the Baltic Sea, Ph. D. thesis, Dept. Botany, Stockholm Univ.,
Stockholm, p. 40.
Jaagus J., 2006, Trends in sea ice conditions in the Baltic Sea near the Estonian
coast during the period 1949/1950–2003/2004 and their relationships to largescale
atmospheric circulation, Boreal Environ. Res., 11 (3), 169–183.
Jackson J. B. C., Kirby M. X., Berger W. H., Bjorndal K. A., Botsord L. W.,
Bourque B. J., Bradbury R. H., Cooke R., Erlandson J., Estes J. A., Hughes T. P.,
Kidwell S., Lange C. B., Lenihan H. S., Pandol J. M., Peterson C. H.,
Steneck R. S., Tegner M. J., Warner R. R., 2001, Historical overfishing
and the recent collapse of coastal ecosystems, Science, 293 (5530), 629–637,
http://dx.doi.org/10.1126/science.1059199
Janke K., 2006, Biological interactions and their role in community structure in the
rocky intertidal of Helgoland (German Bight, North Sea), Helgol. Mar. Res.,
44 (2), 219–263.
Jernelov A. ,Rosenberg R., 1976, Stress tolerance of ecosystems, Environ.Conserv.,
3 (01), 43–46,
http://dx.doi.org/10.1017/S0376892900017732
Justic D., Rabalais N. N., Turner R. E., 2005, Coupling between climate variability
and coastal eutrophication: Evidence and outlook for the northern Gulf of
Mexico, J. Sea Res., 54 (1), 25–35,
http://dx.doi.org/10.1016/j.seares.2005.02.008
Karlson K., Rosenberg R., Bonsdorff E., 2002, Temporal and spatial largescale effects of
eutrophication and oxygen deficiency on benthic fauna in
Scandinavian and Baltic waters – a review, Oceanogr. Mar. Biol. Ann. Rev.,
40, 427–489.
Kasim M., Mukai H., 2006, Contribution of benthic and epiphytic diatoms to clam
and oyster production in the Akkeshi-ko Estuary, J. Oceanogr., 62 (3), 267–281,
http://dx.doi.org/10.1007/s10872-006-0051-9
Kotta J., Kotta I., Simm M., Lankov A., Lauringson V., Pollumae A., Ojaveer H.,
2006a, Ecological consequences of biological invasions: three invertebrate case
studies in the north-eastern Baltic Sea, Helgol. Mar. Res., 60 (2), 106–112.
Kotta J., Kotta I., Simm M., Pollupuu M., 2009, Separate and interactive effects
of eutrophication and climate variables on the ecosystem elements of the Gulf
of Riga, Estuar. Coast. Shel Sci., 84 (4), 509–518,
http://dx.doi.org/10.1016/j.ecss.2009.07.014
Kotta J., Lauringson V., Kotta I., 2007, Response of zoobenthic communities to
changing eutrophication in the northern Baltic Sea, Hydrobiologia, 580 (1), 97–108.
Kotta J., Lauringson V., Martin G., Simm M., Kotta I., Herkul K., Ojaveer H.,
2008a, Gulf of Riga and arnu Bay, [in:] Ecology of Baltic coastal waters,
U. Schiewer (ed.), Ecol. Stud., 197, Springer, Dordrecht, 217–243.
Kotta J., Mohlenberg F., 2002, Grazing impact of Mytilus edulis and Dreissena
polymorpha (allas) in the Gulf of Riga, Baltic Sea estimated from
biodeposition rates of algal pigments, Ann.Zool.Fenn., 39 (2), 15–160.
Kotta J., Olafsson E., 2003, Competition for food between the introduced exotic
polychaete Marenzelleria viridis and the resident native amphipod Monoporeia
affnis in the Baltic Sea, J. Sea Res., 50 (1), 27–35,
http://dx.doi.org/10.1016/S1385-1101(03)00041-8
Kotta J., Orav H., 2001, Role of benthic macroalgae in regulating macrozoobenthic
assemblages in the Vainameri (north-eastern Baltic Sea), Ann. Zool. Fenn.,
38 (2), 163–171.
Kotta J., Orav-Kotta H., Paalme T., Kotta I., Kukk H., 2006b, Seasonal changes
in situ grazing of the mesoherbivores Idotea baltica and Gammarus oceanicus
on the brown algae Fucus vesiculosus and ilayella littoralis in the central Gulf
of Finland,Baltic Sea, Hydrobiologia,554 (1), 117–125.
Kotta J., Orav-Kotta H., Vuorinen I., 2005, Field measurements on the variability
in biodeposition and grazing pressure of suspension feeding bivalves in the
northern Baltic Sea, [in:]The comparative roles of suspension feeders in
ecosystems, R. Dame & S. Olenin (eds.), Springer, Dordrecht, 11–29.
Kotta J., Paalme T., Kersen P., Martin G., Herkul K., Moller T., 2008b,
Density dependent growth of the red algae Furcellaria lumbricalis and
Coccotylus truncatus in the West-Estonian Archipelago Sea, northern Baltic
Sea, Oceanologia, 50 (4), 577–585.
Kotta J., Paalme T., Martin G.,Makinen A., 2000, Major changes in macroalgae
community composition affect the food and habitat preference of Idotea baltica,
Int. Rev. Hydrobiol., 85 (5–6), 693–701,
http://dx.doi.org/10.1002/1522-2632(200011)85:5/6<697::AID-IROH697>3.0.CO;2-0
Kotta J., Paalme T., Puss T., Herkul K., Kotta I., 2008c, Contribution of scaledependent
environmental variability on the biomass patterns of drift algae and
associated invertebrates in the Gulf of Riga, northern Baltic Sea, J. Marine
Syst., 74 (Supp.1), 116–123,
http://dx.doi.org/10.1016/j.jmarsys.2008.03.030
Kotta J., Simm M., Kotta I., Kanosina I., Kallaste K., Raid T., 2004a, Factors
controlling long-term changes of the eutrophicated ecosystem of Parnu Bay,
Gulf of Riga, Hydrobiologia, 514 (1–3), 259–268,
http://dx.doi.org/10.1023/B:hydr.0000018224.56324.44
Kotta J., Torn K., Martin G., Orav-Kotta H., Paalme T., 2004b, Seasonal variation
of invertebrate grazing on Chara connivens and C. tomentosa in Koiguste Bay,
NE Baltic Sea, Helgol. Mar. Res., 58 (2), 71–76,
http://dx.doi.org/10.1007/s10152-003-0170-2
Kotta J., Witman J., 2009, Diversity patterns and their causes.Regional scale,
[in:] Hard bottom communities: patterns, scales, dynamics, functions, shifts,
M. Wahl (ed.), Ecol.Stud., Springer, Dordrecht, (in press).
Lauringson V., Kotta J., 2006, Influence of the thin drift algal mats on
the distribution of macrozoobenthos in Koiguste Bay, NE Baltic Sea,
Hydrobiologia, 554 (1), 97–105,
http://dx.doi.org/10.1007/s10750-005-1009-4
Lauringson V., Kotta J., Orav-Kotta H., Kotta I., Herkul K., Pollumae A., 2009,
Comparison of benthic and pelagic suspension feeding in shallow water habitats
of the northeastern Baltic Sea, Mar.Ecol.,30 (1), 43–55,
http://dx.doi.org/10.1111/j.1439-0485.2009.00302.x
Lauringson V., Malton E., Kotta J., Kangur K., Orav-Kotta H., Kotta I., 2007,
Environmental factors influencing the biodeposition of the suspension feeding
bivalve Dreissena polymorpha (allas): comparison of brackish and fresh water
populations in the Northern Baltic Sea and Lake Peipsi, Estuar. Coast. Shelf
Sci., 75 (4), 459–467,
http://dx.doi.org/10.1016/j.ecss.2007.05.037
Lawrence J. M., 1975, On the relationship between marine plants and sea urchins,
Oceanogr. Mar. Biol. Ann. Rev., 13, 213–286.
Levinton J. S., Stewart S., 1988, Effects of sediment organics, detrital input, and
temperature on demography, production,and body size of a deposit feeder, Mar.
Ecol.-Prog. Ser., 49, 259–266,
http://dx.doi.org/10.3354/meps049259
Madsen J. D., Chambers P. A., James W. F., Koch E. W., Westlake D. F., 2001,
The interaction between water movement, sediment dynamics and submersed
macrophytes, Hydrobiologia, 444 (1–3), 71–84,
http://dx.doi.org/10.1023/A:1017520800568
McGowan J. A., Cayan D. R., Dorman L. M., 1998, Climate-ocean variability and
ecosystem response in the northeast Pacific, Science, 281 (5374), 210–217,
http://dx.doi.org/10.1126/science.281.5374.210
Olafsson E., Elmgren R., 1997, Seasonal dynamics of sublittoral meiobenthos in
relation to phytoplankton sedimentation in the Baltic Sea, Estuar. Coast. Shelf
Sci., 45 (2), 149–164,
http://dx.doi.org/10.1006/ecss.1996.0195
Olli K., Clarke A., Danielsson A., Aigars J., Conley D. J., Tamminen T., 2008,
Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic
Sea, J. Marine Syst., 73 (3–4), 284–299
http://dx.doi.org/10.1016/j.jmarsys.2007.04.009
Orav-Kotta H.,Kotta J., 2004, Food and habitat choice of the isopod Idotea baltica
in the northeastern Baltic Sea, Hydrobiologia, 514 (1–3), 79–85,
http://dx.doi.org/10.1023/B:hydr.0000018208.72394.09
Orav-Kotta H., Kotta J., Herkul K., Kotta I., Paalme T., 2009, Seasonal variability
in the grazing potential of the invasive amphipod Gammarus tigrinus and the
native amphipod Gammarus salinus in the northern Baltic Sea, Biol. Invasions,
11 (3), 597–608,
http://dx.doi.org/10.1007/s10530-008-9274-6
Ottersen G., Planque B., Belgrano A., Post E., Reid P. C., Stenseth N. C., 2001,
Ecological effects of the North Atlantic Oscillation, Oecologia, 128 (1), 1–14,
http://dx.doi.org/10.1007/s004420100655
Paalme T., Kukk H., Kotta J., Orav H., 2002, 'In vitro' and 'in situ'
decomposition of nuisance macroalgae Cladophora glomerata and ilayella
littoralis, Hydrobiologia, 475/476, 469–476,
http://dx.doi.org/10.1023/A:1020364114603
Communications
Mathematical description of vertical algal accessory pigment distributions in oceans - a brief presentation
Oceanologia 2009, 51(4), 561-580
http://dx.doi.org/10.5697/oc.51-4.561
Roman Majchrowski1,*, Mirosława Ostrowska
1Institute of Physics,
Pomeranian University in Słupsk,
Arciszewskiego 22B, PL-76-200 Słupsk, Poland;
e-mail: majchrowski@apsl.edu.pl
*corresponding author
2Institute of Oceanology,
Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Keywords:
Accessory pigment concentration, vertical distribution of pigments, bio-optical modelling
Received 13 July 2009, revised 24 September 2009, accepted 20 October 2009.
This paper was presented at the 5th International Conference on "Current Problems in the Optics of Natural Waters", St. Petersburg,
8-12 September 2009. An abridged version will be published in the Conference Proceedings.
Partial funding for this study (research projects NN304 275235 and N306 1391 33) was received from the Polish
Ministry of Science and Higher Education for 2008-10. The investigations were performed within the framework of
the scientific network Inter-Institute Group for Satellite Observations of the Marine Environment.
Abstract
A straightforward mathematical expression for describing the vertical
distributions of algal accessory pigments in oceans is presented.
To this end ca 1500 empirical datasets of accessory pigment depth profiles gathered during
some 200 research cruises in different oceanic regions were analysed. These data were
retrieved from the bio-optical databases of SeaBASS and U.S. JGOFS
published on the Internet.
The statistical relationships were analysed between the concentrations of
accessory pigments and the trophic indices of waters, as measured by
the surface concentrations of chlorophyll a and the optical depths in
different oceanic regions. A mathematical expression was established and
formulas based on it were found, approximating the relations between the
vertical distributions of accessory pigments and the chlorophyll a concentration. These formulas can be used to
model the species composition of algae in different parts of the ocean and in remote sensing algorithms.
References
Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P. G., 1996, N trogen-and irradiance-dependent var ations of the maximum quantum yield of carbonifixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res. Pt. I, 43 (8), 1241–1272.
Bidigare R., 1995, tt007 pigments, U.S. JGOFS Data System, http://usjgofs.whoi.edu/jg/serv/jgofs/eqpac/t 007/pigments.html0.
Bidigare R., 2002a, tt008 pigments, U.S. JGOFS Data System, http://usjgofs.whoi.edu/jg/serv/jgofs/eqpac/t 008/pigments.html0.
Bidigare R., 2002b, tt011 pigments, U.S. JGOFS Data System, http://usjgofs.whoi.edu/jg/serv/jgofs/eqpac/t 011/pigments.html0.
Bidigare R., 2002c, tt012pigments, U.S. JGOFS Data System, http://usjgofs.whoi.edu/jg/serv/jgofs/eqpac/t 012/pigments.html0.
Bricaud A., Babin M., Morel A., Claustre H., 1995, Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterisation, J. Geophys. Res., 100 (C7), 13 321–13 332.
Brune C., Brylinski J. M., Lemoine Y., 1993, In situ variations of the xanthophylls diadinoxanthin and diatoxanthin: photoadaptation and relat onships with a hydrodynamical system of the eastern Engl sh Channel, Mar.Ecol.-Prog. Ser., 102,69–77.
Brune C., Casotti R.,Aronne B., Vantrepotte V.,2003, Measured photophys
ological parameters used as tools to estimate vert cal water movements
in the coastal Mediterranean, J. Plankton Res., 25 (11), 1413–1425.
Brune C., Casotti R., Vantreporte V., Corato F., Conversano F., 2006,
Picophytoplankton diversity and photoacclimat on in the Strait of Sicily
(Mediterranean Sea) in summer. I. Mesoscale variations, Aqua. Microb.
Ecol., 44 (2), 127–141.
Claustre H., Kerherv Le P., Marty J.-C., Prieur L., 1994,
Phytoplankton photoadaptation related to some frontal phys cal processes,
J. Marine Sys., 5 (3–5), 251–265.
Goericke R., 2001a, rr-kiwi6 HPLC pigments, U. S. JGOFS Data System,
http://usjgofs.whoi.edu/jg/serv/jgofs/sou hern/rr-kiwi 6/HPLC
pigments.html0.
Goericke R., 2001b, rr-kiwi7 HPLC pigments, U. S. JGOFS Data System,
http://usjgofs.whoi.edu/jg/serv/jgofs/sou hern/rr-kiwi 7/HPLC
pigments.html0.
Goericke R., 2001c, rr-kiwi8 HPLC pigments, U. S. JGOFS Data System,
http://usjgofs.whoi.edu/jg/serv/jgofs/sou hern/rr-kiwi 8/HPLC
pigments.html0.
Goericke R., 2001d, rr-kiwi9 HPLC pigments, U. S. JGOFS Data System,
http://usjgofs.whoi.edu/jg/serv/jgofs/sou hern/rr-kiwi 9/HPLC
pigments.html0.
Jeffrey S. W., Mantoura R. F. C., Wrigh S. W., 1997, Phytoplankton pigments in
oceanography: Guidelines to modern methods, UNESCO Publ., Paris, 661 pp.
Koblen z-Mishke O. I., 1971, Same ecological and physiological properties of
phytoplankton, [in:] Functioning of pelagic plankton communities in the
tropical regions of the ocean, M. E. Vinogradov (ed.), Nauka, Moskva, 80–87,
(in Russian).
Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence
of photoprotect ng carotenoids of phytoplankton and Potentially Destructive
Radiation in the sea, Oceanologia, 41 (4), 589–599.
Margalef R., 1967, Some concepts relative to the organ sat on of plankton,
Oceanogr. Mar. Biol. Ann. Rev., 5, 257–289.
Morel A., Prieur L., 1977, Analysis of var ations in ocean color, Limnol.Oceanogr.,
22 (4), 709–722,
http://dx.doi.org/10.4319/lo.1977.22.4.0709
Oubelkheir K., Claustre H., Sciandra A., Babin M., 2005, Bio-optical and
biogeochemical properties of different trophic regimes in oceanic
waters,
Limnol. Oceanogr., 50 (6), 1795–1809,
http://dx.doi.org/10.4319/lo.2005.50.6.1795
Uitiz J., Huo Y., Bruyan F., Babin M., Claustre H., 2008, Relating
phytoplankton photophysiological properties to community structure on
large scales,
Limnol. Oceanogr., 53 (2), 614–630,
http://dx.doi.org/10.4319/lo.2008.53.2.0614
Uitiz J., Claustre H., Garcia N., Griffiths F. B., Ras J., Sandroni V.,
2009,
A phytoplankton class-speci .c pr mary product on model applied to the
Kerguelen Islands region (Southern Ocean), Deep-Sea Res. Pt. I,56 (4),
541–560,
http://dx.doi.org/10.1016/j.dsr.2008.11.006
Werdell P. J., Bailey S. W., 2002, The SeaW FS Bio-optical Archive and Storage
System (SeaBASS): Current arch tecture and mplementat on ,NASA Tech.
Memo. 2002–211617, G. S. Fargion & C. R. McClain (eds.), NASA Goddard
Space Fligh Center, Greenbelt, MD, 45 pp.
WoĽniak B., Dera J., 2007, Light absorption in sea water, Atmos. Oceanogr. Sci.
Libr., 33, Springer, New York, 454 pp.
WoĽniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003,
Modelling light and photosynthesis in the marine environment, Oceanologia,
45 (2), 171–245.
WoĽniak B., Ostrowska M., 1990, Composition and resources of photosynthetic
pigments of the sea phytoplankton, Oceanologia, 29, 91–115.
Wrigh S. W., Jeffrey S. W., 2006, Pigment markers for phytoplankton product on,
[in:] Marine organic matter: Biomarkers, isotopes and DNA, J. K. Volkman
(ed.), Springer-Verlag, Berlin, 71–104.
Chronicle
The First Earth and Planetary Research Centre Conference
Oceanologia 2009, 51(4), 581-584
http://dx.doi.org/10.5697/oc.51-4.581
Marta Wachowicz
The First Earth and Planetary Research Centre
Conference was held on 5 and 6 November 2009 at the Institute of Oceanology PAS
in Sopot. The initiative to establish the Earth and Planetary
Research Centre (GeoPlanet) was taken jointly by the Institute
of Geophysics PAS, the Space Research Centre PAS, the Institute of Geological
Sciences PAS and Institute of Oceanology PAS. The Contract to establish the
Centre was signed on March 30, 2009. The GeoPlanet Centre is run by a Board of
Directors, and it was decided to base GeoPlanet at the Institute
of Geophysics PAS. The creation of the Centre, with its scientific
and infrastructural potential, common databases and research
groups, may constitute a substantial added value, of importance on
both the domestic and international scientific markets. In Europe,
consolidation of research potential has taken place in recent decades: good
examples in the field of Earth Sciences include the IFREMER Centre
in France, which incorporates several marine research organizations,
and the GeoForschungsZentrum in Germany...